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Data Link Layer 

• Transport Layer (4) 

– Logical connection between processes 

– Transport layer multiplexing & demultiplexing 

• Network Layer (3) 

– End-to-end communication between hosts 

– Possibly through multiple networks via routers 

• Data Link Layer (2) 

– Deals with individual 

communication links 
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Link Layer 

• Data is encapsulated in a  link-level frame  

• MAC = Medium Access Control 

– Protocol for transmitting and receiving frames at the link layer 

• Error detection & correction 

– Detect (and possibly correct)  

errors in the frame 

• MAC Address 

– Link-layer address  
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Link-layer switch 

Direct link 
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Error Detection & Correction 
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Error Detection & Correction Goals 

Why do we want this at the link layer? 

 

–Drop a bad frame at the receiver 

• If the link layer detects it, no overhead checking at the network/transport layers 

• No need to forward the packet (avoid wasting network bandwidth) 

• Avoid end-to-end delay of having the receiver detect & sender retransmission 

 

–Attempt to correct errors 

• Avoid the need to reject bad packets & retransmit 
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Parity 

• Simplest form of error detection: add one bit (parity bit) 

– Even parity 

• Set the parity bit such that there is an even number of 1 bits 

   01110000 ⇒ 011100001   

– Odd parity 

• Set the parity bit such that there is an odd number of 1 bits 

   01110000 ⇒ 011100000  

• An even number of bit errors will be undetected 

• In real life, bit errors typically occur in bursts 

– Multiple consecutive bits get corrupted 
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Two-Dimensional Parity 

• Break up d bits into i rows and j columns 

• Generate a parity bit per row and per column 

– For a single bit error, we can identify the row & column of the bit 
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1 0 1 1 1 

0 0 0 1 1 

1 1 0 0 0 

1 1 1 0 1 

1 0 0 0 1 

Example:  1011 0001 1100 1110 with even parity: 

We can transmit:  1011 0001 1100 1110 1101 1000 1 
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Two-Dimensional Parity 

For a single bit error, we can identify the row & column of 

the corrupted bit 
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1 0 1 1 1 

0 0 1 1 1 

1 1 0 0 0 

1 1 1 0 1 

1 0 0 0 1 

Place this back into the grid: 

We sent:   1011 0001 1100 1110 1101 1000 1 

They got:  1011 0011 1100 1110 1101 1000 1 

Bad parity 

Bad parity 

By identifying the row & column, we can identify the bad bit 

Here’s the bad bit 
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Error Correction 

• Two-dimensional parity 

– Simple example of an error correcting code (ECC) 

• Error correcting codes 

– Invented by Richard Hamming in 1950 

– Common types of ECCs 

• Reed-Solomon codes (used in CDs, DVDs, disk drives) 

• Hamming codes (ECC memory) 

• Low-density parity-check, LDPC (802.11n, 10G Ethernet) 

• Viterbi codes (cellular LTE) 

• Forward Error Correction (FEC) 

– Data transmission that uses ECC in the message 

– The receiver can correct some errors without the need for retransmission 
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Checksums 

• Checksum = treat the bits of a packet as a set of integers 

– Perform operations on those integers 

• Internet checksum 

– We saw this in IP, UDP, TCP, ICMP, OSPF, and IGMP headers 

• Treat data as 16-bit chunks 

• Sum it up (add one for each carry) 

• Take a 1s complement of the result 

– Simple, easy to compute efficiently (important!) 

– BUT very weak protection against errors 

• Cyclic Redundancy Check (CRC) 

– Much more robust checksum 

– More compute intensive (hence not appealing at higher layers) 

– Done with dedicated hardware at the transceiver 
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Cyclic Redundancy Check 

• Polynomial code 

• Works well for detecting burst errors: a sequence of bad bits 

• n-bit CRC code will usually detect an error burst up to n bits 

– Will detect longer bursts with a probability of 1-2-n 

– Example: Ethernet uses a 32-bit CRC 

• Detects up to 32 consecutive bad bits 

• Detects longer streams of bad bits 99.99999997671% of the time 

• That is, there’s a 2.329×10-10 chance that the CRC will not detect bit errors >32 bits 
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How is a CRC calculated? 

