
Internet Technology

11. Data Link Layer

Paul Krzyzanowski

Rutgers University

Spring 2016

1 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Data Link Layer

• Transport Layer (4)

– Logical connection between processes

– Transport layer multiplexing & demultiplexing

• Network Layer (3)

– End-to-end communication between hosts

– Possibly through multiple networks via routers

• Data Link Layer (2)

– Deals with individual

communication links

2

Application

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Internet Protocol Layers

segments

datagrams

frames

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Link Layer

• Data is encapsulated in a link-level frame

• MAC = Medium Access Control

– Protocol for transmitting and receiving frames at the link layer

• Error detection & correction

– Detect (and possibly correct)

errors in the frame

• MAC Address

– Link-layer address

3

Link-layer switch

Direct link

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Error Detection & Correction

4 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Error Detection & Correction Goals

Why do we want this at the link layer?

–Drop a bad frame at the receiver

• If the link layer detects it, no overhead checking at the network/transport layers

• No need to forward the packet (avoid wasting network bandwidth)

• Avoid end-to-end delay of having the receiver detect & sender retransmission

–Attempt to correct errors

• Avoid the need to reject bad packets & retransmit

5 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Parity

• Simplest form of error detection: add one bit (parity bit)

– Even parity

• Set the parity bit such that there is an even number of 1 bits

 01110000 ⇒ 011100001

– Odd parity

• Set the parity bit such that there is an odd number of 1 bits

 01110000 ⇒ 011100000

• An even number of bit errors will be undetected

• In real life, bit errors typically occur in bursts

– Multiple consecutive bits get corrupted

6 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Two-Dimensional Parity

• Break up d bits into i rows and j columns

• Generate a parity bit per row and per column

– For a single bit error, we can identify the row & column of the bit

7

1 0 1 1 1

0 0 0 1 1

1 1 0 0 0

1 1 1 0 1

1 0 0 0 1

Example: 1011 0001 1100 1110 with even parity:

We can transmit: 1011 0001 1100 1110 1101 1000 1

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Two-Dimensional Parity

For a single bit error, we can identify the row & column of

the corrupted bit

8

1 0 1 1 1

0 0 1 1 1

1 1 0 0 0

1 1 1 0 1

1 0 0 0 1

Place this back into the grid:

We sent: 1011 0001 1100 1110 1101 1000 1

They got: 1011 0011 1100 1110 1101 1000 1

Bad parity

Bad parity

By identifying the row & column, we can identify the bad bit

Here’s the bad bit

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Error Correction

• Two-dimensional parity

– Simple example of an error correcting code (ECC)

• Error correcting codes

– Invented by Richard Hamming in 1950

– Common types of ECCs

• Reed-Solomon codes (used in CDs, DVDs, disk drives)

• Hamming codes (ECC memory)

• Low-density parity-check, LDPC (802.11n, 10G Ethernet)

• Viterbi codes (cellular LTE)

• Forward Error Correction (FEC)

– Data transmission that uses ECC in the message

– The receiver can correct some errors without the need for retransmission

9 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Checksums

• Checksum = treat the bits of a packet as a set of integers

– Perform operations on those integers

• Internet checksum

– We saw this in IP, UDP, TCP, ICMP, OSPF, and IGMP headers

• Treat data as 16-bit chunks

• Sum it up (add one for each carry)

• Take a 1s complement of the result

– Simple, easy to compute efficiently (important!)

– BUT very weak protection against errors

• Cyclic Redundancy Check (CRC)

– Much more robust checksum

– More compute intensive (hence not appealing at higher layers)

– Done with dedicated hardware at the transceiver

10 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Cyclic Redundancy Check

• Polynomial code

• Works well for detecting burst errors: a sequence of bad bits

• n-bit CRC code will usually detect an error burst up to n bits

– Will detect longer bursts with a probability of 1-2-n

– Example: Ethernet uses a 32-bit CRC

• Detects up to 32 consecutive bad bits

• Detects longer streams of bad bits 99.99999997671% of the time

• That is, there’s a 2.329×10-10 chance that the CRC will not detect bit errors >32 bits

11 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

How is a CRC calculated?

