
Distributed Systems
02r. Part 1: Java RMI Programming Tutorial

Paul Krzyzanowski

Rutgers University

Fall 2016

© 2014-2016 Paul Krzyzanowski September 23, 2016 1

Java RMI

• RMI = Remote Method Invocation

• Allows a method to be invoked that resides on a different
JVM (Java Virtual Machine):
– Either a remote machine
– Or same machine, different processes

• Each process runs on a different Java Virtual Machines (JVM)
• Different address space per process/JVM

RMI provides object-oriented RPC (Remote Procedure Calls)

© 2014-2016 Paul Krzyzanowski September 23, 2016 2

© 2014-2016 Paul Krzyzanowski

Participating processes

• Client
– Process that is invoking a method on a remote object

• Server
– Process that owns the remote object
– To the server, this is a local object

• Object Registry (rmiregistry)
– Name server that associates objects with names
– A server registers an object with rmiregistry
– URL namespace

rmi://hostname:port/pathname
e.g.: rmi://crapper.pk.org:12345/MyServer

Port number

September 23, 2016 3

Classes & Interfaces needed for Java RMI

• Remote: for accessing remote methods
– Used for remote objects

• Serializable: for passing parameters to remote methods
– Used for parameters

• Also needed:
– RemoteException: network or RMI errors can occur
– UnicastRemoteObject: used to export a remote object reference or

obtain a stub for a remote object
– Naming: methods to interact with the registry

© 2014-2016 Paul Krzyzanowski September 23, 2016 4

Remote class

• Remote class (remote object)
– Instances can be used remotely

– Works like any other object locally

– In other address spaces, object is referenced with an object handle
• The handle identifies the location of the object

– If a remote object is passed as a parameter, its handle is passed

© 2014-2016 Paul Krzyzanowski September 23, 2016 5

© 2014-2016 Paul Krzyzanowski

Serializable interface

• java.io.Serializable interface (serializable object)

– Allows an object to be represented as a sequence of bytes
(marshaled)

– Allows instances of objects to be copied between address spaces
• Can be passed as a parameter or be a return value to a remote object
• Value of object is copied (pass by value)

– Any objects that may be passed as parameters should be defined
to implement the java.io.Serializable interface
• Good news: you rarely need to implement anything
• All core Java types already implement the interface
• For your classes, the interface will serialize each variable iteratively

September 23, 2016 6

Remote classes

• Classes that will be accessed remotely have two parts:
1. interface definition
2. class definition

• Remote interface
– This will be the basis for the creation of stub functions
– Must be public
– Must extend java.rmi.Remote
– Every method in the interface must declare that it throws

java.rmi.RemoteException

• Remote class
– implements Remote interface
– extends java.rmi.server.UnicastRemoteObject

© 2014-2016 Paul Krzyzanowski September 23, 2016 7

© 2014-2016 Paul Krzyzanowski

Super-simple example program

• Client invokes a remote method with strings as parameter

• Server returns a string containing the reversed input
string and a message

September 23, 2016 8

Define the remote interface

© 2014-2016 Paul Krzyzanowski

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface SampleInterface extends Remote {
public String invert(String msg) throws RemoteException;

}

• Interface is public
• Extends the Remote interface
• Defines methods that will be accessed remotely

– We have just one method here: invert
• Each method must throw a RemoteException

– In case things go wrong in the remote method invocation

SampleInterface.java

September 23, 2016 9

Define the remote class (Sample.java)

© 2014-2016 Paul Krzyzanowski

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.rmi.server.*;

public class Sample
extends UnicastRemoteObject
implements SampleInterface {

public Sample() throws RemoteException { }
public String invert(String m) throws RemoteException {

// return input message with characters reversed
return new StringBuffer(m).reverse().toString();

}
}

• Defines the implementation of the remote methods
• It implements the interface we defined
• It extends the java.rmi.server.UnicastRemoteObject class

– Defines a unicast remote object whose references are valid only
while the server process is alive.

