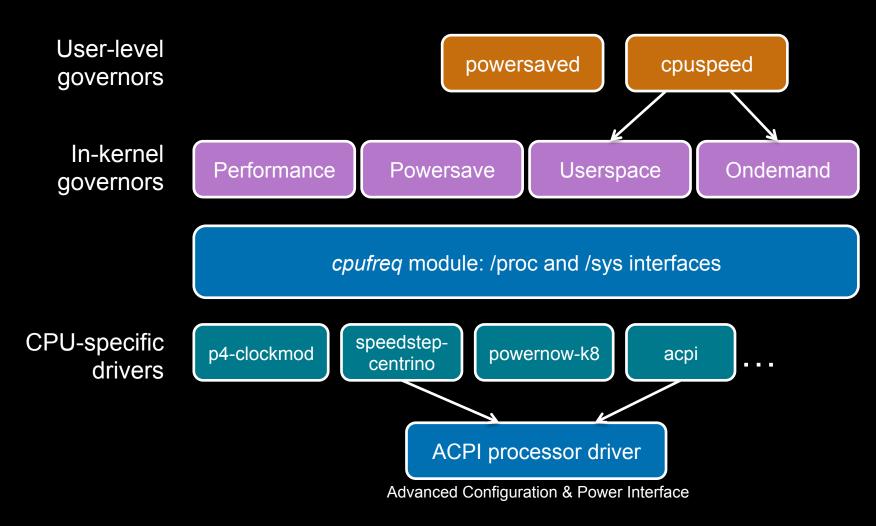
Operating Systems Design 25. Power Management

Paul Krzyzanowski pxk@cs.rutgers.edu

Power Management

Goal: Improve the battery life of mobile devices

CPU Voltage & Frequency Scaling


- Dynamic CPU Frequency Scaling
 - Adjust the frequency of a CPU on the fly
 - Conserve power & reduce heat (reduce need for a fan)
 - Reduce # of instructions per time
 - · Goal: use this when processes are not CPU bound
- Examples of CPU support:
 - Intel SpeedStep
 - AMD PowerNow!, AMD Cool 'n' Quiet
 - ARM Intelligent Energy Manager (IEM)
- OS management of voltage/frequency control
 - Linux: *cpuspeed* (RedHat) or *cpufrequtils* (Ubuntu)

Managing CPU performance

Governors

- Pre-configured power schemes
- Loaded as kernel modules. Governors include:
 - cpufreq_performance: run at maximum speed (default)
 - cpufreq_ondemand: dynamically increase/decrease based on load
 - Programmable threshold based on % CPU utilization
 - cpufreq_conservative: similar to ondemand but slower changes
 - cpufreq_powersave: run CPU at minimum speed
 - cpufreq_userspace: allow user to configure speeds

CPUfreq system in Linux

From http://software.intel.com/en-us/articles/enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux/

ACPI Power Management

- Global states (G)
 - G0/S0: Working
 - G1: Sleeping
 - G1/S1: all CPU caches flushed, CPU stopped; power to CPU & RAM is ON
 - G1/S2: CPU is powered off
 - G1/S3: Standby/Sleep: RAM is powered on
 - G1/S4: Hibernation: Copy all of RAM to a swap partition or file
 - G2/S5: Soft OFF: most systems off but the machine can wake from LAN, USB, keyboard, or real-time clock inputs
 - G3: OFF (only the real-time clock running)

ACPI Power Management

• Device Control (D)

- D0: Fully on
- D1, D2: intermediate
- D3: OFF and not responsive to the bus
- CPU states (C)
 - C0: normal operating state
 - C1: Halt: not executing but can start instantly
 - C2: Stop-clock: CPU keeps state but takes longer to start
 - C3: Sleep: cache may not be updated
- Power: Voltage/Frequency scaling (P)
 - P0: maximum voltage & frequency
 - Pn: voltage and/or frequency scaled

Sleep & Hibernation

- Sleep (standby) mode
 - Stop processor execution, keep RAM powered
- Hibernate mode
 - Save memory state onto non-volatile storage (disk/flash)
 - Most systems are shut off
 - except USB/LAN/alarm/switch wake detection
 - Suspend-to-disk
 - Suspend-to-file
 - Suspend-to-ram
- Hybrid
 - Store contents to disk and then sleep
 - If power to memory is lost then wake via disk restore
 - Examples:
 - Windows Vista Fast Sleep & Resume
 - OS X Safe Sleep

Power Management: BIOS Support

- Old interface: APM
 - BIOS call; actions fully handled by hardware
- Most PCs support ACPI
 - Advanced Configuration and Power Interface
 - Fan control, dock/undock detection, temperature sensing, device control, …
 - Intel provides a fixed function interface for control
 - Other systems are hardware-specific

Example

- Hit a sleep key, close lid, ...
 - 1. Hardware interrupt interrupts CPU: general purpose event
 - 2. OS interrupt handler
 - 3. User-level power management daemon listens to events via /proc/acpi/events
 - 4. User process decides that the action requires a *suspend to RAM*
 - 5. Suspend to RAM initiated

Example

- Hit a sleep key, close lid, ...
 - 4. ...
 - 5. Suspend to RAM initiated
 - a. Script/program does initial work: unloads various drivers that are not power-management-aware
 - b. Initiate suspend by echoing the right state into /sys/power/state
 - E.g., echo "mem" >/sys/power/state
 - c. Kernel stops user-level actions (process execution)
 - d. Goes through each device: calls suspend methods on each active driver
 - e. Call ACPI methods: PTS (Prepare To Sleep), GTS (Go To Sleep)
 - f. Address of kernel wakeup code written to an address in the FADT *Fixed Address Descriptor Table* in the ACPI
 - g. Write values to ACPI to sequence the machine to *suspend*
 - S3 state: shut the machine down but keep RAM on.

Example: Waking up

- 6. User presses the power button
 - BIOS start code invoked
 - BIOS checks the ACPI status register: system was suspended to RAM
 - Jumps to the programmed wakeup address
 - Executes kernel-provided real-mode x86 code
 - Restores register state, switches the CPU to protected mode
 - Now the kernel is running
 - Kernel
 - calls the ACPI WAK method
 - Resumes all drivers
 - Restarts userspace (scheduling)
 - The shell script that was running when we suspended resmes and reloads drivers.

Tickless Kernel

- Traditional kernel:
 - Periodic tick
 - Always ticking ... whether the processor is busy or not
 - Used for
 - Timer management
 - Time slice management
 - SMP load balancing
 - Wakeup during idle is bad
 - Does not let CPU go to deep sleep states
 - Hurts battery life

Tickless Kernel

• Tickless kernel:

- On-demand timer interrupts
- Turn off periodic tick when the CPU is idle
- Clock event wakeup programmed based on next event
- Keep the kernel quiet
 - Group timers to avoid multiple interrupts
 - Round timeout values
 - Defer the expiration of non-critical timers during idle

The End