• CRC performed by division: all subtractions replaced with XOR

a ⨁ b = a + b = a - b if we ignore carries and borrows

• To send a message D with d data bits

– Compute CRC code R with r bits

– Transmit D, R

• Receiver and transmitter agree upon a Generator, G

– G has r+1 bits; starts with 1

– CRC = R = remainder of

12

D×2r is D left-shifted by r bits

a b a ⨁ b

0 0 0

0 1 1

1 0 1

1 1 0

r

G

D 2

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

CRC calculation example

• We want to send D = 01110000011

• Assume the generator bits are 10111 (r = 4; G has r + 1 bits)

• Perform a division (but with xor instead of subtraction with borrowing)

13

011100000110000 10111
10111

1

010110

shift D by r (4) bits

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

CRC calculation example

• We want to send D = 01110000011

• Assume the generator bits are 10111 (r = 4; G has r + 1 bits)

• Perform a division (but with xor instead of subtraction with borrowing)

14

011100000110000 10111
10111

11

010110
10111
000010011

shift D by r (4) bits

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

CRC calculation example

• We want to send D = 01110000011

• Assume the generator bits are 10111 (r = 4; G has r + 1 bits)

• Perform a division (but with xor instead of subtraction with borrowing)

15

011100000110000 10111
10111

1100010101

010110
10111
000010011

10111
0010000
10111
0011100

CRC = 1011

Transmit (D, R) = 011100000111011

R = 1011

10111
 1011

shift D by r (4) bits

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

CRC verification example

• We received D = 011100000111011

• Same Generator, G = 10111 (r = 4; G has r+1 bits)

• Perform the same division (no shift; we have 4 CRC bits at the right

16

If the remainder = 0

then no error detected

011100000111011 10111
10111
010110
10111
000010011

10111
0010010
10111
0010111

No need to shift

We have our CRC bits

R = 0

Correct!

10111
 0000

1100010101

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

CRC Generators

• Ethernet uses a 32-bit CRC generator (CRC-32)

– 0x04C11DB7

– Also used by FDDI, ZIP, and PNG

17 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Multiple Access Protocols

18 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Categories of link layer access protocols

• Types of links

– Point-to-point links connect one sender with one receiver

• No conflict for access

– Broadcast links have multiple nodes connected to the same channel

• Broadcast links have a multiple access problem

– How do you coordinate multiple senders?

– Collision: when two nodes transmit at the same time

• Signals from both get damaged

• Three categories of multiple access protocols

1. Channel partitioning

2. Random access

3. Taking turns

19 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Channel Partitioning Protocols

1. Time division multiplexing (TDM)

– Divide a channel into time slots

– A node can transmit only during its allocated time slot

2. Frequency division multiplexing (FDM)

– Divide a channel into frequency bands

• If a channel has a bandwidth R and there are N nodes

– Both TDM and FDM are fair: each node gets bandwidth = R/N

– BUT a node gets R/N even if no other node needs to transmit!

20 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

TDM vs. FDM

21

FDM: Frequency Division Multiplexing
time

fr
e

q
u

e
n

c
y

TDM: Time Division Multiplexing
time

fr
e

q
u

e
n

c
y

4 data streams

time slot

frequency band

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Random Access Protocols

• Node has full use of the channel

• No scheduled time slots as in TDM

• If there is a collision

– Colliding nodes wait a random time & retransmit

– The nodes will (usually) pick different intervals & not collide next time

22 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Slotted ALOHA

• One of the oldest random access protocols

• Not used anymore but useful to study

• Environment

– All frames L bits

– Time divided into 1-frame slots of L/R seconds (R=bandwidth)

– Nodes are synchronized and transmit at the start of a slot

• If there’s a collision

– All transmitting nodes detect it during transmission

– Retransmit on the next slot with probability p

– Otherwise skip the slot and try again: retransmit with probability p

23 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Slotted ALOHA

• Efficiency

– Time slots with collisions: wasted

– Time slots with no transmissions: also wasted

• P(success for 1 node) = P(one node transmits) × P(N-1 do not)

 = p × (1 - p)N-1

 = p(1 - p)N-1

• P(success for all nodes) = Np(1 - p)N-1

• Maximum efficiency

– Find p that maximizes the expression

– Take limit of N → ∞

– This is 1/e ≈ 0.37

• 37% slots have useful data; 37% are empty; 26% have collisions

– A 1 Gbps link will behave like a 370 Mbps link!

24 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

CSMA/CD

Carrier Sense Multiple Access with Collision Detection

• Carrier Sensing

– Listen first

– If the channel has communications, wait until it is clear

• Collision Detection

– If you are transmitting but detect a collision, stop transmitting

– Wait a random time interval and try again (sense & transmit)

25 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

How do collisions occur?