September 23, 2016 10

Next…

• We now have:
– The remote interface definition: SampleInterface.java
– The server-side (remote) class: Sample.java

• Next, we’ll write the server: SampleServer.java

• Two parts:
1. Create an instance of the remote class
2. Register it with the name server (rmiregistry)

© 2014-2016 Paul Krzyzanowski September 23, 2016 11

Server code (SampleServer.java)

• Create the object

• Register it with the name server (rmiregisty)

• rmiregistry runs on the server
– The default port is 1099
– The name is a URL format and can be prefixed with a hostname

and port: “//localhost:1099/Server”

© 2014-2016 Paul Krzyzanowski

new Sample()

Naming.rebind("Sample”, new Sample())

September 23, 2016 12

Server code: part 1 (SampleServer.java)

© 2014-2016 Paul Krzyzanowski

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class SampleServer {
public static void main(String args[]) {

if (args.length != 1) {
System.err.println("usage: java SampleServer rmi_port");
System.exit(1);

}

September 23, 2016 13

Server code: part 2 (SampleServer.java)

© 2014-2016 Paul Krzyzanowski

try {
// first command-line arg: the port of the rmiregistry
int port = Integer.parseInt(args[0]);

// create the URL to contact the rmiregistry
String url = "//localhost:" + port + "/Sample";
System.out.println("binding " + url);

// register it with rmiregistry
Naming.rebind(url, new Sample());
// Naming.rebind("Sample", new Sample());
System.out.println("server " + url + " is running...");

}
catch (Exception e) {

System.out.println("Sample server failed:" +
e.getMessage());

}
}

}

September 23, 2016 14

Policy file

• When we run the server, we need to specify security
policies

• A security policy file specifies what permissions you grant
to the program

• This simple one grants all permissions

© 2014-2016 Paul Krzyzanowski

grant {
permission java.security.AllPermission;

};

September 23, 2016 15

The client

• The first two arguments will contain the host & port

• Look up the remote function via the name server

• This gives us a handle to the remote method

• Call the remote method for each argument

• We have to be prepared for exceptions

© 2014-2016 Paul Krzyzanowski

SampleInterface sample = (SampleInterface)Naming.lookup(url);

sample.invert(args[i]));

September 23, 2016 16

Client code: part 1 (SampleClient.java)

© 2014-2016 Paul Krzyzanowski

public class SampleClient {
public static void main(String args[]) {

try {
// basic argument count check
if (args.length < 3) {

System.err.println(
"usage: java SampleClient rmihost rmiport string... \n");

System.exit(1);
}

// args[0] contains the hostname, args[1] contains the port
int port = Integer.parseInt(args[1]);
String url = "//" + args[0] + ":" + port + "/Sample";
System.out.println("looking up " + url);

// look up the remote object named “Sample”
SampleInterface sample = (SampleInterface)Naming.lookup(url);

September 23, 2016 17

Client code: part 2 (SampleClient.java)

© 2014-2016 Paul Krzyzanowski

// args[2] onward are the strings we want to reverse
for (int i=2; i < args.length; ++i)

// call the remote method and print the return
System.out.println(sample.invert(args[i]));

} catch(Exception e) {
System.out.println("SampleClient exception: " + e);

}
}

}

September 23, 2016 18

Compile
• Compile the interface and classes:

javac SampleInterface.java Sample.java
javac SampleServer.java

• And the client…

javac SampleClient.java

(you can do it all on one command: javac *.java)

• Note – Java used to use a separate RPC compiler
– Since Java 1.5, Java supports the dynamic generation of stub classes at runtime
– In the past, one had to use an RMI compiler, rmic
– If you want to, you can still use it but it’s not needed

© 2014-2016 Paul Krzyzanowski September 23, 2016 19

© 2014-2016 Paul Krzyzanowski

Run

• Start the object registry (in the background):
rmiregistry 12345 &

– An argument overrides the default port 1099

• Start the server (telling it the port of the rmi registry):
java -Djava.security.policy=policy SampleServer 12345

• Run the client:
java SampleClient svrname 12345 testing abcdefgh

– Where svrname is the name of the server host
– 12345 is the port number of the name server: rmiregistry, not the service!

