
CS	417 9/23/16

Paul	Krzyzanowski 1

Distributed Systems
02r. Go Programming

Paul Krzyzanowski

Rutgers University

Fall 2016

1September 23, 2016 CS 417 - Paul Krzyzanowski

Motivation

Current languages don't help us enough:

– Computers are fast but software construction is slow.

– Dependency analysis is necessary for speed, safety.

– Types get in the way too much.
– Garbage collection & concurrency are poorly supported.

– Multi-core is seen as a crisis, not an opportunity.

September 23, 2016 CS 417 - Paul Krzyzanowski 2

Go’s goal
Make programming fun again!

• The feel of a dynamic language with the safety of a static type system

• Compile to machine language so it runs fast

• Real run-time that supports garbage collection & concurrency

• Lightweight, flexible type system

• Has methods but is not a conventional object-oriented language

September 23, 2016 CS 417 - Paul Krzyzanowski 3

Hello, World example

package main

import "fmt"

func main() {

fmt.Print("Hello, world\n")

}

September 23, 2016 CS 417 - Paul Krzyzanowski 4

Hello, World example
• If using your own Linux system, install Go

– sudo apt-get install golang
(Ubuntu example)

• Create a file with the program
hello.go

• Run it:
go run hello.go

• Or compile an executable:
go build hello.go
And run it:
./hello

September 23, 2016 CS 417 - Paul Krzyzanowski 5

package main
import "fmt”
func main() {

fmt.Print("Hello, world\n")
}

Hello, world

Syntax overview
Basically C-like with reversed types and declarations, plus
keywords to introduce each type of declaration.

var a int

var b, c *int // note difference from C

var d [] int
type S struct { a, b int }

Basic control structures are familiar:
if a == b { return true } else { return false }

for i = 0; i < 10; i++ { ... }

Note: no parentheses, but braces are required.

September 23, 2016 CS 417 - Paul Krzyzanowski 6

CS	417 9/23/16

Paul	Krzyzanowski 2

Semicolons
Semicolons terminate statements but:

– The lexer inserts them automatically at end of line if the previous
token could end a statement.

– Note: much cleaner, simpler than JavaScript rules!
– Thus, no semis needed in this program:

package main

const three = 3

var i int = three
func main() { fmt.Printf("%d\n", i) }

In practice, Go code almost never has semicolons outside
for and if clauses.

September 23, 2016 CS 417 - Paul Krzyzanowski 7

string
• The built-in type string represents immutable arrays of

bytes – that is, text
• Strings are length-delimited not NUL-terminated
• String literals have type string

– Immutable, just like ints
– Can reassign variables but not edit values.
– Just as 3 is always 3, "hello" is always "hello"

• Language has good support for string manipulation.=

September 23, 2016 CS 417 - Paul Krzyzanowski 8

Declarations
Declarations are introduced by a keyword (var, const,
type, func) and are reversed compared to C:

var i int
const PI = 22./7.

type Point struct { x, y int }

func sum(a, b int) int { return a + b }

Why are they reversed? Earlier example:
var p, q *int

Both p and q have type *int
Also functions read better and are consistent with other
declarations. And there's another reason, coming up…

September 23, 2016 CS 417 - Paul Krzyzanowski 9

var
• Variable declarations are introduced by var
• They may have a type or an initialization expression

– One or both must be present

• Initializers must match variables (and types!)
var i int

var j = 365.245

var k int = 0
var l, m uint64 = 1, 2

var nanoseconds int64 = 1e9 // float64 constant!

var inter, floater, stringer = 1, 2.0, "hi"

September 23, 2016 CS 417 - Paul Krzyzanowski 10

The := "short declaration"
Within functions (only), declarations of the form

var v = value

can be shortened to
v := value

(Another reason for the name/type reversal)
The type is that of the value (for ideal numbers, get int or
float64 or complex128, accordingly)

a, b, c, d, e := 1, 2.0, "three", FOUR, 5e0i

These are used a lot and are available in places such as
for loop initializers.