• CRC performed by division: all subtractions replaced with XOR 

a ⨁ b = a + b = a - b   if we ignore carries and borrows 

 

 

 

• To send a message D with d data bits 

– Compute CRC code R with r bits 

– Transmit D, R 

• Receiver and transmitter agree upon a Generator, G 

– G has r+1 bits; starts with 1 

 

– CRC = R = remainder of  
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D×2r is D left-shifted by r bits  

a b a ⨁ b 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

r

G

D 2
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CRC calculation example 

• We want to send D = 01110000011 

• Assume the generator bits are 10111 (r = 4; G has r + 1 bits) 

• Perform a division (but with xor instead of subtraction with borrowing) 
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011100000110000  10111 
10111 

1 

010110 

shift D by r (4) bits 
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CRC calculation example 

• We want to send D = 01110000011 

• Assume the generator bits are 10111 (r = 4; G has r + 1 bits) 

• Perform a division (but with xor instead of subtraction with borrowing) 

 

14 

011100000110000  10111 
10111 

11 

010110 
10111 
000010011 

shift D by r (4) bits 
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CRC calculation example 

• We want to send D = 01110000011 

• Assume the generator bits are 10111 (r = 4; G has r + 1 bits) 

• Perform a division (but with xor instead of subtraction with borrowing) 
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011100000110000  10111 
10111 

1100010101 

010110 
10111 
000010011 

10111 
0010000 
10111 
0011100 

CRC = 1011 

Transmit (D, R) = 011100000111011  

R = 1011 

10111 
 1011 

shift D by r (4) bits 
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CRC verification example 

• We received D = 011100000111011  

• Same Generator, G = 10111 (r = 4; G has r+1 bits) 

• Perform the same division (no shift; we have 4 CRC bits at the right 
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If the remainder = 0 

then no error detected 

011100000111011  10111 
10111 
010110 
10111 
000010011 

10111 
0010010 
10111 
0010111 

No need to shift 

We have our CRC bits 

R = 0 

Correct! 

10111 
 0000 

1100010101 
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CRC Generators 

• Ethernet uses a 32-bit CRC generator (CRC-32) 

– 0x04C11DB7 

– Also used by FDDI, ZIP, and PNG 
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Multiple Access Protocols 

18 352 © 2013-2016 Paul Krzyzanowski April 22, 2016 



Categories of link layer access protocols 

• Types of links 

– Point-to-point links connect one sender with one receiver 

• No conflict for access 

– Broadcast links have multiple nodes connected to the same channel 

• Broadcast links have a multiple access problem 

– How do you coordinate multiple senders? 

– Collision: when two nodes transmit at the same time 

• Signals from both get damaged 

• Three categories of multiple access protocols 

1. Channel partitioning 

2. Random access 

3. Taking turns 
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Channel Partitioning Protocols 

1. Time division multiplexing (TDM) 

– Divide a channel into time slots 

– A node can transmit only during its allocated time slot 

 

2. Frequency division multiplexing (FDM) 

– Divide a channel into frequency bands 

 

• If a channel has a bandwidth R and there are N nodes 

– Both TDM and FDM are fair: each node gets bandwidth = R/N 

– BUT a node gets R/N even if no other node needs to transmit! 
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TDM vs. FDM 
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4 data streams 

time slot 

frequency band 
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Random Access Protocols 

• Node has full use of the channel 

• No scheduled time slots as in TDM 

• If there is a collision 

– Colliding nodes wait a random time & retransmit 

– The nodes will (usually) pick different intervals & not collide next time 
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Slotted ALOHA 

• One of the oldest random access protocols 

• Not used anymore but useful to study 

• Environment 

– All frames L bits 

– Time divided into 1-frame slots of L/R seconds (R=bandwidth) 