• See the output:
gnitset
hgfedcba

September 23, 2016 20

RMI
A bit of the internals

© 2014-2016 Paul Krzyzanowski September 23, 2016 21

© 2014-2016 Paul Krzyzanowski

Interfaces

• Interfaces define behavior

• Classes define implementation

• RMI: two classes support the same interface
– client stub
– server implementation

September 23, 2016 22

© 2014-2016 Paul Krzyzanowski

Three-layer architecture

client program server program

stub function(s) skeleton
(server-stub)

remote reference layer remote reference layer

transport layer transport layer
marshal stream

September 23, 2016 23

© 2014-2016 Paul Krzyzanowski

Server - 1
• Server creates an instance of the server object

– extends UnicastRemoteObject
– TCP socket is bound to an arbitrary port number
– thread is created which listens for connections on that socket

• Server registers object
– RMI registry is an RMI server (accepts RMI calls)
– Hands the registry the client stub for that server object

• contains information needed to call back to the server
(hostname, port)

September 23, 2016 24

© 2014-2016 Paul Krzyzanowski

Client - 1
• Client obtains stub from registry

• Client issues a remote method invocation
– stub class creates a RemoteCall

• opens socket to the server on port specified in the stub
• sends RMI header information

– stub marshals arguments over the network connection
• uses methods on RemoteCall to obtain a subclass of ObjectOutputStream
• knows how to deal with objects that extend java.rmi.Remote

– serializes Java objects over socket
– stub calls RemoteCall.executeCall()

• causes the remote method invocation to take place

September 23, 2016 25

© 2014-2016 Paul Krzyzanowski

Server - 2

• Server accepts connection from client

• Creates a new thread to deal with the incoming request

• Reads header information
– creates RemoteCall to deal with unmarshaling RMI arguments

• Calls dispatch method of the server-side stub (skeleton)
– calls appropriate method on the object
– sends result to network connection via RemoteCall interface
– if server threw exception, that is marshaled instead of a return value

September 23, 2016 26

© 2014-2016 Paul Krzyzanowski

Client - 2

• The client unmarshals the return value of the RMI
– using RemoteCall

• value is returned from the stub back to the client code
– or an exception is thrown to the client if the return was an exception

September 23, 2016 27

Part 2: Project Overview

Paul Krzyzanowski

Rutgers University

Fall 2016

© 2014-2016 Paul Krzyzanowski September 23, 2016 28

Assignment Summary

• Find the five airports closest to a given location

• One Client

• Two Servers
– Place Server: get information about a location (latitude, longitude)
– Airport Server: find airports near a given latitude, longitude

• Data is stored in Google Protocol Buffer format
– Each server reads it at startup

September 23, 2016 © 2014-2016 Paul Krzyzanowski 29

Assignment

• The assignment uses Java RMI

• It does not have to be multithreaded

• You may work in groups up to 4
– The larger the group, the more polished I expect your work to be
– Group size > 1: submit a beautiful-looking project report

• The assignment is due on Sunday October 16
– Start early
– During this time, you will also have written assignments and an exam

September 23, 2016 © 2014-2016 Paul Krzyzanowski 30

Implementation hints

September 23, 2016 © 2014-2016 Paul Krzyzanowski 31

Key Components

• The amount of code you will write is very small

• There are three parts that you need to get working
1. Reading the places and airports databases
2. Client-server communication
3. Computing distances

• Any of these, especially 1 & 2, might cause confusion

• Start early

• Solve ONE problem at a time
• Then put it all together

September 23, 2016 © 2014-2016 Paul Krzyzanowski 32

Google Protocol Buffers

• Go through the tutorial
– https://developers.google.com/protocol-buffers/docs/javatutorial

• Download pre-built protocol buffer compiler from:
– https://github.com/google/protobuf/releases
– For example:

• protoc-3.0.2-osx-x86_64.zip
• protoc-3.0.2-linux-x86_64.zip

– This you will get the protocol buffer compiler in bin/protoc.
– You can also build from source

September 23, 2016 © 2014-2016 Paul Krzyzanowski 33

Step 1

• Make sure you can read the Google Protocol Buffer files

• Download or build:
– Protocol Buffer compiler: protoc
– A bunch of Java support classes

• You can assemble them into one file: protobuf.jar
$ cd protobuf-3.0.2/java/core/src/main/java
$ protoc --java_out=core/src/main/java -I../src \

../src/google/protobuf/descriptor.proto
$ javac *.java
$ jar cvf protobuf.jar com/google/protobuf

– Or download protobuf.jar from the assignment link

• Go through the tutorial – ignore the assignment for now
– See the link: Try the tutorial for your favorite language

September 23, 2016 © 2014-2016 Paul Krzyzanowski 34

Step 1a: Tutorial
• The tutorial is in the examples directory in the source package

• The example is similar to what is needed for the assignment
– Similar structures and examples of reading (and writing)

• If you cannot do the tutorial, you will not be able to do the assignment!

