
Operating Systems Design
02. Booting

Paul Krzyzanowski

Rutgers University

Spring 2015

1 February 2, 2015 © 2014-2015 Paul Krzyzanowski

What runs first?

• Boot loader

– A program that loads a bigger program (e.g., the OS)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 2

Booting

http://www.computer-history.info/Page4.dir/pages/IBM.701.dir/images/IBM701.jpg

Load selector: Card, Tape, Drum

February 2, 2015 © 2014-2015 Paul Krzyzanowski 3

Booting

February 2, 2015 © 2014-2015 Paul Krzyzanowski 4

Multi-stage boot loader (chain loading)

• First stage boot loader

– Often primitive enough that an operator could enter the code via

front panel switches … or it could sit in the first block of a disk

• Second stage loader

– More sophisticated and included error checking

– Second stage loader may give the user a choice:

• Different operating systems

• Boot a test program

• Enable diagnostic modes (e.g., safe boot) in the OS

February 2, 2015 © 2014-2015 Paul Krzyzanowski 5

Transfer of control

• When the boot loader finishes loading the OS, it transfers

control to it

• The OS will initialize itself and load various modules as

needed (for example, device drivers and various file

systems)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 6

Intel/AMD PC Startup

• CPU reset at startup

• Start execution at 0xffffffff0

– Jump instruction to BIOS code in non-volatile memory

• Near the top of 32-bit addressable memory map

• Reset vector: jump to firmware initialization code

– Processor starts in Real Mode

• 20-bit address space (top 12 address lines held high)

• Direct access to I/O, interrupts, and memory

February 2, 2015 © 2014-2015 Paul Krzyzanowski 7

BIOS

• BIOS = Basic Input/Output System

• Found in Intel-based 16- and 32-bit PCs

• Code resident in ROM or non-volatile flash memory

• Background: CP/M (MS-DOS was almost a clone)

– Console Command Processor (CCP): user interface

– Basic Disk Operating System (BDOS): generic code

– Basic Input/Output System (BIOS): all the device interfaces

February 2, 2015 © 2014-2015 Paul Krzyzanowski 8

PC Startup

• BIOS executes:

– Power-on self-test (POST)

– Detect video card’s BIOS – execute video initialization

– Detect other device BIOS – initialize

– Display start-up screen

– Brief memory test

– Set memory, drive parameters

– Configure Plug & Play devices: PCIe, USB, SATA, SPI

• Assign resources (DMA channels & IRQs)

– Identify boot device:

• Load block 0 (Master Boot Record) to 0x7c00 and jump there

February 2, 2015 © 2014-2015 Paul Krzyzanowski 9

Booting Windows (NT/Windows 20xx,7,8)

• BIOS-based booting

– The BIOS does not know file systems but can read disk blocks

• MBR = Master Boot Record = Block 0 of disk (512 bytes)

– Small boot loader (chain loader, ≤ 440 bytes)

– Disk signature (4 bytes)

– Disk partition table (16 bytes per partition * 4)

• BIOS firmware loads and executes the contents of the MBR

• MBR code scans through partition table and loads the Volume Boot

Record (VBR) for that partition

– Identifies partition type & size

– Contains Instruction Program Loader that executes startup code

– IPL reads additional sectors to load BOOTMGR (Windows 7, 8)

• The loader is called NTLDR for Windows NT, XP, 2003

February 2, 2015 © 2014-2015 Paul Krzyzanowski 10

Booting other systems on a PC

• Example: GRUB (Grand Unified Boot Loader)

• MBR contains GRUB Stage 1

– Or another boot loader that may boot GRUB Stage 1 from the

Volume Boot Record

• Stage 1 loads Stage 2

– Present user with choice of operating systems to boot

– Optionally specify boot parameters

– Load selected kernel and run the kernel

– For Windows (which is not Multiboot compliant),

• Run MBR code or Windows boot menu

• Multiboot specification:

– Free Software Foundation spec on loading multiple kernels using a single boot

loader

February 2, 2015 © 2014-2015 Paul Krzyzanowski 11

Good-bye BIOS: PCs and UEFI

• ~2005: Unified Extensible Firmware Interface (UEFI)

– Originally called EFI; then changed to UEFI

You still see both names in use

• Created for 32- and 64-bit architectures

– Including Macs, which also have BIOS support for Windows

• Goal:

– Create a successor to the BIOS

• no restrictions on running in 16-bit 8086 mode with 20-bit addressing

February 2, 2015 © 2014-2015 Paul Krzyzanowski 12

UEFI Includes

• Preserved from BIOS:

– Power management (Advanced Configuration & Power Interface, ACPI)

– System management components from the BIOS

• Support for larger disks

– BIOS only supported 4 partitions per disk, each up to 2.2 TB per partition

– EFI supports max partition size of 9.4 ZB (9.4 × 1021 bytes)

• Pre-boot execution environment with direct access to all memory

• Device drivers, including the ability to interpret architecture-

independent EFI Byte Code (EBC)

• Boot manager: lets you select and load an OS

– No need for a dedicated boot loader (but they may be present anyway)

– Stick your files in the EFI boot partition and EFI can load them

• Extensible: extensions can be loaded into non-volatile memory

February 2, 2015 © 2014-2015 Paul Krzyzanowski 13

UEFI Booting

• No need for MBR code (ignore block 0)

• Read GUID Partition Table (GPT)

– Describes layout of the partition table on a disk (blocks 1-33)

• EFI understands Microsoft FAT file systems

– Apple’s EFI knows HFS+ in addition

• Read programs stored as files in the EFI System Partition:

– Windows 7/8, Windows 2008/2012 (64-bit Microsoft systems):

• Windows Boot Manager (BOOTMGR) is in the EFI partition

– NT (IA-64): IA64ldr

– Linux: elilo.efi (ELILO = EFI Linux Boot Loader)

– OS X: boot.efi

February 2, 2015 © 2014-2015 Paul Krzyzanowski 14

Non-Intel Systems

• Power on: execute boot ROM code (typically NOR Flash)

– Often embedded in the CPU ASIC

• Boot ROM code detects boot media

– Loads first stage boot loader (sometimes to internal RAM)

– Initialize RAM

– Execute boot loader

• Second stage boot loader loads kernel into RAM

– For Linux, typically GRUB for larger systems

– uBoot for embedded systems

– Set up network support, memory protection, security options

February 2, 2015 © 2014-2015 Paul Krzyzanowski 15

Summary

BIOS MBR VBR
Win Boot Mgr

Windows 7

BIOS MBR
VBR

NTLDR
XP/NT

BIOS
MBR

GRUB-1
GRUB-2 Linux

“MBR” VBR
Win Boot Mgr

Windows 7

winload.exe

winload.exe

February 2, 2015 © 2014-2015 Paul Krzyzanowski 16

Summary

EFI
Windows

Boot

Manager

Windows 7/8

EFI elilo.efi Linux

EFI boot.efi OS X

winload.exe

February 2, 2015 © 2014-2015 Paul Krzyzanowski 17

The End

February 2, 2015 18 © 2014-2015 Paul Krzyzanowski