• Node A senses quiet & transmits

• Remember propagation delay?

– It takes time for the signal to reach other nodes

– ~2×108 m/s = 5 nanoseconds per meter

26

ti
m

e

Node A Node B Node C

Node A transmits

looks quiet … node B transmits

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

How do collisions occur?

• Node A senses quiet & transmits

• A short while later…

– Node B senses quiet because the signal from A didn’t reach it

– Node B transmits

27

Node A Node B Node C

looks quiet … node B transmits

Node A transmits

ti
m

e

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

How do collisions occur?

• Node A senses quiet & transmits

• A short while later…

– Node B senses quiet because the signal from A didn’t reach it

– Node B transmits

28

Node A Node B Node C

Node A transmits

ti
m

e

A detects

a collision

B detects

a collision

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Collision Detection

• A node listens while it is transmitting

• As soon as it detects a collision

– Stop transmitting

– Wait a random interval

– We’d like a possibly long interval if there are many nodes sending

– We’d like a short interval if there are few transmitters

– BUT … we don’t know what’s going on!

29 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Binary Exponential Backoff

• If a frame experienced b collisions (b = backoff count)

• Choose a delay W with equal probability from 0 … 2b-1

– 1st time {0, 1} 2nd time {0 … 3}

– 3rd time {0 … 7} 4th time {0 … 15}

– 5th time {0 … 31} 6th time {0 … 63}

• Ethernet: a delay is W × 512 bit-times

– 512 bit-times = time to send 512 bits = 5.12 μs for 100 Mbps

– Backoff count limit (maximum b) = 10

– 10 or more collisions: choose a delay {0 … 1023}

• Status

– CSMA/CD is not needed with switched Ethernet

– Binary Exponential Backoff also used in DOCSIS cable modems

April 22, 2016 352 © 2013-2016 Paul Krzyzanowski 30

Multiple Access via Taking Turns

• Goal: ensure that each node can get a fair throughput

– Close to R/N bps for bandwidth R and N nodes

• Polling protocol (used by Bluetooth)

– Master polls each of the nodes to see if they want to transmit

– No collisions or empty slots

– But: polling delay & chance of master dying

• Token passing protocol

– Special frame, a token, is passed around nodes in some sequence

– If a node has it, it can transmit & then forward the token

– Decentralized & efficient

– But: failure of a node can stop the network

31 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Ethernet

32 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Ethernet technology

• Mid-1970s: created at Xerox by Bob Metcalfe

– 2.74 Mbps Ethernet over 9.5mm thick coax

• 1980s

– Standardized in 1985 as IEEE 802.3

– & 10BASE-5 (9.5mm coax) & 10BASE-2 (5mm coax)

• 1990:

– 10BASE-T over twisted pair wiring @ 10 Mbps

– Category 3 UTP (unshielded twisted pair) wiring with RJ45 connectors

• 1995: Fast Ethernet: 100BASE-TX over cat 5 UTP

• 1999: Gigabit Ethernet: 1000BASE-T over cat 5e

• 2006: 10 Gb Ethernet: 10GBASE-T over cat 6a

• 2010: 100GbE / 40GbE 40GBASE-T over cat 8

33

100BASE-TX, 10BASE-T, etc.

• Deal with data encoding

Category 3, 5, 6, 7

• Deal with cable specifications

Connectors

• 8P8C (RJ45)

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Ethernet Frame

• 8 bytes: preamble & start-of-frame delimiter

• Variable size data: 42-1500 bytes

– No length field: the transceiver grabs the entire frame

• Interframe gap: at least 96 bit wait time

• Jumbo frames: maximum size 8000 bytes

• Super Jumbo frames (SJF): maximum size > 8000 bytes

34

MAC destination MAC source type payload (42-1500 bytes) CRC

higher level protocol ID: 0x0800 = IPv4, 086DD = IPv6

MAC = Media Access Control = link-layer address
See https://en.wikipedia.org/wiki/EtherType for protocol IDs

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Link Layer Addressing

35 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Link-Layer Addressing

• Each NIC has a unique link-layer address

– MAC address – unrelated to IP address

• LAN communication at layer 2 needs MAC addresses

– An Ethernet transceiver cannot send a frame to an IP address!

