Distributed Systems
02r. Part 1: Java RMI Programming Tutorial

Paul Krzyzanowski
Rutgers University

Fall 2016

_

September 23, 2016 © 2014-2016 Paul Krzyzanowski

[Java RMI

« RMI = Remote Method Invocation

* Allows a method to be invoked that resides on a different
JVM (Java Virtual Machine):
— Either a remote machine

— Or same machine, different processes
« Each process runs on a different Java Virtual Machines (JVM)
 Different address space per process/JVM

RMI provides object-oriented RPC (Remote Procedure Calls)

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 2

[Participating processes

e Client

— Process that is invoking a method on a remote object

« Server
— Process that owns the remote object
— To the server, this is a local object

* Object Registry (rmiregistry)
— Name server that associates objects with names
— A server registers an object with rmiregistry

— URL namespace
rmi://hostname:port/pathname

e.g.. rmi://crapper.pk.org:12345/MyServer

L Port number

.

©20dh26r1 BFR 201€rzyzanowski

[Classes & Interfaces needed for Java RMI

 Remote: for accessing remote methods
— Used for remote objects

« Serializable: for passing parameters to remote methods
— Used for parameters

» Also needed:
— RemoteException: network or RMI errors can occur

— UnicastRemoteObject: used to export a remote object reference or
obtain a stub for a remote object

— Naming: methods to interact with the registry

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

-
Remote class

 Remote class (remote object)

— Instances can be used remotely
— Works like any other object locally

— In other address spaces, object is referenced with an object handle

« The handle identifies the location of the object

— If a remote object is passed as a parameter, its handle is passed

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

-
Serializable interface

» java.io.Serializable interface (serializable object)

— Allows an object to be represented as a sequence of bytes
(marshaled)

— Allows instances of objects to be copied between address spaces
« Can be passed as a parameter or be a return value to a remote object
» Value of object is copied (pass by value)

— Any objects that may be passed as parameters should be defined
to implement the java.io.Serializable interface

» Good news: you rarely need to implement anything
» All core Java types already implement the interface
« For your classes, the interface will serialize each variable iteratively

.

©20dh26r1 BFR 201€rzyzanowski

-
Remote classes

 Classes that will be accessed remotely have two parts:

1. interface definition
2. class definition

 Remote interface
— This will be the basis for the creation of stub functions
— Must be public
— Must extend java.rmi.Remote

— Every method in the interface must declare that it throws
java.rmi.RemoteException

* Remote class

— implements Remote interface
— extends java.rmi.server.UnicastRemoteObject

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

-

Super-simple example program

.

 Client invokes a remote method with strings as parameter

« Server returns a string containing the reversed input
string and a message

S rhi26r BP 2011€rzyzanowski 8

Define the remote interface

Samplelnterface.java

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface SampleInterface extends Remote {
public String invert(String msg) throws RemoteException;

}

* Interface is public
 Extends the Remote interface

» Defines methods that will be accessed remotely
- We have just one method here: invert

« Each method must throw a RemoteException
- In case things go wrong in the remote method invocation

September 23, 2016 © 2014-2016 Paul Krzyzanowski 9

[Define the remote class (Sample.java)

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.rmi.server.*;

public class Sample
extends UnicastRemoteObject
implements SamplelInterface {

public Sample() throws RemoteException { }

public String invert(String m) throws RemoteException {
// return input message with characters reversed
return new StringBuffer(m).reverse().toString();

}
}
» Defines the implementation of the remote methods

* [t implements the interface we defined

* |t extends the java.rmi.server.UnicastRemoteObject class
- Defines a unicast remote object whose references are valid only
while the server process is alive.

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 10

Next...

(
@

.

* We now have:
— The remote interface definition: Samplelnterface.java
— The server-side (remote) class: Sample.java

* Next, we'll write the server: SampleServer.java

* Two parts:
1. Create an instance of the remote class
2. Register it with the name server (rmiregistry)

September 23, 2016 © 2014-2016 Paul Krzyzanowski

11

[Server code (SampleServer.java)

» Create the object

new Sample ()

* Register it with the name server (rmiregisty)

Naming.rebind ("Sample”, new Sample())

* rmiregistry runs on the server
— The default port is 1099

— The name is a URL format and can be prefixed with a hostname
and port: “//localhost:1099/Server”

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

12

[Server code: part 1 (SampleServer.java)

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class SampleServer ({
public static void main(String args[]) {
if (args.length '= 1) {
System.err.println("usage: java SampleServer rmi port");
System.exit (1) ;

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 13

[Server code: part 2 (SampleServer.java)

try {
// first command-line arg: the port of the rmiregistry

int port = Integer.parselInt(args[0])

// create the URL to contact the rmiregistry
String url = "//localhost:" + port + "/Sample";
System.out.println("binding " + url);

// register it with rmiregistry

Naming.rebind(url, new Sample())

// Naming.rebind("Sample", new Sample());
System.out.println("server " + url + " is running...");

}

catch (Exception e) {
System.out.println("Sample server failed:" +
e.getMessage()) ;

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 14

(
@

Policy file

.

