Operating Systems

14. File System Implementation

Paul Krzyzanowski
Rutgers University

Spring 2015

_

3/25/2015 © 2014-2015 Paul Krzyzanowski

File System Implementation

-
File System Design Challenge

How do we organize a hierarchical file system on an array
of blocks?

... and make it space efficient & fast?

[

Directory organization

« Adirectory is just a file containing names & references

— Name - (metadata, data) Unix (UFS) approach
— (Name, metadata) - data MS-DOS (FAT) approach

e Linear list
— Search can be slow for large directories.
— Cache frequently-used entries

« Hash table
— Linear list but with hash structure
— Hash(name)

 More complex structures: B-Tree, Htree
— Balanced tree, constant depth
— Great for huge directories

-
Block allocation: Contiguous

« Each file occupies a set of adjacent blocks
 You just need to know the starting block & file length

* We'd love to have contiguous storage for files!
— Minimizes disk seeks when accessing a file

-
Problems with contiguous allocation

« Storage allocation is a pain (remember main memory?)
— External fragmentation: free blocks of space scattered throughout
— vs. Internal fragmentation: unused space within a block (allocation unit)
— Periodic defragmentation: move entire files (yuck!)

« Concurrent file creation: how much space do you need?

« Compromise solution: extents
— Allocate a contiguous chunk of space
— If the file needs more space, allocate another chunk (extent)
— Need to keep track of all extents

— Not all extents will be the same size: it depends how much contiguous
space you can allocate

[

Block allocation: Linked Allocation

* Problems

e Clusters

— Only good for sequential access
— Each block uses space for the pointer to the next block

 Afile’s data is a linked list of disk blocks

— Directory contains a pointer to the first block of the file
— Each block contains a pointer to the next block

Block 15

Block 200

— Multiples of blocks: reduce overhead for block pointer & improve throughput
— A cluster is the smallest amount of disk space that can be allocated to a file
— Penalty: increased internal fragmentation

Block 8 I

Cluster 203

3—
—

Cluster 199

—
—-

Cluster 338 I

-
File Allocation Table (DOS/Windows FAT)

» Variation of Linked Allocation

» Section of disk at beginning of the volume contains a file allocation
table

* The table has one entry per block. Contents contain
the next logical block (cluster) in the file.

Directory entry:

myfile.txt

metadata

06

FAT table: one per file system

//

0

0

0 |12] O 0

03| O

0

FAT-16: 16-bit block pointers

16-bit cluster numbers; up to 64 sectors/cluster
Max file system size = 2 GB (with 512 byte sectors)

FAT-32: 32-bit block pointers

32-Dbit cluster numbers; up to 64 sectors/cluster
Max file system size = 8 TB (with 512 byte sectors)

Max file size =4 GB

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

Clusters

[

Indexed Allocation (Block map)

* Linked allocation is not efficient for random access

* FAT requires storing the entire table in memory for
efficient access

* Indexed allocation:

— Store the entire list of block pointers for a file in one place: the
iIndex block (inode)

— One inode per file
— We can read this into memory when we open the file

[

Indexed Allocation (block/cluster map)

and a block map

 Directory entry contains name and inode number

 inode contains file metadata (length, timestamps, owner, etc.)

* On file open, read the inode to get the index map Clusters

00
01
Directory entry: | myfile.txt 99 02

— 2"d file block
g 04
g 05

£ 1stfile block
06 07
s 33
12 10

inode 99 11 _

3 file block
13
14

10

" Combined indexing (Unix File System)

 We want inodes to be a fixed size

» Large files get
— Single indirect block
— Double indirect block Data block _| Data block
— Triple indirect block

Direct block

- Direct block
- 10 Direct/block pointers _
Single Indirect blogk
Indirect block | Data block |
Double indirect block
Triple indirect block #entries =

block size/(4 bytes per block pointer)
_ J

11

[Combined Indexing: inside the inode

* Direct block numbers

— These contain block numbers that contain the file’s data. Having these
gives us direct access to the file's data.

* |ndirect block number

— This is a block number of a block that contains a list of direct block
numbers. Each block number is the number of a block that contains the
file's data.

