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1 What’s an operating system?

A number of definitions of operating system abound. A basic definition could be that
it’s a program that lets you run other programs. If it didn’t do at least that then we would
never have programs running on our computers except for the operating system itself. We
need to differentiate this from a command interpreter or a windowing system, however,
either of which could be just another program that requests the operating system to run
other programs based on user requests. Another definition that we can use is that an
operating system is a program that provides controlled access to a computer’s resources.
These resources include the CPU (process scheduling), memory (memory management),
display, keyboard, mouse (device drivers), persistent storage (file systems), and the network.
At the most basic level, the operating system provides a level of abstraction (a set of APIs)

so that user programs don’t have to deal with the details of accessing the hardware. This is
essentially what early operating systems in the 1950s gave us as well as what we got from
early personal computer operating systems, such as MS-DOS. On a more sophisticated level,
the operating system is also responsible for enforcing proper protections and some concept
of “fairness”. You don’t want a process to use an unfair share of the memory or CPU. You
also don’t want one process to be able to overwrite the memory of another or to access files
on the disk that another user wants restricted.

1.1 Building an operating system: monolithic, layered, modular?

Older operating systems were largely monolithic. Every system-related function was per-
formed by one block of code that was part of the operating system.
As the functionality of the system grew, the operating system software became increas-

ingly more difficult to maintain and understand, so operating system software started to get
modular. A modular design allows certain pieces of the operating system to be replaced or
installed as needed. For example, components such as the process scheduler can be replaced
with alternate versions. Specific device drivers, such as iSCSI or USB can be created as a
separate modules and “plugged in” to the kernel (linked into the kernel after the base part
has loaded). The modules of Linux are an example of this structure.
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The later trend in operating system design was to keep the core of the operating system
small and move as much as possible into separate programs that have the proper security
privileges to do what just they need. The kernel will invoke separate processes to deal with
things such as parsing a file system, interfacing with the network, or even making a process
scheduling decision. This approach is called a microkernel.

1.2 What’s a kernel?

When people refer to an operating system, they often talk not just about the program
that controls access to resources, but also the command interpreter, utilities, and other
programs and drivers that make up one’s perception of an operating system — the entire
operating environment. The kernel is the core component of the operating system; the
central program that manages resource access and process scheduling.
An example of some of the things a typical operating system kernel does is:

• controls execution of processes: allowing their creation, termination, and inter-process
communication

• schedules processes fairly for execution on the processor or processors

• allocates memory for an executing process. If the system runs low on free memory,
it frees memory by writing regions of memory to secondary memory. If it writes the
entire process, then the system is a swapping system. If it writes pages of memory, it
is called a paging system.

• allocates secondary memory for storing and retrieving data (file systems) and enforcing
proper access permissions and mutual exclusion

• allows processes controlled access to peripheral devices: displays, keyboard, mouse,
disk drives, networks — also enforcing proper access permissions and mutual exclusion

2 Am I in user mode?

A processor contains certain instructions that are only available to “privileged programs”,
such as the operating system. These instructions include those to manipulate memory map-
pings, set timers, define interrupt vectors, access restricted memory, or halt the processor.
Clearly, it is not a good idea for regular programs to be allowed to mess with these instruc-
tions since they could wreak havoc on the system. They will also be able to circumvent
any protection mechanisms that have been put in place since a process will now be able to
interact with any device and any memory as it sees fit.
Most processors have a flag in a status register that tells them whether they’re running

in user mode or kernel mode. Kernel mode is also known as privileged, system, or
supervisor mode. If a process is running in kernel mode, it has full powers to access all of
these restricted operations. If a process is running in user mode, it does not.
A processor starts up in kernel mode and runs the boot loader in kernel mode. The

operating system is loaded and, it too, runs in kernel mode. The processes that it launches
run in user mode.
Note: When we cover machine virtualization, we will see that there’s a third mode for

running a hypervisor (a virtual machine manager). Don’t worry about this for now. Also,
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all x86 compatible Intel processors start up in what’s known as real mode, which is a 16-bit
8086-compatible mode with 20-bit addressing. From this mode, the processor can switch
to 32-bit or 64-bit mode. Intel processors actually have additional modes1 but we won’t
concern ourselves with them here.