– Nodes are synchronized and transmit at the start of a slot 

• If there’s a collision 

– All transmitting nodes detect it during transmission 

– Retransmit on the next slot with probability p 

– Otherwise skip the slot and try again: retransmit with probability p 
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Slotted ALOHA 

• Efficiency 

– Time slots with collisions: wasted 

– Time slots with no transmissions: also wasted 

• P(success for 1 node) = P(one node transmits) × P(N-1 do not) 

      =                  p                 ×       (1 - p)N-1 

      =                              p(1 - p)N-1 

• P(success for all nodes) = Np(1 - p)N-1 

• Maximum efficiency 

– Find p that maximizes the expression 

– Take limit of N → ∞ 

– This is 1/e ≈ 0.37 

• 37% slots have useful data; 37% are empty; 26% have collisions 

– A 1 Gbps link will behave like a 370 Mbps link! 
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CSMA/CD 

Carrier Sense Multiple Access with Collision Detection 

• Carrier Sensing 

– Listen first 

– If the channel has communications, wait until it is clear 

• Collision Detection 

– If you are transmitting but detect a collision, stop transmitting 

– Wait a random time interval and try again (sense & transmit) 
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How do collisions occur? 

• Node A senses quiet & transmits 

• Remember propagation delay? 

– It takes time for the signal to reach other nodes 

– ~2×108 m/s = 5 nanoseconds per meter 
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Node A transmits 

looks quiet … node B transmits 
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How do collisions occur? 

• Node A senses quiet & transmits 

• A short while later… 

– Node B senses quiet because the signal from A didn’t reach it 

– Node B transmits 
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Node A Node B Node C 

looks quiet … node B transmits 

Node A transmits 
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How do collisions occur? 

• Node A senses quiet & transmits 

• A short while later… 

– Node B senses quiet because the signal from A didn’t reach it 

– Node B transmits 
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Node A Node B Node C 

Node A transmits 

ti
m

e
 

A detects 

a collision 

B detects 

a collision 
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Collision Detection 

• A node listens while it is transmitting 

• As soon as it detects a collision 

– Stop transmitting 

– Wait a random interval 

 

– We’d like a possibly long interval if there are many nodes sending 

– We’d like a short interval if there are few transmitters 

– BUT … we don’t know what’s going on! 
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Binary Exponential Backoff 

• If a frame experienced b collisions (b = backoff count) 

• Choose a delay W with equal probability from 0 … 2b-1 

– 1st time {0, 1}    2nd time {0 … 3} 

– 3rd time {0 … 7}             4th time {0 … 15}  

– 5th time {0 … 31}   6th time {0 … 63}  

• Ethernet: a delay is W × 512 bit-times 

– 512 bit-times = time to send 512 bits = 5.12 μs for 100 Mbps 

– Backoff count limit (maximum b) = 10 

– 10 or more collisions: choose a delay {0 … 1023} 

• Status 

– CSMA/CD is not needed with switched Ethernet 

– Binary Exponential Backoff also used in DOCSIS cable modems 
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Multiple Access via Taking Turns 

• Goal: ensure that each node can get a fair throughput 

– Close to R/N bps for bandwidth R and N nodes 

• Polling protocol (used by Bluetooth) 

– Master polls each of the nodes to see if they want to transmit 

– No collisions or empty slots 

– But: polling delay & chance of master dying 

• Token passing protocol 

– Special frame, a token, is passed around nodes in some sequence 

– If a node has it, it can transmit & then forward the token 

– Decentralized & efficient 

– But: failure of a node can stop the network 
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Ethernet 
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Ethernet technology 

• Mid-1970s: created at Xerox by Bob Metcalfe 

– 2.74 Mbps Ethernet over 9.5mm thick coax 

• 1980s 

– Standardized in 1985 as IEEE 802.3 

– & 10BASE-5 (9.5mm coax) & 10BASE-2 (5mm coax) 

• 1990: 

– 10BASE-T over twisted pair wiring @ 10 Mbps 

– Category 3 UTP (unshielded twisted pair) wiring with RJ45 connectors  

• 1995: Fast Ethernet:  100BASE-TX over cat 5 UTP 

• 1999: Gigabit Ethernet: 1000BASE-T over cat 5e 

• 2006: 10 Gb Ethernet:  10GBASE-T over cat 6a 

• 2010: 100GbE / 40GbE 40GBASE-T over cat 8 

 

 

 

33 

100BASE-TX, 10BASE-T, etc. 