September 23, 2016 CS 417 - Paul Krzyzanowski 11

Const
Constant declarations are introduced by const
They must have a "constant expression", evaluated at
compile time, as an initializer and may have an optional
type specifier

const Pi = 22./7.

const AccuratePi float64 = 355./113

const beef, two, parsnip = "meat", 2, "veg"
const (

Monday, Tuesday, Wednesday = 1, 2, 3

Thursday, Friday, Saturday = 4, 5, 6

)

September 23, 2016 CS 417 - Paul Krzyzanowski 12

CS	417 9/23/16

Paul	Krzyzanowski 3

Type
Type declarations are introduced by type.
We'll learn more about types later but here are some
examples:

type Point struct {

x, y, z float64

name string

}

type Operator func(a, b int) int

type SliceOfIntPointers []*int

We'll come back to functions a little later.

September 23, 2016 CS 417 - Paul Krzyzanowski 13

New
• The built-in function new allocates memory.

• Syntax is like a function call, with the type as argument,
similar to C++

• Returns a pointer to the allocated object.

var p *Point = new(Point)

v := new(int) // v has type *int

• Later we'll see how to build slices and such
• There is no delete or free; Go has garbage collection

September 23, 2016 CS 417 - Paul Krzyzanowski 14

Assignment
Assignment is easy and familiar:

a = b

But multiple assignment works too:
x, y, z = f1(), f2(), f3()

a, b = b, a // swap

Functions can return multiple values (details later):
nbytes, error := Write(buf)

September 23, 2016 CS 417 - Paul Krzyzanowski 15

Control structures
• Similar to C, but different in significant ways.

• Go has if, for and switch (plus one more to appear later)

• As stated before, no parentheses, but braces are mandatory

• They are quite regular when seen as a set.

• For instance, if, for and switch all accept initialization
statements.

September 23, 2016 CS 417 - Paul Krzyzanowski 16

if
Basic form is familiar, but no dangling else problem:

if x < 5 { less() }
if x < 5 { less() } else if x == 5 { equal() }

Initialization statement allowed; requires semicolon.
if v := f(); v < 10 {

fmt.Printf("%d less than 10\n", v)
} else {

fmt.Printf("%d not less than 10\n", v)
}

Useful with multivariate functions:
if n, err = fd.Write(buf); err != nil { ... }

Missing condition means true, which is not too useful in this
context but handy in for, switch
September 23, 2016 CS 417 - Paul Krzyzanowski 17

for
Basic form is familiar:

for i := 0; i < 10; i++ { ... }

Missing condition means true:
for ;; { fmt.Printf("looping forever") }

But you can leave out the semis too:
for { fmt.Printf("Mine! ") }

Don't forget multivariate assigments:
for i,j := 0,N; i < j; i,j = i+1,j-1 {...}

(There's no comma operator as in C)

September 23, 2016 CS 417 - Paul Krzyzanowski 18

CS	417 9/23/16

Paul	Krzyzanowski 4

Switch details
Switches are somewhat similar to C's.
But there are important syntactic and semantic differences:

– Expressions need not be constant or even int
– No automatic fall through
– Instead, lexically last statement can be fallthrough
– Multiple cases can be comma-separated

switch count % 7 {
case 4,5,6: error()
case 3: a *= v; fallthrough
case 2: a *= v; fallthrough
case 1: a *= v; fallthrough
case 0: return a*v

}

September 23, 2016 CS 417 - Paul Krzyzanowski 19

Break, continue, etc.
The break and continue statements work as in C.
They may specify a label to affect an outer structure:

Loop: for i := 0; i < 10; i++ {
switch f(i) {

case 0, 1, 2: break Loop
}

g(i)
}

Yes , there is a goto.