2.1 Switching between user and kernel modes

If a processor is running in kernel mode, it can switch itself to user mode by setting the
status register that defines its operating mode. Once it is running in user mode, however, it
cannot simply set itself to run in kernel mode since that would be a privilege violation. The
transition from user to kernel mode takes place via traps, interrupts, and exceptions.
Unfortunately, there is not a clear consensus on the defintion of these terms. Some literature
refers to traps as user-initiated instructions while other texts refer to them as unexpected
violations. We will use trap as a generic term and identify three categories:

Software interrupts

A software interrupt is a user-programmed interrupt (or trap) instruction. The software
interrupt instruction forces the program to jump to a well-known address based on the
number of the interrupt, which is provided as a parameter. Examples of software interrupts
are interrupt or system call instructions found on most processors, such as the int or sysenter
instructions on Intel processors; syscall on AMD processors; or swi on ARM processors.

Exceptions

What happens if a user program tries to execute an instruction that is available only in
kernel mode? . . . Or tries to access a memory location that is not available to it? In cases
like this, a trap, called an exception (or fault, or violation) takes place. It is one of
several predefined traps depending on the event that occurred. For example, it could be a
memory access violation, an illegal instruction violation, or a register access violation.
An exception, also known as a fault or violation, is a trap that is generated by the

processor in response to some access violation or problem with the execution of an in-
struction. Some examples of events that cause exceptions are an attempt to execute an
illegal instruction, a divide by zero, or an access to nonexistent memory. While exceptions
are not expected by the programmer, they are in response to the execution of the current
instruction.
Note that Intel processors before the Core 2 Duo did not generate a trap when a user

program tried to execute a privileged instruction; they just ignored it. As we’ll see when
we look at virtualization, this made creating a virtual machine a big headache.

Hardware interrupts

A hardware interrupt occurs when an external system event that sends an interrupt
signal to a processor, such as the completion of a DMA (direct memory access) transfer by
hardware such as a disk controller. Hardware interrupts can arise spontaneously and at any
time. They are not a function of the instruction that is currently being executed and force
a sponteneous change of control.

1http://en.wikipedia.org/wiki/X86-64
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2.2 Flow of control

Despite the confusion in terminology, the end result of all of these traps is the same. Each
trap has a number associated with it and the processor jumps to an address in memory
that is based on looking up the trap number in an interrupt vector table. The interrupt
vector table is the entire set of trap vectors: all the addresses that various parameters to
a trap instruction jump to. The trap acts as a spontaneous subroutine call. The current
program counter is pushed on the stack and the program jumps to a well-known address.
That address usually contains a jump instruction (vector) to the code that will handle that
trap. The action of taking a trap causes the processor to switch from user mode to kernel
mode.
The interrupt vector table is set up by the boot loader and can later be modified by

the operating system when it starts up. When a user program executes a trap (e.g., INT
instruction on older Intel processors; other processors and all current Intel/AMD processors
have some form of a syscall instruction), control is transferred to the appropriate trap vector
and the processor then runs in kernel mode.
Because the interrupt table is set up by a trusted entity (the operating system) and cannot

be altered by the user, the operaing system is confident that program control goes to only
well-defined points in the operating system.
Upon entry to the trap, operating system code is run and, when the operating system is

ready to transfer control back to the user, it executes a return from exception instruction
(IRET on Intel processors). That switches the processor back to user mode operation and
transfers control to the address on the top of the stack.
To summarize, there are several ways where the flow of control switches to the kernel:

1. A software interrupt.

2. An access violation (invalid memory reference, divide by zero, invalid instruction, etc.).

3. A hardware interrupt, such as a timer or a network device that is tied to the processor’s
interrupt controller.

Each of these is handled differently by the operating system:

Software interrupts

A software interrupt is an explicit request from the user program to execute a trap and
hence switch control to a well-defined point in the operating system, running in privileged
mode. This is called a mode switch since the processor switches from running in user
mode to running in kernel (privileged) mode. The instruction explicit; it is performed
within the context of the current process. As such, the operating system code knows that
the request is made by the current process and can grab information from the process’ stack
and registers.