• E.g., Ethernet uses a EUI-48 address

– EUI = Extended Unique Identifier; managed by IEEE

– Used in Ethernet, 802.11, Bluetooth, and a few other networks

– 48-bit address (6 bytes long)

– E.g., c8:2a:14:3f:92:d1 (my iMac)

– Globally unique address

• First three bytes: identify manufacturer

• Next three bytes: assigned by manufacturer

• Flat address space

36 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Find MAC address given an IP address

• We need to send a datagram to an IP address

• It is encapsulated in an Ethernet frame and a MAC address

• How do we know what MAC address to use?

37

MAC destination MAC source type CRC IP header IP data

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Address Resolution Protocol (ARP)

• ARP table

– Kernel table mapping IP addresses & corresponding MAC addresses

– OS uses this to fill in the MAC header given an IP destination address

– What if the IP address we want is not in the cache?

• ARP Messages

– A host creates an ARP query packet & broadcasts it on the LAN

• Ethernet broadcast MAC address: ff:ff:ff:ff:ff:ff

– All adapters receive it

• If an adapter’s IP address matches the address in the query, it responds

• Response is sent to the MAC address of the sender

38

see the arp command on

Linux/BSD/Windows/OS X

Protocol type

(e.g., IPv4)

HW Protocol

(ethernet)

MAC addr

length

query/

response

sender

MAC addr

sender

IP addr

target

MAC addr

target

IP addr

ARP packet structure

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

My ARP cache

• Timeout on Linux systems: /proc/sys/net/ipv4/neigh/eth0/gc_stale_time
– Default = 60 seconds

• Windows (Vista & Later)
– Timeout = random value between 15 and 45 seconds

– But remains cached longer if used during that time

39

arp -a

crapper.pk.org (192.168.60.129) at f0:f7:55:bb:17:26 [ether] on eth0

air.pk.org (192.168.60.143) at 28:37:37:19:65:96 [ether] on eth0

? (192.168.60.182) at d0:23:db:77:ff:5a [ether] on eth0

? (192.168.60.174) at a4:67:06:65:21:f8 [ether] on eth0

? (192.168.60.169) at 68:96:7b:09:bc:2a [ether] on eth0

nas.pk.org (192.168.60.136) at 00:0d:a2:01:84:79 [ether] on eth0

? (192.168.60.179) at f8:1e:df:d7:4a:1b [ether] on eth0

? (192.168.60.176) at 18:b4:30:0a:c7:d7 [ether] on eth0

? (192.168.60.181) at e8:06:88:90:2d:1e [ether] on eth0

? (192.168.60.186) at e4:8b:7f:ac:5b:10 [ether] on eth0

pk-imac.pk.org(192.168.60.153) at c8:2a:14:3f:92:d1 [ether] on eth0

tc.pk.org (192.168.60.138) at 00:1e:52:f5:b5:e3 [ether] on eth0

net.pk.org (192.168.60.131) at d0:67:e5:01:ec:5b [ether] on

eth0box.pk.org (192.168.60.132) at 00:1f:16:f7:92:67 [ether] on eth0

tc.pk.org (192.168.60.137) at 00:1e:52:f5:b5:e3 [ether] on eth0

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

IPv6: Neighbor Discovery

• IPv6 does not support ARP

– Neighbor Discovery accomplishes the same thing as ARP

• Extends ICMP (ICMPv6) with new commands

• Neighbor Advertisement (NA) and Neighbor Solicitation (NS) commands

• Host A wants to contact Host B

– ICMPv6 Type 135 (Neighbor Solicitation) message

• Host A’s source address

• Solicited-Node Multicast destination address

– IPv6 prefix of ff02:0:0:0:0:1:ff00

– IPv6 address suffix of the last 24 bits of Host B’s IP address

• Data: Host A’s MAC address

– Link Layer address: multicast mapping of IPv6 multicast address

• Host B responds

– ICMPv6 Type 136 (Neighbor Advertisement) message

– Datagram addressed to Node A

40

Every IPv6 host must

listen on its solicited-node

multicast address

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Transmitting a datagram

Three possibilities

1. We need to send to a host on our subnet (LAN)

– We can do this at the link layer

– We just need to find the MAC address that corresponds to the

destination’s IP address

2. We need to send to a host outside of our subnet

– We need to get the datagram to a connected router

– The datagram may pass through multiple routers

3. We need to send a multicast datagram

– Convert it to link-layer multicast

41 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

What if we need to send outside our LAN?