September 23, 2016 CS 417 - Paul Krzyzanowski 20

Functions
Functions are introduced by the func keyword.
Return type, if any, comes after parameters. The return
does as you expect.

func square(f float64) float64 { return f*f }

A function can return multiple values. If so, the return types
are a parenthesized list.

func MySqrt(f float64) (float64, bool) {

if f >= 0 { return math.Sqrt(f), true }

return 0, false

}

September 23, 2016 CS 417 - Paul Krzyzanowski 21

Defer
• The defer statement executes a function (or method)

when the enclosing function returns.
• The arguments are evaluated at the point of the defer; the

function call happens upon return.

func data(fileName string) string {
f := os.Open(fileName)
defer f.Close()
contents := io.ReadAll(f)
return contents

}

• Useful for closing file descriptors, unlocking mutexes, etc.

September 23, 2016 CS 417 - Paul Krzyzanowski 22

Program construction - Packages
• A program is constructed as a "package", which may use

facilities from other packages.

• A Go program is created by linking together a set of
packages.

• A package may be built from multiple source files.

• Names in imported packages are accessed through a
"qualified identifier": packagename.Itemname.

September 23, 2016 CS 417 - Paul Krzyzanowski 23

main and main.main
• Each Go program contains a package called main and its

main function, after initialization, is where execution
starts, analogous with the global main() in C, C++

• The main.main function takes no arguments and returns
no value.

• The program exits – immediately and successfully – when
main.main returns

September 23, 2016 CS 417 - Paul Krzyzanowski 24

CS	417 9/23/16

Paul	Krzyzanowski 5

Global and package scope
• Within a package, all global variables, functions, types, and

constants are visible from all the package's source files.
• For clients (importers) of the package, names must be

upper case to be visible:
– global variables, functions, types, constants, plus methods and

structure fields for global variables and types

const hello = "you smell" // package visible

const Hello = "you smell nice" // globally visible

const _Bye = "stinko!" // _ is not upper

• Very different from C/C++: no extern, static, private,
public

September 23, 2016 CS 417 - Paul Krzyzanowski 25

Initialization
• Two ways to initialize global variables before execution of
main.main:
1. A global declaration with an initializer
2. Inside an init() function, of which there may be any number in

each source file

• Package dependency guarantees correct execution
order.

• Initialization is always single-threaded.

September 23, 2016 CS 417 - Paul Krzyzanowski 26

Initialization example
package transcendental
import "math"
var Pi float64
func init() {

Pi = 4*math.Atan(1) // init function computes Pi
}
====
package main
import (

"fmt"
"transcendental"

)
var twoPi = 2*transcendental.Pi // decl computes twoPi
func main() {

fmt.Printf("2*Pi = %g\n", twoPi)
}
====

Output: 2*Pi = 6.283185307179586
September 23, 2016 CS 417 - Paul Krzyzanowski 27

Package and program construction
• To build a program, the packages, and the files within

them, must be compiled in the correct order.
• Package dependencies determine the order in which to

build packages.
• Within a package, the source files must all be compiled

together. The package is compiled as a unit, and
conventionally each directory contains one package.
Ignoring tests,
cd mypackage

6g *.go

• Usually we use make; Go-specific tool is coming.

September 23, 2016 CS 417 - Paul Krzyzanowski 28

Arrays
Arrays are values, not implicit pointers as in C. You can
take an array's address, yielding a pointer to the array (for
instance, to pass it efficiently to a function):

func f(a [3]int) { fmt.Println(a) }
func fp(a *[3]int) { fmt.Println(a) }

func main() {
var ar [3] int

f(ar) // passes a copy of ar
fp(&ar) // passes a pointer to ar

}

Output (Print and friends know about arrays):
[0 0 0]

&[0 0 0]

September 23, 2016 CS 417 - Paul Krzyzanowski 29

Maps
Maps are another reference type. They are declared like
this:

var m map[string]float64

This declares a map indexed with key type string and
value type float64.
It is analogous to the C++ type *map<string,float64>
(note the *).