 When we run the server, we need to specify security
policies

A security policy file specifies what permissions you grant
to the program

* This simple one grants all permissions

grant {
permission java.security.AllPermission;

};

September 23, 2016 © 2014-2016 Paul Krzyzanowski 15

-

The client

.

* The first two arguments will contain the host & port
» Look up the remote function via the name server

* This gives us a handle to the remote method

SampleInterface sample = (SampleInterface)Naming.lookup (url) ;

 Call the remote method for each argument

sample.invert (args[i])) ;

* We have to be prepared for exceptions

September 23, 2016 © 2014-2016 Paul Krzyzanowski

16

[Client code: part 1 (SampleClient.java)

public class SampleClient {
public static void main(String args[]) ({
try {

// basic argument count check

if (args.length < 3) {
System.err.println (

"usage: java SampleClient rmihost rmiport string... \n");

System.exit (1) ;

}

// args[0] contains the hostname, args[l] contains the port
int port = Integer.parselnt (args[1l])

String url = "//" + args[0] + ":" + port + "/Sample";
System.out.println("looking up " + url);

// look up the remote object named “Sample”
SampleInterface sample = (SampleInterface)Naming.lookup (url) ;

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 17

-

Client code: part 2 (SampleClient.java)

// args[2] onward are the strings we want to reverse
for (int i=2; i < args.length; ++i)

// call the remote method and print the return
System.out.println(sample.invert (args[i]));

} catch (Exception e) {
System.out.println("SampleClient exception: " + e);

}
}
}

_

September 23, 2016 © 2014-2016 Paul Krzyzanowski

18

-

Compile

.

» Compile the interface and classes:

javac SampleInterface.java Sample. java
javac SampleServer. java

 And the client...

javac SampleClient. java

(you can do it all on one command: javac *.java)

* Note — Java used to use a separate RPC compiler
— Since Java 1.5, Java supports the dynamic generation of stub classes at runtime
— In the past, one had to use an RMI compiler, rmic
— If you want to, you can still use it but it's not needed

September 23, 2016 © 2014-2016 Paul Krzyzanowski

19

Run

Start the object registry (in the background):
rmiregistry 12345 &
— An argument overrides the default port 1099

Start the server (telling it the port of the rmi registry):
java -Djava.security.policy=policy SampleServer 12345

Run the client:
java SampleClient svrname 12345 testing abcdefgh

— Where svrname is the name of the server host

— 12345 is the port number of the name server: rmiregistry, not the service!

See the output:

gnitset
hgfedcba

.

S rhi26r BP 2011€rzyzanowski 20

_

RMI
A bit of the internals

September 23, 2016 © 2014-2016 Paul Krzyzanowski

21

-

Interfaces

.

* Interfaces define behavior
» Classes define implementation

 RMI: two classes support the same interface

— client stub
— server implementation

S rhi26r BP 2011€rzyzanowski

22

[Three-layer architecture

[client program]

A

\ 4

stub function(s)

remote reference layer

marshal stream

[server program]

A

\ 4

skeleton
(server-stub)

remote reference layer

transport layer i

.

\ 4

transport layer

S rhi26r BP 2011€rzyzanowski

23

p

Server - 1

.

« Server creates an instance of the server object

— extends UnicastRemoteObject
— TCP socket is bound to an arbitrary port number
— thread is created which listens for connections on that socket

« Server registers object
— RMI registry is an RMI server (accepts RMI calls)

— Hands the registry the client stub for that server object

e contains information needed to call back to the server
(hostname, port)

©20dh26r1 BFR 201€rzyzanowski

24

-
Client - 1

» Client obtains stub from registry

 Client issues a remote method invocation

— stub class creates a RemoteCall
» opens socket to the server on port specified in the stub
« sends RMI header information

— stub marshals arguments over the network connection
» uses methods on RemoteCall to obtain a subclass of ObjectOutputStream

« knows how to deal with objects that extend java.rmi.Remote
— serializes Java objects over socket

— stub calls RemoteCall.executeCall()
» causes the remote method invocation to take place

.

©20dh26r1 BFR 201€rzyzanowski

25

p

Server - 2

.