September 23, 2016 © 2014-2016 Paul Krzyzanowski 35

Person
name
id
email

Place
state
name
lat
long

Airport
state
name
code
lat
long

AddressBook
repeated Person

is similar to and

PlaceList
repeated Place

AirportList
repeated Airport

is similar to and

Step 1b: Test program: Places

• Write a small program to read and print the list of places

• Make sure protobuf.jar is in your CLASSPATH

• You should see output like

September 23, 2016 © 2014-2016 Paul Krzyzanowski 36

PlaceList pl = PlaceList.parseFrom(new FileInputStream(fname));
for (Place p: pl.getPlaceList()) {

System.out.println(
"state: " + p.getState() + " "
+ "place: " + p.getName() + " "
+ "lat: " + p.getLat() + " "
+ "lon: " + p.getLon());

}

state: AL place: Abbeville city lat: 31.566367 lon: -85.2513
state: AL place: Adamsville city lat: 33.590411 lon: -86.949166
state: AL place: Addison town lat: 34.200042 lon: -87.177851
state: AL place: Akron town lat: 32.876425 lon: -87.740978

Step 1c: Test program: Airports

• Write a small program to read and print the list of airports

• Make sure protobuf.jar is in your CLASSPATH

• You should see output like

September 23, 2016 © 2014-2016 Paul Krzyzanowski 37

AirportList al = AirportList.parseFrom(new FileInputStream(fname));
for (Airport a: al.getAirportList()) {

System.out.println(
"state: " + p.getState() + " " + "name: " + p.getName() + " "
+ "code: " + p.getCode() + " " + "lat: " + p.getLat() + " "
+ "lon: " + p.getLon());

}

state: AL name: Anniston code: ANB lat: 33.58 lon: -85.85
state: AL name: Auburn code: AUO lat: 32.67 lon: -85.44
state: AL name: Birmingham code: BHM lat: 33.57 lon: -86.75
state: AL name: Centreville code: CKL lat: 32.9 lon: -87.25

Step 2a: Write a skeletal standalone program

• You know you can read the protocol buffer data

• Don’t worry about RMI for now

• Write standalone programs
– Create Places and Airports classes (pick names you like)
– Places

• Constructor reads in the places database
• main() can be a test function that takes a place name, looks it up, and

prints results
– Airports

• Constructor reads in the airports database
• main() can initially be a test function that looks up an airport

September 23, 2016 © 2014-2016 Paul Krzyzanowski 38

Step 2b: Refine the skeletal program

• Modify your Airports main() to look for closest airports

• Take latitude & longitude as parameters

• Find the 5 closest airports
– Use the formula in the assignment to compute great circle distance

d = 60 cos-1(sin(lat1) sin(lat2) + cos(lat1) cos(lat2) cos(lon2-lon1))
– You don’t need a clever algorithm

• Just go through the list of airports
• Compute the distance
• See if each new distance should displace your list of n shortest distances

– Print the results
• Check that the results look right!

September 23, 2016 © 2014-2016 Paul Krzyzanowski 39

Step 3a: Make sure you can use RMI

• Again, ignore the assignment for now

• Download the RMI sample program

• Compile and run it
– This will make sure you have no problems with RMI
– … and no problems with CLASSPATH

September 23, 2016 © 2014-2016 Paul Krzyzanowski 40

Step 3b: Define Interfaces

• Define interface

• AirportsInterface (pick a name)
– takes latitude & longitude and returns a list of airport info structures

• PlacesInterface (pick a name)
– takes a place name and returns latitude & longitude

September 23, 2016 © 2014-2016 Paul Krzyzanowski 41

Step 3b: Create servers, client & add RMI

• Create servers for Airports & Places
– Copy the sample RMI server
– All it does is

• Get a port from the command line
• Instantiate the class
• Register it with rmiregistry

• Your client will:
– Call Naming.lookup to look up the Places & Airport servers
– Places p = places.findplace(place_name)
– AirportInfo closest[] airports.nearest(p.lat, p.long)
– Iterate through the list and print the results

September 23, 2016 © 2014-2016 Paul Krzyzanowski 42

The end

© 2014-2016 Paul Krzyzanowski September 23, 2016 43