Given a map m, len(m) returns the number of keys

September 23, 2016 CS 417 - Paul Krzyzanowski 30

CS	417 9/23/16

Paul	Krzyzanowski 6

Map creation
As with a slice, a map variable refers to nothing; you must
put something in it before it can be used.
Three ways:
1. Literal: list of colon-separated key:value pairs

m = map[string]float64{"1":1, "pi":3.1415}

2. Creation
m = make(map[string]float64) // make not new

3. Assignment
var m1 map[string]float64
m1 = m // m1 and m now refer to same map

September 23, 2016 CS 417 - Paul Krzyzanowski 31

Deleting
Deleting an entry in the map is a multi-variate assignment
to the map entry:

m = map[string]float64{"1":1.0, "pi":3.1415}
var keep bool

var value float64
var x string = f()

m[x] = v, keep

If keep is true, assigns v to the map; if keep is false,
deletes the entry for key x. So to delete an entry:

m[x] = 0, false // deletes entry for x

September 23, 2016 CS 417 - Paul Krzyzanowski 32

Structs
Structs should feel very familiar: simple declarations of data
fields.

var p struct {
x, y float64

}

More usual:
type Point struct {

x, y float64
}
var p Point

Structs allow the programmer to define the layout of memory

September 23, 2016 CS 417 - Paul Krzyzanowski 33

Anonymous fields
• Inside a struct, you can declare fields, such as another

struct, without giving a name for the field.

• These are called anonymous fields and they act as if the
inner struct is simply inserted or "embedded” into the
outer.

• This simple mechanism provides a way to derive some or
all of your implementation from another type or types.

• An example follows.

September 23, 2016 CS 417 - Paul Krzyzanowski 34

An anonymous struct field
type A struct {

ax, ay int
}
type B struct {

A
bx, by float64

}

B acts as if it has four fields, ax, ay, bx, and by
It’s almost as if B is {ax, ay int; bx, by float64}.
However, literals for B must be filled out in detail:

b := B{A{1, 2}, 3.0, 4.0}

fmt.Println(b.ax, b.ay, b.bx, b.by)

Prints 1 2 3 4

September 23, 2016 CS 417 - Paul Krzyzanowski 35

Methods on structs
• Go has no classes, but you can attach methods to any

type. Yes, (almost) any type.
• The methods are declared, separate from the type

declaration, as functions with an explicit receiver
• The obvious struct case:

type Point struct { x, y float64 }
// A method on *Point
func (p *Point) Abs() float64 {

return math.Sqrt(p.x*p.x + p.y*p.y)
}

• Note: explicit receiver (no automatic this), in this case of
type *Point, used within the method.

September 23, 2016 CS 417 - Paul Krzyzanowski 36

CS	417 9/23/16

Paul	Krzyzanowski 7

Invoking a method
Just as you expect.

p := &Point{ 3, 4 }
fmt.Print(p.Abs()) // will print 5

A non-struct example:
type IntVector []int
func (v IntVector) Sum() (s int) {

for _, x := range v { // blank identifier!
s += x

}
return

}
fmt.Println(IntVector{1, 2, 3}.Sum())

September 23, 2016 CS 417 - Paul Krzyzanowski 37

Interface
• So far, all the types we have examined have been

concrete: they implement something

• There is one more type to consider: the interface type
– It is completely abstract; it implements nothing

– Instead, it specifies a set of properties an implementation must
provide.

• Interface as a concept is very close to that of Java, and
Java has an interface type, but the "interface value"
concept of Go is novel.

September 23, 2016 CS 417 - Paul Krzyzanowski 38

Definition of an interface
• The word "interface" is a bit overloaded in Go: there is the

concept of an interface, and there is an interface type,
and then there are values of that type. First, the concept.

• Definition: An interface is a set of methods.