Exceptions

With an exception, we have an unexpected trap that switches the processor’s execution
to kernel mode and switches control to a well-defined entry point in the operating system
(an exception handler) that is defined by the interrupt vector table. This exception was
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triggered in response to a problem with executing an instruction. The operating system
then decides on a course of action.
Like a software interrupt, an exception also takes place in the context of the running

process. The operating system has the identity of the currently running process and can
examine the processor’s stack and registers to identify the offending instruction or memory
location that caused the trap. The attempted operation may have been a valid one, such as
accessing a perfectly valid memory location that the operating system just did not load into
memory yet. In this case, the operating system would load the needed chunk of memory and
restart the instruction (return from exception). If the action was not a valid one, such as
attempting to access an invalid memory location, the operating system may send a specific
signal to the process. If the process does not have a signal handler for it, it will just be
killed.
When we look at machine virtualization, we will see that there’s a case where the operating

system may need to simulate the action of the privileged instruction and then return control
back to the next instruction in the user’s process. Exceptions arising from the attempt to
execute a priviliged instruction will be the key to making this work.
Both exceptions and software interrupts are synchronous since they do not occur at

arbitrary times and are associated with a specific instruction and process.

Hardware interrupts

Unlike software interrupts and exceptions, a hardware interrupt occurs spontaneously be-
cause of some event that is unrelated to the current instruction. Because of that, it is
unrelated to the current context: it has no bearing on the currently-executing instruction
or even the currently executing process. The operating system’s interrupt service routine
must be sure not to change the state of the executing process while processing the hardware
interrupt. In some cases, it may need to switch stacks since it cannot make assumptions on
the free space available in the user process’ stack.
Hardware interrupts are asynchronous since they can occur at arbitrary times and are

not associated with a specific instruction or process.

3 The system call

A program often needs to read a file, write to some device, or maybe even run another
program. All these are require operating system intervention. The interface between the
operating system and user programs is the set of system calls (open, close, read, fork, execve,
etc). Making a system call uses the trap mechanism to switch to a well-defined point in
the kernel, running in kernel mode.
To execute a system call usually involves storing the parameters on a specially created

stack, storing the number of the system call (each function has a corresponding number),
and then issuing a software interrupt instruction to switch control to the operating system
operating in kernel mode.
For example, a call to the getpid system call (get process ID) on Intel/Linux systems puts

the number 20 into register eax (20 happens to be the number corresponding to the getpid
system call) and then executes INT 0x80, which generates a trap.
As with function calls, the kernel needs to be careful to save all user registers and restore

everything before it returns. All this ugliness is hidden from the programmer with a set of
library routines that correspond to each of the system calls. The library routines save the
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parameters, issue the trap, and copy the results back onto the user’s stack so the system
call looks exactly like a regular function call.

4 Periodic OS servicing and preemption

How do we ensure that the operating system always gets a chance to regain control over
the computing environment? For example, we don’t want to have one process spinning in a
loop that is keeping the operating system or any other process from getting anything done.
Moreover, the operating system kernel may need to run periodically to update the time,
update process execution time, and poll device ports for activity.
To give the operating system a chance to to run periodically, we program a periodic timer

interrupt when the kernel starts. On Linux/Intel systems, we set the 8254 Programmable
Interval Timer to generate an interrupt (IRQ 0) approximately every 10 milliseconds, al-
though this interval can be modified based on the environment. Alternatively, the High
Precision Event Timer (HPET) or the ACPI Power Management Timer (ACPI PMT) can
be used to accomplish the same thing.
This means that, no matter what is going on with a process, the operating system will

receive a periodic interrupt from the timer and get to run. It may do a number of things when
it runs: increment a time of day counter; see whether any input is waiting on input devices;
see whether any outstanding transmits have completed; and see whether it is time to let
another process run. This last decision is called process scheduling and is handled by the
scheduler component of the operating system. If several processes are loaded in memory,
the operating system can resume any one of them by loading the appropriate process’ saved
state into the processor’s registers and executing a return from exception. Later on, we will
see that the need for periodic interrupts can be reduced with a design known as a tickless
kernel. This allows for processors to stay in low-power states for longer periods of time. For
now, however, we’ll stay with the traditional model of periodic interrupts.
An interrupt or trap results in a mode switch. This simply means that the processor is

switched from running in user mode to running in kernel mode.
If the kernel decides to switch the execution to a different process, then this mode switch

is often accompanied by a context switch. A context switch means that the processor’s
context (its registers, flags, program counter, stack pointer, memory mapping, etc.) is saved
in the kernel’s memory. When the kernel is ready to switch control back to a user process,
the scheduler component decides which process gets to have the processor next. It then
restores the saved state of the process and returns from the trap. A mode switch on its own
does not save and restore the program’s context. A context switch does.