• Deal with data encoding 

Category 3, 5, 6, 7 

• Deal with cable specifications 

Connectors 

• 8P8C (RJ45) 
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Ethernet Frame 

• 8 bytes: preamble & start-of-frame delimiter 

• Variable size data: 42-1500 bytes 

– No length field: the transceiver grabs the entire frame 

• Interframe gap: at least 96 bit wait time 

 

 

 

 

• Jumbo frames: maximum size 8000 bytes 

• Super Jumbo frames (SJF): maximum size > 8000 bytes 
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MAC destination MAC source type payload (42-1500 bytes) CRC 

higher level protocol ID: 0x0800 = IPv4, 086DD = IPv6 

MAC = Media Access Control = link-layer address 
See https://en.wikipedia.org/wiki/EtherType for protocol IDs 
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Link Layer Addressing 
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Link-Layer Addressing 

• Each NIC has a unique link-layer address 

– MAC address – unrelated to IP address  

• LAN communication at layer 2 needs MAC addresses 

– An Ethernet transceiver cannot send a frame to an IP address! 

 

• E.g., Ethernet uses a EUI-48 address 

– EUI = Extended Unique Identifier; managed by IEEE 

– Used in Ethernet, 802.11, Bluetooth, and a few other networks 

– 48-bit address (6 bytes long) 

– E.g., c8:2a:14:3f:92:d1 (my iMac) 

– Globally unique address 

• First three bytes: identify manufacturer 

• Next three bytes: assigned by manufacturer 

• Flat address space 
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Find MAC address given an IP address 

• We need to send a datagram to an IP address 

• It is encapsulated in an Ethernet frame and a MAC address 

 

 

 

• How do we know what MAC address to use? 
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MAC destination MAC source type CRC IP header IP data 
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Address Resolution Protocol (ARP) 

• ARP table 

– Kernel table mapping IP addresses & corresponding MAC addresses 

– OS uses this to fill in the MAC header given an IP destination address 

– What if the IP address we want is not in the cache? 

• ARP Messages 

– A host creates an ARP query packet & broadcasts it on the LAN 

• Ethernet broadcast MAC address:  ff:ff:ff:ff:ff:ff 

– All adapters receive it 

• If an adapter’s IP address matches the address in the query, it responds 

• Response is sent to the MAC address of the sender 
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see the arp command on 

Linux/BSD/Windows/OS X 

Protocol type 

(e.g., IPv4) 

HW Protocol 

(ethernet) 

MAC addr 

length 

query/ 

response 

sender 

MAC addr 

sender 

IP addr 

target 

MAC addr 

target 

IP addr 

ARP packet structure 

352 © 2013-2016 Paul Krzyzanowski April 22, 2016 



My ARP cache 

• Timeout on Linux systems: /proc/sys/net/ipv4/neigh/eth0/gc_stale_time 
– Default = 60 seconds 