 Double indirect block number

— This refers to a block that contains a list of indirect block numbers. Each
indirect block number is the number of a block that contains a list of direct
block numbers

« Triple indirect block number

— This refers to a block that contains a list of double indirect block numbers.

list of indirect direct block numbers. Each of these contains a list of direct
block numbers

Each double indirect block number is the number of a block that contains a

12

-
Example

* Unix File System
— 1024-byte blocks, 32-bit block pointers

— inode contains
« 10 direct blocks, 1 indirect, 1 double-indirect, 1 triple indirect

» Capacity
— Direct blocks will address: 1K x 10 blocks = 10,240 bytes
— 1 Indirect block: additional (1K/4)x1K = 256K bytes
— 1 Double indirect block: additional (1K/4) x (1K/4) x 1K = 64M bytes
— 1 Triple indirect block: additional (1K/4) x (1K/4) x (1K/4) x 1K = 16G bytes

— Maximum file size = 10,240 + 256K + 64M + 16G =
= 17247250432 bytes = 16G bytes

13

Extent lists

« Extents: Instead of listing block addresses
— Each address represents a range of blocks

— Contiguous set of blocks
— E.qg., 48-bit block # + 2-byte length (total = 64 bits)

 Why are they attractive?

— Fewer block numbers to store if we have lots of contiguous
allocation

* Problem: file seek operations
— Locating a specific location requires traversing a list
— Extra painful with indirect blocks

14

i Unix File System (UFS)

inodes with direct, indirect, double-indirect, and triple-indirect blocks

Data block Data block |

Direct block

Direct block

~10 Direct plock pointers
Single Indirect blogk

Indirect block
Double indirect block
Triple indirect block

Data block

entries =
block size/(4 bytes per block pointer)

_ J

15

(Unix File System (UFS)

Superblock contains:
— Size of file system
— # of free blocks
— list of free blocks (+ pointer to free block lists)
— index of the next free block in the free block list
— Size of the inode list
— Number of free inodes in the file system
— Index of the next free inode in the free inode list
— Modified flag (clean/dirty)

16

(Unix File System (UFS)

* Free space managed as a linked list of blocks

— Eventually this list becomes random
— Every disk block access will require a seek!

« Fragmentation is a big problem

« Typical performance was often:
2—4% of raw disk bandwidth!

17

" BSD Fast File System (FFS)

* Try to improve UFS

* Improvement #1: Use larger blocks
— = 4096 bytes instead of UFS’s 512-byte or 1024-byte blocks
» Block size is recorded in the superblock
— Just doubling the block size resulted in > 2x performance!
— 4 KB blocks let you have 4 GB files with only two levels of indirection

— Problem: increased internal fragmentation

 Lots of files were small
« Solution: Manage fragments within a block (down to 512 bytes)
— Afile is 0 or more full blocks and possibly one fragmented block

— Free space bitmap stores fragment data
— As a file grows, fragments are copied to larger fragments and then to a full block

— Allow user programs to find the optimal block size
o Standard I/O library and others use this

— Also, avoid extra writes by caching in the system buffer cache

18

[BSD Fast File System (FFS)

* Improvement #2: Minimize head movement (reduce seek time)
— Seek latency is usually much higher than rotational latency
— Keep file data close to its inode to minimize seek time to fetch data

— Keep related files & directories together
— Cylinder: collection of all blocks on the same track on all heads of a disk

— Cylinder group: Collection of blocks on one or more consecutive cylinders

FES: Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder
group 1 group 2 group 3 group 4 group 5 group 6 group 7

Cylinder group:

19

[

How do you find inodes?

 UFS was easy — to get block # for and inode:
Inodes_per_block = sizeof(block) / sizeof(inode)
inode_block = inode / inodes_per block
block_offset = (inode % inodes_per_block) * sizeof(inode)

- FFS

— We need to know how big each chunk of inodes in a cylinder group
IS: keep a table

20

" BSD Fast File System (FFS)

* Optimize for sequential access

 Allocate data blocks that are close together

— Pre-allocate up to 8 adjacent blocks when allocating a block
« Achieves good performance under heavy loads
« Speeds sequential reads

* Prefetch

— If 2 or more logically sequential blocks are read

« Assume sequential read and request one large 1/0 on the entire range of
sequential blocks