• To turn it around, the methods implemented by a concrete
type such as a struct form the interface of that type.

September 23, 2016 CS 417 - Paul Krzyzanowski 39

An example
type MyFloat float64
func (f MyFloat) Abs() float64 {

if f < 0 { return float64(-f) }
return f

}

MyFloat implements AbsInterface even though float64
does not

(Aside: MyFloat is not a "boxing" of float64; its
representation is identical to float64.)

September 23, 2016 CS 417 - Paul Krzyzanowski 40

Comparison
• In C++ terms, an interface type is like a pure abstract

class, specifying the methods but implementing none of
them

• In Java terms, an interface type is much like a Java
interface

• However, in Go there is a major difference:
– A type does not need to declare the interfaces it implements, nor

does it need to inherit from an interface type
– If it has the methods, it implements the interface.

• Some other differences will become apparent

September 23, 2016 CS 417 - Paul Krzyzanowski 41

Goroutines

Terminology:
– There are many terms for "things that run concurrently”:

processes, threads, coroutines, POSIX threads, NPTL
threads, lightweight processes, ..., but

– These all mean slightly different things. None mean
exactly how Go does concurrency

– We introduce a new term: goroutine

September 23, 2016 CS 417 - Paul Krzyzanowski 42

CS	417 9/23/16

Paul	Krzyzanowski 8

Definition
• A goroutine is a Go function or method executing

concurrently in the same address space as other
goroutines.
– A running program consists of one or more goroutines.

• It's not the same as a thread, coroutine, process, etc. It's
a goroutine.

• Note: Concurrency and parallelism are different concepts
– Look them up if you don't understand the difference.

• There are many concurrency questions. They will be
addressed later; for now, just assume it all works as
advertised

September 23, 2016 CS 417 - Paul Krzyzanowski 43

Starting a goroutine
Invoke a function or method and say go:

func IsReady(what string, minutes int64) {
time.Sleep(minutes * 60*1e9) // Unit is

nanosecs.
fmt.Println(what, "is ready")

}

go IsReady("tea", 6)
go IsReady("coffee", 2)
fmt.Println("I'm waiting...")

Prints:
I'm waiting... (right away)

coffee is ready (2 minutes later)

tea is ready (6 minutes later)

September 23, 2016 CS 417 - Paul Krzyzanowski 44

Channels in Go
• Unless two goroutines can communicate, they can't

coordinate

• Go has a type called a channel that provides
communication and synchronization capabilities

• It also has special control structures that build on
channels to make concurrent programming easy

September 23, 2016 CS 417 - Paul Krzyzanowski 45

The Channel Type
In its simplest form the type looks like this:

chan elementType

With a value of this type, you can send and receive items of
elementType.

Channels are a reference type, which means if you assign
one chan variable to another, both variables access the
same channel. It also means you use make to allocate one:

var c = make(chan int)

September 23, 2016 CS 417 - Paul Krzyzanowski 46

The communication operator: <-
The arrow points in the direction of data flow.
As a binary operator, <- sends the value on the right to the
channel on the left:

c := make(chan int)

c <- 1 // send 1 on c (flowing into c)

As a prefix unary operator, <- receives from a channel:
v = <-c // receive value from c, assign to v

<-c // receive value, throw it away

i := <-c // receive value, initialize i

September 23, 2016 CS 417 - Paul Krzyzanowski 47

Example
func pump(ch chan int) {

for i := 0; ; i++ { ch <- i }
}
ch1 := make(chan int)
go pump(ch1) // pump hangs; we run
fmt.Println(<-ch1) // prints 0

Now we start a looping receiver.
func suck(ch chan int) {

for { fmt.Println(<-ch) }

}
go suck(ch1) // tons of numbers appear

You can still sneak in and grab a value:
fmt.Println(<-ch1) // Prints 314159

September 23, 2016 CS 417 - Paul Krzyzanowski 48

CS	417 9/23/16

Paul	Krzyzanowski 9

Functions returning channels
In the previous example, pump was like a generator
spewing out values. But there was a lot of fuss allocating
channels etc. Let's package it up into a function returning
the channel of values.