• Windows (Vista & Later) 
– Timeout = random value between 15 and 45 seconds 

– But remains cached longer if used during that time 
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# arp -a 

crapper.pk.org (192.168.60.129) at f0:f7:55:bb:17:26 [ether] on eth0 

air.pk.org (192.168.60.143) at 28:37:37:19:65:96 [ether] on eth0 

? (192.168.60.182) at d0:23:db:77:ff:5a [ether] on eth0 

? (192.168.60.174) at a4:67:06:65:21:f8 [ether] on eth0 

? (192.168.60.169) at 68:96:7b:09:bc:2a [ether] on eth0 

nas.pk.org (192.168.60.136) at 00:0d:a2:01:84:79 [ether] on eth0 

? (192.168.60.179) at f8:1e:df:d7:4a:1b [ether] on eth0 

? (192.168.60.176) at 18:b4:30:0a:c7:d7 [ether] on eth0 

? (192.168.60.181) at e8:06:88:90:2d:1e [ether] on eth0 

? (192.168.60.186) at e4:8b:7f:ac:5b:10 [ether] on eth0 

pk-imac.pk.org(192.168.60.153) at c8:2a:14:3f:92:d1 [ether] on eth0 

tc.pk.org (192.168.60.138) at 00:1e:52:f5:b5:e3 [ether] on eth0 

net.pk.org (192.168.60.131) at d0:67:e5:01:ec:5b [ether] on 

eth0box.pk.org (192.168.60.132) at 00:1f:16:f7:92:67 [ether] on eth0 

tc.pk.org (192.168.60.137) at 00:1e:52:f5:b5:e3 [ether] on eth0 
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IPv6: Neighbor Discovery 

• IPv6 does not support ARP 

– Neighbor Discovery accomplishes the same thing as ARP 

• Extends ICMP (ICMPv6) with new commands 

• Neighbor Advertisement (NA) and Neighbor Solicitation (NS) commands 

• Host A wants to contact Host B 

– ICMPv6 Type 135 (Neighbor Solicitation) message  

• Host A’s source address 

• Solicited-Node Multicast destination address 

– IPv6 prefix of ff02:0:0:0:0:1:ff00 

– IPv6 address suffix of the last 24 bits of Host B’s IP address 

• Data: Host A’s MAC address 

– Link Layer address: multicast mapping of IPv6 multicast address 

• Host B responds 

– ICMPv6 Type 136 (Neighbor Advertisement) message 

– Datagram addressed to Node A 
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Every IPv6 host must 

listen on its solicited-node 

multicast address 
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Transmitting a datagram 

Three possibilities 

1. We need to send to a host on our subnet (LAN) 

– We can do this at the link layer 

– We just need to find the MAC address that corresponds to the 

destination’s IP address 

 

2. We need to send to a host outside of our subnet 

– We need to get the datagram to a connected router 

– The datagram may pass through multiple routers 

 

3. We need to send a multicast datagram 

– Convert it to link-layer multicast 
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What if we need to send outside our LAN? 

We need to get the datagram to a router 

– Each router has an IP address (and a MAC address) for each interface 

– Find the MAC address for the IP address of the router interface 
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IP: 11.11.11.11 

MAC: d0:23:db:77:ff:5a  

IP: 11.11.11.10 

MAC: 20:c9:d0:72:cb:be 

IP: 22.22.22.20 

MAC: a4:67:06:65:21:f8  

IP: 22.22.22.21 

MAC: 68:96:7b:09:bc:2a  IP: 33.33.33.30 

MAC: 00:0d:a2:01:84:79  

IP: 33.33.33.33 

MAC: f8:1e:df:d7:4a:1b  

R1 R2 H1 

H2 
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What if we to send outside our LAN? 

IP datagram, source=11.11.11.11 destination=33.33.33.33 

1. H1 looks up the route to H2: needs to send to router R1 

– Looks up MAC address for 11.11.11.10; sends frame to 68:96:7b:09:bc:2a  

2. Router R1 needs to route to R2 

– Forwards to interface with IP addr 22.22.22.20 

– Looks up MAC address for 22.22.22.21; sends IP datagram to 68:96:7b:09:bc:2a  

3. Router R2 forwards to interface with IP addr 33.33.33.30 

– Looks up MAC address for destination 33.33.33.33 
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IP: 11.11.11.11 