5 Devices

Peripheral devices are most any hardware that connects to your processor. They could
be components built onto the main board or external plug-in devices. Peripherals include
input/output devices that interact with the user, such as mice, keyboards, hardware audio
codecs, video displays, and printers. They also include mass storage devices such as disk
drives, Blu-ray players, and flash memory cards. Other devices include network controllers
which allow computers to communicate with other computers over a communications net-
work.
Some devices, such as disks, are addressable. For instance, you may be able to read block

2107 on a disk and later on read that same block again and get the same data. These are
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called block devices. Block devices lend themselves to caching — storing frequently used
blocks in memory to avoid having to fetch them from the actual device, which would take
much more time. This operating system cache of frequently used data blocks is called a
buffer cache.
Devices such as keyboards, printers, and mice have non-addressable data. They either

produce or consume an ever-changing stream of data. Such devices are called character
devices. They send and/or receive byte streams and are not suitable for long term caching.
Finally, network devices are similar to character devices (and often lumped in the same

category) in that they operate on ever-changing streams of data instead of addressable
blocks. They are often put into a separate category because networks are packet-based and
send and receive messages instead of arbitrary byte streams. Depending on the type of
network and communications employed, some data might be considered special and be sent
as expedited packets. Packet schedulers can also affect how packet streams are interleaved
on the network link.
The code for managing a specific device is called a device driver.

5.1 Accessing devices

Devices, such as network or USB controllers, come with their own control logic that is
usually governed by a microcontroller or some other processor that resides on the device.
The control logic supports some form of programming interface to allow the host system to
send requests to transmit data, receive data, see if data is ready, write data, read data, seek
to a location, or get the status of a device. The actual functions, of course, depend on the
device.
An clean way of interacting with peripheral devices is to map the device’s command

registers onto the system memory bus. This way, accessing certain memory locations will
not reference system memory but instead read and write data to the device registers. The
beauty of this scheme is that the programmer can use standard memory load and store
instructions. Moreover, the memory protection mechanisms provided by the processor and
set up by the operating system now cover device access too. This technique of mapping
device input/output to memory is called memory-mapped I/O.
Device registers also tell you when data is ready (e.g., a packet has been received) or if

the device is ready for more data (e.g., a packet has been transmitted). We could have
our operating system sit in a busy loop and check these registers. Unfortunately, we will
chew up tons of processor cycles just waiting for the device and not be able to use the time
to do anything else. Instead, whenever we get a periodic clock interrupt (e.g., every 10
milliseconds), we can have the operating system go and check those device registers. That
avoids the busy loop.
An alternative, and more popular, approach to this is to have the peripheral device trigger

an interrupt whenever the device has data or when the device informs the system that it
has finished transmitting and can accept more data. The benefit of an interrupt is that
the processor does not have to do any checking until the device pokes it. The downside
is that the interrupt will force a mode switch and that may be time consuming. On some
systems, it may also invoke a context switch, which is even more costly. On startup, a
device driver registers an interrupt handler. Whenever the interrupt takes place, the
interrupt handler is invoked and is responsible for handling that interrupt. Since interrupts
are precious resources (a processor may have only 16 or so of them), a device driver may
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sometimes have to share an interrupt line with other device drivers. In this case, the kernel
will call each driver that registered that interrupt in sequence.
Moving data between the device and the kernel can also be accomplished by reading and

writing the device registers (i.e., reading and writing specific memory locations to which
those registers have been mapped). This is called programmed I/O since software is
responsible for moving the bytes between main memory and the device via the device’s
registers. Some devices support DMA (direct memory access). This is a technique where
the device is allowed direct access to system memory and can, on its own, read data from
a region of memory or write data to it. The most common use of DMA is for disk access,
where the disk controller will read a requested block of data from the disk, transfer it to a
specific region of the system’s memory, and then indicate (e.g., via an interrupt) that the
operation is complete and the data is ready.