— Otherwise, schedule a read-ahead

21

" BSD Fast File System (FFS)

* Improve fault tolerance
— Strict ordering of writes of file system metadata
— fsck still requires up to five passes to repair
— All metadata writes are synchronous (not buffered)
— This limits the max # of /O operations

 Directories
— Max filename length = 256 bytes (vs. 12 bytes of UFS)

« Symbolic links introduced
— Hard links could not point to directories and worked only within the FS

 Performance:
— 14-47% of raw disk bandwidth
— Better than the 2-5% of UFS

22

Linux ext2

Similar to BSD FFS

No fragments

Divides disk into fixed-size block groups

No cylinder groups (not useful in modern disks) — block groups

— Like FFS, somewhat fault tolerant: recover chunks of disk even if some parts are not

accessible
. Block group | Block group | Block group | Block group | Block group | Block group | Block group
ext2:
1 2 3 4 5 6 7
Block group: inode table

23

p

_

\
Linux ext2
® ®
Inodes with direct, indirect, double-indirect, and triple-indirect blocks
Data block _| Data block |
Direct block
B Direct block
—12 Direct block pointers
Single Indirect blogk
Indirect block | Data block |
Double indirect block
Triple indirect block # entries =

block size/(4 bytes per block pointer)

_/

24

-
Linux ext2

* Improve performance via aggressive caching
— Reduce fault tolerance because of no synchronous writes
— Almost all operations are done in memory until the buffer cache gets flushed

 Unlike FFS:

— No guarantees about the consistency of the file system
« Don’t know the order of operations to the disk: risky if they don'’t all complete

— No guarantee on whether a write was written to the disk when a system call
completes

* |n most cases, ext2 is much faster than FFS

25

Journaling

26

(

Consistent Update Problem

Example:

» Writing a block to a file may require:
— inode is
» updated with a new block pointer
« Updated with a new file size

— Data free block bitmap is updated
— Data block contents written to disk

« If all of these are not written, we have a file system inconsistency

Don’t crash here!

consistent file consistent file
system system

bunch of updates

27

p

Journaling

» Journaling = write-ahead logging

» Keep a transaction-oriented journal of changes
— Record what you are about to do (along with the data)

Transaction-begin
New inode 779
New block bitmap, group 4
New data block 24120
Transaction-end

— Once this has committed to the disk then overwrite the real data
— If all goes well, we don’t need this transaction entry

— If a crash happens any time after the log was committed
Replay the log on reboot (redo logging)

» This is called full data journaling

28

p

Writing the journal

» Writing the journal all at once would be great but is risky
— We don’t know what order the disk will schedule the block writes

— Don’t want to risk having a “transaction-end” written while the contents of
the transaction have not been written yet

— Write all blocks except transaction-end
— Wait for the writes to complete
— Then write transaction-end

« If the log is replayed and a transaction-end is missing, ignore the log
entry

wait for writes to complete

jwrite
jwrite
jwrite
jwrite

“Transaction-begin”)

“New inode 779")

“New block bitmap, group 4”)
“New data block 24120")

jwrite(“Transaction-end”)

o~ e e

29

[

Cost of journaling

« We're writing everything twice
...and constantly seeking to the journal area of the disk

* Optimization
— Do not write user data to the journal
— Metadata journaling (also called ordered journaling)

Transaction-begin

New inode 779

New block bitmap, group 4
Transaction-end

« What about the data?
— Write it to the disk first (not in the journal)
— Then mark the end of the transaction
— This prevents pointing to garbage after a crash and journal replay

30

-

Linux ext3

« ext3 = ext2 + journaling (mostly)

» Goal: improved fault recovery

— Reduce the time spent in checking file system consistency &
repairing the file system

31

-

ext3 journaling options

e journal
— full data + metadata journaling
— [slowest]

 ordered
— Data blocks written first, then metadata journaling
— Write a transaction-end only when the other writes have completed

» writeback
— Metadata journaling with no ordering of data blocks
— Recent files can get corrupted after a crash
— [fastest]

32

4)

ext3 layout

ext2:

Block group:

The journal is new.
Everything else is from ext2.