MAC: d0:23:db:77:ff:5a  

IP: 11.11.11.10 

MAC: 20:c9:d0:72:cb:be 

IP: 22.22.22.20 

MAC: a4:67:06:65:21:f8  

IP: 22.22.22.21 

MAC: 68:96:7b:09:bc:2a  IP: 33.33.33.30 

MAC: 00:0d:a2:01:84:79  

IP: 33.33.33.33 

MAC: f8:1e:df:d7:4a:1b  

R1 R2 H1 

H2 

Routers also 

use ARP 
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Link-Layer (Ethernet) multicasting 

• Ethernet supports multicast in one (or both) of two ways: 

– Packets filtered based on hash(multicast_address) 

• Some unwanted packets may pass through 

• Simplified circuitry 

– Exact match on small number of addresses 

• If host needs more, put LAN card in multicast promiscuous mode 

– Receive all hardware multicast packets 

• In either case: 

– Link-layer driver must check to see if the packet is really targeted to the 

system 
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Example: hardware support for multicast 

Intel 82546EB 

– Dual Port Gigabit Ethernet 

Controller 

– 10/100/1000 BaseT Ethernet 

 

 

Supports: 

– 16 exact MAC address matches 

– 4096-bit hash filter for multicast 

frames 

– promiscuous unicast & 

promiscuous multicast transfer 

modes 

Broadcom BCM57762 

– 10/100/1000BASE-T Ethernet 

PCIe Controller 

– Used in Apple’s Thunderbolt-

Ethernet adapter 

 

Supports: 

– 1 exact MAC address match 

(may be reprogrammed up to 4 times) 

– Hash filter for multicast frames 

• 128-bit 7-bit CRC hash 

• or 256-bit 8-bit CRC hash 

– promiscuous mode  

(accept all frames) 
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IP multicast on a LAN 

• IP driver must translate 28-bit IP multicast group to a  

multicast Ethernet address 

– IANA allocated range of Ethernet MAC addresses for multicast 

– Copy least significant 23 bits of IP address to MAC address 

• 01:00:5e:xx:xx:xx 

 

 

 

• Send out multicast Ethernet packet 

– Payload contains multicast IP packet 

 

• Notice something? 

– The IP layer needs to filter out addresses that it is not subscribed to 
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Bottom 23 bits 

of IP address 

IP addr: 1110dddd dddddddd dddddddd dddddddd 

MAC addr: 00000001 00000000 01011110 dddddddd dddddddd dddddddd 
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IPv6 multicast on a LAN 

• IPv6 multicast addresses have a 112-bit group ID and start with ff00 

• IP driver must translate 128-bit IP multicast address to a  

multicast Ethernet address 

– Copy least significant 32 bits of IPv6 address to MAC address 

• 33:33:xx:xx:xx:xx 
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IP addr: <ignore top 96 bits> dddddddd dddddddd dddddddd dddddddd 

MAC addr: 00110011 001100011 dddddddd dddddddd dddddddd dddddddd 

See http://tools.ietf.org/html/rfc2464 
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Switched LANs 
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Ethernet Evolution 

• Ethernet started as a broadcast LAN with a shared bus topology 

– All packets were visible by all adapters 

– This is why we needed CSMA/CD 

 

• Coax gave way to twisted pair 

– Category 5 (Cat 5) cable 

– Star topology 

– Dedicated cable for each adapter 

– Cables plugged into a hub 

 

• Ethernet hub 

– Simulates a bus-based LAN 

– Every bit received on an interface is transmitted onto every other interface 
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Switched Ethernet 

• Hubs gave way to switches in the mid-1990s 

 

• Same star topology … but smarter 

– Like a hub, transparent to hosts 

– Full duplex: separate receive vs. transmit wires 

– Forwards received frames to the right interface(s) 

 

• Works sort of like a router 

– Link layer forwarding 

– But 

 Invisible – frames are never addressed to the switch 

 Self-learning: it learns what address is at which interface 
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Cisco Nexus 9516 Switch 
• 1/10/40 GbE 

• 21-rack-unit chassis 

• Up to 576 1/10 Gb ports 

TP-Link Switch 
• 8 1-GbE ports 



Inside an Ethernet Switch 

Switch table (also known as MAC address table) 