We need to get the datagram to a router

– Each router has an IP address (and a MAC address) for each interface

– Find the MAC address for the IP address of the router interface

42

IP: 11.11.11.11

MAC: d0:23:db:77:ff:5a

IP: 11.11.11.10

MAC: 20:c9:d0:72:cb:be

IP: 22.22.22.20

MAC: a4:67:06:65:21:f8

IP: 22.22.22.21

MAC: 68:96:7b:09:bc:2a IP: 33.33.33.30

MAC: 00:0d:a2:01:84:79

IP: 33.33.33.33

MAC: f8:1e:df:d7:4a:1b

R1 R2 H1

H2

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

What if we to send outside our LAN?

IP datagram, source=11.11.11.11 destination=33.33.33.33

1. H1 looks up the route to H2: needs to send to router R1

– Looks up MAC address for 11.11.11.10; sends frame to 68:96:7b:09:bc:2a

2. Router R1 needs to route to R2

– Forwards to interface with IP addr 22.22.22.20

– Looks up MAC address for 22.22.22.21; sends IP datagram to 68:96:7b:09:bc:2a

3. Router R2 forwards to interface with IP addr 33.33.33.30

– Looks up MAC address for destination 33.33.33.33

43

IP: 11.11.11.11

MAC: d0:23:db:77:ff:5a

IP: 11.11.11.10

MAC: 20:c9:d0:72:cb:be

IP: 22.22.22.20

MAC: a4:67:06:65:21:f8

IP: 22.22.22.21

MAC: 68:96:7b:09:bc:2a IP: 33.33.33.30

MAC: 00:0d:a2:01:84:79

IP: 33.33.33.33

MAC: f8:1e:df:d7:4a:1b

R1 R2 H1

H2

Routers also

use ARP

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Link-Layer (Ethernet) multicasting

• Ethernet supports multicast in one (or both) of two ways:

– Packets filtered based on hash(multicast_address)

• Some unwanted packets may pass through

• Simplified circuitry

– Exact match on small number of addresses

• If host needs more, put LAN card in multicast promiscuous mode

– Receive all hardware multicast packets

• In either case:

– Link-layer driver must check to see if the packet is really targeted to the

system

44 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Example: hardware support for multicast

Intel 82546EB

– Dual Port Gigabit Ethernet

Controller

– 10/100/1000 BaseT Ethernet

Supports:

– 16 exact MAC address matches

– 4096-bit hash filter for multicast

frames

– promiscuous unicast &

promiscuous multicast transfer

modes

Broadcom BCM57762

– 10/100/1000BASE-T Ethernet

PCIe Controller

– Used in Apple’s Thunderbolt-

Ethernet adapter

Supports:

– 1 exact MAC address match

(may be reprogrammed up to 4 times)

– Hash filter for multicast frames

• 128-bit 7-bit CRC hash

• or 256-bit 8-bit CRC hash

– promiscuous mode

(accept all frames)

46 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

IP multicast on a LAN

• IP driver must translate 28-bit IP multicast group to a

multicast Ethernet address

– IANA allocated range of Ethernet MAC addresses for multicast

– Copy least significant 23 bits of IP address to MAC address

• 01:00:5e:xx:xx:xx

• Send out multicast Ethernet packet

– Payload contains multicast IP packet

• Notice something?

– The IP layer needs to filter out addresses that it is not subscribed to

47

Bottom 23 bits

of IP address

IP addr: 1110dddd dddddddd dddddddd dddddddd

MAC addr: 00000001 00000000 01011110 dddddddd dddddddd dddddddd

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

IPv6 multicast on a LAN

• IPv6 multicast addresses have a 112-bit group ID and start with ff00

• IP driver must translate 128-bit IP multicast address to a

multicast Ethernet address

– Copy least significant 32 bits of IPv6 address to MAC address

• 33:33:xx:xx:xx:xx

48

IP addr: <ignore top 96 bits> dddddddd dddddddd dddddddd dddddddd

MAC addr: 00110011 001100011 dddddddd dddddddd dddddddd dddddddd

See http://tools.ietf.org/html/rfc2464

352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Switched LANs

49 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Ethernet Evolution

• Ethernet started as a broadcast LAN with a shared bus topology

– All packets were visible by all adapters

– This is why we needed CSMA/CD

• Coax gave way to twisted pair

– Category 5 (Cat 5) cable

– Star topology

– Dedicated cable for each adapter

– Cables plugged into a hub

• Ethernet hub

– Simulates a bus-based LAN

– Every bit received on an interface is transmitted onto every other interface

50 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

Switched Ethernet

• Hubs gave way to switches in the mid-1990s

• Same star topology … but smarter

– Like a hub, transparent to hosts

– Full duplex: separate receive vs. transmit wires

– Forwards received frames to the right interface(s)