ext3 also supports HTree structure for
directory entries up to 32,000 entries

33

[

Linux ext4: extensions to ext3

» Large file system support
— 1 exabyte (1018 bytes); file sizes to 16 TB

» Extents used instead of block maps: less need for indirect blocks
— Range of contiguous blocks
— 1 extent can map up to 12 MB of space (4 KB block size)

— 4 extents per inode. Additional ones are stored in an HTree (constant-
depth tree similar to a B-tree)

 Ability to pre-allocate space for files
— Increase chance that it will be contiguous

» Delayed allocation
— Allocate on flush — only when data is written to disk
— Improve block allocation decisions because we know the size

34

Linux ext4: extensions to ext3

« Over 64,000 directory entries (vs. 32,000 in ext3)
— HTree structure

Journal checksums
— Monitor journal corruption

Faster file system checking
— Ignore unallocated block groups

Interface for multiple-block allocations
— Increase contiguous storage

Timestamps in nanoseconds

35

Microsoft NTFS

« Standard file system for Windows; successor to FAT-32
* 64-bit volume sizes, journaling, and data compression

» Cluster-based (file compression not supported on clusters > 4 KB)

TS Master File Master File

table Copy

boot File System Data

Table

sector

Boot Sector: info about layout of the volume & FS structures; Windows bootloader
MFT: contains information about all files in the file system

File system data: all the data that is not in the MFT

MFT Copy: copy of critical part of MFT for recovery (first 4 records)

36

[NTFS Master File Table

« The MFT is itself a file (starting at a well-known place)

* It contains file records (inode) for all files, including itself
— B-Tree structure

« MFT Special files:

MFT record O SMIt Master file table

MFT record 1 SMftMirr Duplicate of 15t 4 records of MFT
MFT record 2 $LogFile Metadata journal for recovery
MFT record 3 $Volume Info about the file system volume
MFT record 4 SAttrDef Attribute definitions

MFT record 5 Root folder

MFT record 6 $Bitmap Cluster bitmap (free/used clusters)

And a few more less interesting ones...

« Because the Bitmap is just a file, the volume bitmap is a file, the size of a
volume can be easily expanded

 NTFS MFT & Attributes

 MFT can grow just like any other file

— To minimize fragmentation, 12.5% of the volume is reserved for use by the MFT
("“MFT Zone”)

« Eachfile recordis 1, 2, or 4 KB (determined at FS initialization)

 File record info: set of typed attributes
— Some attributes may have multiple instances (e.g., name & MS-DOS name)
— Resident attributes: attributes that fit in the MFT record
— If the attributes take up too much space, additional clusters are allocated
« an “Attribute List” attribute is added
» Describes location of all other file records
 Attributes stored outside of the MFT record are Nonresident attributes

38

NTFS File Data

* File data is an attribute

— NTFS supports multiple data attributes per file

— One main, unnamed stream associated with a data file; other
named streams are possible

— Manage related data as a single unit

« Small folders and small data files can fit entirely within the

MFT.
— Large folders are B-tree structures and point to external clusters

* Block allocation: via extents

39

[Microsoft NTFS

* Directories
— Stored as B+ trees in alphabetic order
— Name, MFT location, size of file, last access & modification times

— Size & times are duplicated in the file record & directory entry
» Designed top optimize some directory listings

» Write-ahead logging
— Writes planned changes to the log, then writes the blocks

» Transparent data compression of files

— Method 1:
Compress long ranges of zero-filled data by not allocating them to blocks
(sparse files)

— Method 2:
Break file into 16-block chunks
« Compress each chunk
 If at least one block is not saved then do not compress the chunk

40

-
Latest MS file system: ReFS

 ReFS = Resilient File System for Windows Server 2012

» Goals
— Verify & auto-correct data; checksums for metadata
— Optimize for extreme scale
— Never take the file system offline — even in case of corruption
— Allocate-on-write transactional model
— Shared storage pools for fault tolerance & load balancing
— Data striping for performance; redundancy for fault tolerance

» General approach
— Use B+ trees to represent all information on the disk
« “Table” interface for enumerable sets of key-value pairs

— Provide a generic key-value interface to implement files, directories, and all
other structures

41

_

The End

3/25/2015

© 2014-2015 Paul Krzyzanowski

42