func pump() chan int {
ch := make(chan int)
go func() {

for i := 0; ; i++ { ch <- i }
}()
return ch

}
stream := pump()
fmt.Println(<-stream) // prints 0

"Function returning channel" is an important idiom

September 23, 2016 CS 417 - Paul Krzyzanowski 49

Close
• Key points:

– Only the sender should call close
– Only the receiver can ask if channel has been closed
– Can only ask while getting a value (avoids races)

• Call close only when it's necessary to signal to the
receiver that no more values will arrive

• Most of the time, close isn't needed
– It's not analogous to closing a file

• Channels are garbage-collected regardless

September 23, 2016 CS 417 - Paul Krzyzanowski 50

Synchronous channels
Synchronous channels are unbuffered. Sends do not complete until a
receiver has accepted the value.

c := make(chan int)
go func() {

time.Sleep(60*1e9)
x := <-c
fmt.Println("received", x)

}()
fmt.Println("sending", 10)
c <- 10
fmt.Println("sent", 10)

Output:
sending 10 (happens immediately)
sent 10 (60s later, these 2 lines appear)
received 10

September 23, 2016 CS 417 - Paul Krzyzanowski 51

Asynchronous channels
A buffered, asynchronous channel is created by telling make the
number of elements in the buffer

c := make(chan int, 50)
go func() {

time.Sleep(60*1e9)
x := <-c
fmt.Println("received", x)

}()
fmt.Println("sending", 10)
c <- 10
fmt.Println("sent", 10)

Output:
sending 10 (happens immediately)
sent 10 (now)
received 10 (60s later)

September 23, 2016 CS 417 - Paul Krzyzanowski 52

Networking in Go
TCP Sockets example
The net.TCPConn is the Go type which allows full duplex
communication between the client and the server
func (c *TCPConn) Write(b []byte) (n int, err os.Error)
func (c *TCPConn) Read(b []byte) (n int, err os.Error)

A TCPConn is used by both a client and a server to read and write
messages.

If you are a client you need an API that will allow you to connect to a
service and then to send messages to that service and read replies
back from the service.

If you are a server, you need to be able to bind to a port and listen at it.
When a message comes in you need to be able to read it and write
back to the client.
September 23, 2016 CS 417 - Paul Krzyzanowski 53

Connection for TCP Address example

September 23, 2016 CS 417 - Paul Krzyzanowski 54

CS	417 9/23/16

Paul	Krzyzanowski 10

Server Example
• A server registers itself on a port, and listens on that port.

Then it blocks on an "accept" operation, waiting for clients
to connect. When a client connects, the accept call
returns, with a connection obje

• The relevant calls are
func ListenTCP(net string, laddr *TCPAddr) (l
*TCPListener, err os.Error)

func (l *TCPListener) Accept() (c Conn, err os.Error)

In our example program, we chooses port 1800 for no particular reason. The
TCP address is given as ":1800" - all interfaces, port 1800

September 23, 2016 CS 417 - Paul Krzyzanowski 55

Server Example Cont’

September 23, 2016 CS 417 - Paul Krzyzanowski 56

Then, let’s open a new terminal

September 23, 2016 CS 417 - Paul Krzyzanowski 57

Resources
Resources:

– http://golang.org: web site
– golang-nuts@golang.org: user discussion
– golang-dev@golang.org: developers

Includes:
– language specification
– tutorial
– "Effective Go”
– library documentation
– setup and how-to docs
– FAQs
– a playground (run Go from the browser)
– more

An online book:
– http://www.golang-book.com/

September 23, 2016 CS 417 - Paul Krzyzanowski 58

The end

59September 23, 2016 CS 417 - Paul Krzyzanowski