• Works sort of like a router

– Link layer forwarding

– But

 Invisible – frames are never addressed to the switch

 Self-learning: it learns what address is at which interface

51

52

Cisco Nexus 9516 Switch
• 1/10/40 GbE

• 21-rack-unit chassis

• Up to 576 1/10 Gb ports

TP-Link Switch
• 8 1-GbE ports

Inside an Ethernet Switch

Switch table (also known as MAC address table)

• Contains entries for known MAC addresses & their interface

• Forwarding & filtering: a frame arrives for some destination address D

– Look up D in the switch table to find the interface

– If found & the interface is the same as the one the frame arrived on

• Discard the frame (filter)

– If found & a different interface

• Forward the frame to that interface: queue if necessary

– If not found

• Forward to ALL interfaces

53

Building the switch table

A switch is self-learning

• Switch table (MAC address → interface): initially empty

• Whenever a frame is received, associate the interface with the source

MAC address in the frame

• Delete switch table entries if they have not been used for some time

• What about multicast?

– Treat it like broadcast (simplest)

– Some switches can snoop on IGMP join/leave messages

– Some switches (Cisco) support downloading a local multicast table from the

local router

• What about promiscuous mode?

– Need a managed switch – configure port for monitor mode or port mirroring

54

Building the switch table

• A switch interface can be associated with

multiple MAC addresses

– Cascaded links

– Multicast addresses (if supported)

55

Example Ethernet Switch

Intel FM2112 Ethernet Switch

– 24 ports

– 1G / 10G links

– Crossbar switch built with shared memory

and a crossbar

– 750 Gb/s bandwidth

– 16 banks of 64KB memory for packet

payload; headers queued & scheduled

separately (1 MB total)

– Switch element scheduler manages frame

data & forwarding

• Up to 4096 packets can be in the switch at

one time

– Multicast/broadcast replication

– 16K (16,384) entry MAC address table

• Binary (0/1) age: “new” refreshed whenever

the entry is accessed

• An age clock periodically purges “old” (non-

refreshed) entries

ASIX AX88655

– 5 port

– 10/100/1000 Mbps

– 4K (4096) MAC address table

– 128K byte SRAM packet buffer

– Multicast/broadcast replication

56

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm2112-datasheet.pdf

Switching

• Huge benefit: no collisions

– No need for CSMA/CD

• Support heterogeneous links

– 1 Gbps, 100 Mbps, fiber links, etc.

• Management

– Disable ports

– Prioritize ports

– Collect statistics

– Enable port monitoring (mirroring)

57

Virtual Local Area Networks (VLANs)

58

VLANs

• A switch + cables creates a local area network (LAN)

• We use LANs to

– Isolate broadcast traffic from other groups of systems

– Isolate users into groups

– What if users move? What if switches are inefficiently used?

• Virtual Local Area Networks (VLANs)

– Create multiple virtual LANs over one physical switch infrastructure

– Network manager can assign a switch’s ports to a specific VLAN

– Each VLAN is a separate broadcast domain

59

• If we have multiple VLANs, how do we route between them?

– As with physical LANs, connect a port from each one to a router

• VLAN switches often integrate a router in them to make this easy

Inter-VLAN routing

60

Development Test

VLAN Trunking

• How about extending VLANs to multiple locations?

– VLAN Trunking: a single connection between two VLAN-enabled switches

carries all traffic for all VLANs

– How does the switch do multiplexing/demultiplexing of traffic to the correct

VLAN?

61

Development

Test

Development

Test

Local switch

Remote switch

VLAN

Trunk

Looks like one LAN

Looks like one LAN

VLAN Trunking

• Extended Ethernet frame format

– 802.1Q for frames on an Ethernet trunk

• 4-byte VLAN tag added to the frame

– 2-byte Tag Protocol ID

– 2-byte Tag Control Information: 12-bit VLAN ID, 3-bit priority field

• Switch adds VLAN tag for traffic on the trunk

• Switch removes VLAN tag

upon receipt

– Traffic in the trunk is sent to the

appropriate VLAN based on VLAN ID

62

Local switch

Remote switch

VLAN

Trunk

The end

63 352 © 2013-2016 Paul Krzyzanowski April 22, 2016