6 Files and file systems

In operating systems, a file is traditionally a collection of data with a name associated with it
along with other information (length, create time, access time, owner, users who can modify
the file, etc.). In many systems, a file may also refer to a device or even a process. Files
are often organized in a hierarchical structure into sets of directories (sometimes referred
to as folders, mostly by users of windowing interfaces that adopt a desktop metaphor) and
files. A directory is a name of an entity that contains zero or more files or directories. A file
system is generally a collection of directories and their files and subdirectories that occupies
an entire disk or a defined section of a disk. It is a region of storage upon which the logical
structure of file attributes and contents is laid.
The file system is a logical construct — a bunch of data structures — stored on the

physical disk. The device driver for the disk sees it simply as a collection of fixed-size blocks
that it can read and write. The operating system provides a buffer cache for storing
frequently-accessed blocks in memory. The file system is responsible for managing the file
system that is implemented on those blocks. Most operating systems support a variety of file
systems. For instance, an Apple Mac’s native file system is HFS+ while an SDXC card that
is plugged in from a digital camera is formatted with a Microsoft exFAT file system while a
Blu-ray disk will have a UDF (Universal Disk Format, also known as ISO/IEC 13346) file
system on it.

7 When I log in, don’t I type commands to the operating system?

Yes, with some systems, mostly much older and more primitive ones. With CP/M and early
versions of MS-DOS, the console command processor was part of the operating system.
Usually, the user’s interface to the system is a command interpreter, also known as a shell
or a window manager. On UNIX systems, the name of the shell program is specified for each
user in the password file. The shell is run when the user logs in. The windowing system may
be spawned from a startup script for that user. The UNIX shell is a little language that
supports redirecting input and output from and to other programs and/or files and allows
conditional tests, looping constructs, and variable assignments. Together with the standard
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UNIX system utilities, one can use the shell as a basis for significant programming projects.

8 What’s a process?

A process is ultimately the reason why we have an operating system and the computer and
is thus one of the most important concepts in operating systems. A process is essentially a
program in execution (one program may correspond to no processes if it’s not running or
to several processes if it’s run multiple times). On a multitasking (or multiprogramming)
system, several processes appear to run at once. In reality (unless there are multiple pro-
cessors, in which case it’s also a multiprocessing system) that is not the case. The processor
is continually stopping one process and starting another, context switching among them.
Multitasking works as well as it does because most programs (especially interactive or data
intensive ones) spend most of their time sleeping and waiting on input or output. Operating
systems that work like this are called time-sharing systems.
Processes may start other processes. A new process becomes a child of the parent process.

Processes can be able to send signals to each other, send messages and share data.

9 Structure of a typical operating system

10 Using system calls under UNIX systems

All system calls under the various versions of UNIX (and indeed on just about every other
operating system) are enveloped in library functions. To the user they appear no different
from any other system library functions. On most UNIX systems (various flavors of Linux,
OS X, FreeBSD, OpenBSD, NetBSD), the functions that invoke the system calls are in
the library called libc, which also includes non-system call functions (such as printf and
strtok). System calls are documented in section 2 of the programming manual and can be
found on-line with the man command. For information on using the man command, run
man man, which will show the manual page for the man command.
Most system calls return a positive result upon successful completion (check the man

page for the particular call you’re using) and a –1 for an error. In the case of an error, a
global variable, errno, is set to a particular error code. An exhaustive list of error codes
is described in the introduction to section 2 of the manual (man2intro) and is listed in the
include file errno.h (/usr/include/sys/errno.h). The library function (not system call) perror
consults a table to print the error as descriptive text. This is often useful for debugging (for
info, run manperror). For example, the stat system call gives us information about a file.
Running man2stat tells us what it does and how to invoke the function (it also refers us to
the man page for mknod to find out how to check for the mode of a file). We can write a
little program that will loop over each argument and print the file size (in bytes) for that
file:
Download this file
Save this file by control-clicking or right clicking the download link and then saving it as

stat.c. Compile this program via:

gcc -o stat stat.c
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Figure 1: OS Structure

If you don’t have gcc, You may need to substitute the gcc command with cc or another
name of your compiler. Run the program:

./stat *

to see info about the files in your current directory. Run the program with an argument
that does not correspond to a valid file name to see perror in action.
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