• Contains entries for known MAC addresses & their interface 

 

• Forwarding & filtering: a frame arrives for some destination address D 

– Look up D in the switch table to find the interface 

– If found & the interface is the same as the one the frame arrived on 

• Discard the frame (filter) 

– If found & a different interface 

• Forward the frame to that interface: queue if necessary 

– If not found 

• Forward to ALL interfaces 
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Building the switch table 

A switch is self-learning 

• Switch table (MAC address → interface): initially empty 

• Whenever a frame is received, associate the interface with the source 

MAC address in the frame 

• Delete switch table entries if they have not been used for some time 

 

• What about multicast? 

– Treat it like broadcast (simplest) 

– Some switches can snoop on IGMP join/leave messages 

– Some switches (Cisco) support downloading a local multicast table from the 

local router 

• What about promiscuous mode? 

– Need a managed switch – configure port for monitor mode or port mirroring 

 

 
54 



Building the switch table 

• A switch interface can be associated with 

multiple MAC addresses 

– Cascaded links 

– Multicast addresses (if supported) 
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Example Ethernet Switch 

Intel FM2112 Ethernet Switch  

– 24 ports 

– 1G / 10G links 

– Crossbar switch built with shared memory 

and a crossbar 

– 750 Gb/s bandwidth 

– 16 banks of 64KB memory for packet 

payload; headers queued & scheduled 

separately (1 MB total) 

– Switch element scheduler manages frame 

data & forwarding 

• Up to 4096 packets can be in the switch at 

one time 

– Multicast/broadcast replication 

– 16K (16,384) entry MAC address table 

• Binary (0/1) age: “new” refreshed whenever 

the entry is accessed 

• An age clock periodically purges “old” (non-

refreshed) entries 

 

 

ASIX AX88655 

– 5 port 

– 10/100/1000 Mbps 

– 4K (4096) MAC address table 

– 128K byte SRAM packet buffer 

– Multicast/broadcast replication 
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Switching 

• Huge benefit: no collisions 

– No need for CSMA/CD 

• Support heterogeneous links 

– 1 Gbps, 100 Mbps, fiber links, etc. 

• Management 

– Disable ports 

– Prioritize ports 

– Collect statistics 

– Enable port monitoring (mirroring) 
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Virtual Local Area Networks (VLANs) 
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VLANs 

• A switch + cables creates a local area network (LAN) 

• We use LANs to 

– Isolate broadcast traffic from other groups of systems 

– Isolate users into groups 

– What if users move? What if switches are inefficiently used? 

 

• Virtual Local Area Networks (VLANs) 

– Create multiple virtual LANs over one physical switch infrastructure 

– Network manager can assign a switch’s ports to a specific VLAN 

– Each VLAN is a separate broadcast domain 
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• If we have multiple VLANs, how do we route between them? 

– As with physical LANs, connect a port from each one to a router 

 

 

 

 

 

 

 

 

 

• VLAN switches often integrate a router in them to make this easy 

Inter-VLAN routing 
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VLAN Trunking 

• How about extending VLANs to multiple locations? 

– VLAN Trunking: a single connection between two VLAN-enabled switches 

carries all traffic for all VLANs 

– How does the switch do multiplexing/demultiplexing of traffic to the correct 

VLAN? 
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Local switch 

Remote switch 

VLAN 

Trunk 

Looks like one LAN 

Looks like one LAN 



VLAN Trunking 

• Extended Ethernet frame format 

– 802.1Q for frames on an Ethernet trunk 

• 4-byte VLAN tag added to the frame 

– 2-byte Tag Protocol ID 

– 2-byte Tag Control Information: 12-bit VLAN ID, 3-bit priority field 

• Switch adds VLAN tag for traffic on the trunk 

• Switch removes VLAN tag  

upon receipt 

– Traffic in the trunk is sent to the  

appropriate VLAN based on VLAN ID 
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The end 
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