« Server accepts connection from client
* Creates a new thread to deal with the incoming request

* Reads header information
— creates RemoteCall to deal with unmarshaling RMI arguments

« Calls dispatch method of the server-side stub (skeleton)
— calls appropriate method on the object
— sends result to network connection via RemoteCall interface
— if server threw exception, that is marshaled instead of a return value

©20dh26r1 BFR 201€rzyzanowski

26

-
Client - 2

 The client unmarshals the return value of the RMI
— using RemoteCall

* value is returned from the stub back to the client code

.

— or an exception is thrown to the client if the return was an exception

S rhi26r BP 2011€rzyzanowski

27

_

Part 2: Project Overview

Paul Krzyzanowski
Rutgers University

Fall 2016

September 23, 2016 © 2014-2016 Paul Krzyzanowski

28

(

Assignment Summary

.

 Find the five airports closest to a given location
* One Client

 Two Servers

— Place Server: get information about a location (latitude, longitude)
— Airport Server: find airports near a given latitude, longitude

» Data is stored in Google Protocol Buffer format
— Each server reads it at startup

read at startup (protocol buffer)

look up place PlaceServer places-proto.bin

return: name, state, latitude, longitude

AirportServer }— airports-proto.bin

read at startup (protocol buffer)

{place, ci!y)—)[Client

latitude, longitude

September 23, 2016 © 2014-2016 Paul Krzyzanowski

29

/ Assignment

* The assignment uses Java RMI
|t does not have to be multithreaded

* You may work in groups up to 4
— The larger the group, the more polished | expect your work to be
— Group size > 1: submit a beautiful-looking project report

* The assignment is due on Sunday October 16

— Start early
— During this time, you will also have written assignments and an exam

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 30

_

Implementation hints

September 23, 2016 © 2014-2016 Paul Krzyzanowski

31

p

Key Components

.

» The amount of code you will write is very small

* There are three parts that you need to get working
1. Reading the places and airports databases
2. Client-server communication
3. Computing distances

« Any of these, especially 1 & 2, might cause confusion
 Start early

« Solve ONE problem at a time

* Then put it all together

September 23, 2016 © 2014-2016 Paul Krzyzanowski

32

-

Google Protocol Buffers

.

* Go through the tutorial

— https://developers.google.com/protocol-buffers/docs/javatutorial

* Download pre-built protocol buffer compiler from:
— https://github.com/google/protobuf/releases

— For example:
» protoc-3.0.2-0sx-x86 64.zip
» protoc-3.0.2-linux-x86 _64.zip

— This you will get the protocol buffer compiler in bin/protoc.
— You can also build from source

September 23, 2016 © 2014-2016 Paul Krzyzanowski

33

-
Step 1

« Make sure you can read the Google Protocol Buffer files

* Download or build:
— Protocol Buffer compiler: protoc

— A bunch of Java support classes

* You can assemble them into one file: protobuf.jar
$ cd protobuf-3.0.2/java/core/src/main/java
$ protoc --java out=core/src/main/java -I../src \
. ./src/google/protobuf/descriptor.proto
$ javac *.java
$ jar cvf protobuf.jar com/google/protobuf

— Or download protobuf.jar from the assignment link

» Go through the tutorial — ignore the assignment for now
— See the link: Try the tutorial for your favorite language

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

34

[Step 1a: Tutorial

.

* The tutorial is in the examples directory in the source package

* The example is similar to what is needed for the assignment

— Similar structures and examples of reading (and writing)

* If you cannot do the tutorial, you will not be able to do the assignment!

4 N /Place N
Person o tat
name is similar to SlElis
i > name
email :at
- / N /
4) 4)
AddressBook IS similar to} PlaceList
repeated Person repeated Place
- / - J

and

and

(4 Airport)

state
name
code
lat

_ long -/

/

AirportList
repeated Airport

_

~

)

September 23, 2016

© 2014-2016 Paul Krzyzanowski

35

[Step 1b: Test program: Places

« Write a small program to read and print the list of places

p
PlaceList pl = Placelist.parseFrom(new FileInputStream (fname))
for (Place p: pl.getPlacelList()) {

System.out.println (
"state: " + p.getState() + " "
+ "place: " + p.getName() + " "
+ "lat: " 4+ p.getLat() + " "
+ "lon: " 4+ p.getlLon());
}
\.

« Make sure protobuf.jar is in your CLASSPATH

* You should see output like

state: AL place: Abbeville city lat: 31.566367 lon: -85.2513
state: AL place: Adamsville city lat: 33.590411 lon: -86.949166
state: AL place: Addison town lat: 34.200042 lon: -87.177851
state: AL place: Akron town lat: 32.876425 lon: -87.740978

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

36

[Step 1c: Test program: Airports

* Write a small program to read and print the list of airports

- ™
AirportList al = AirportlList.parseFrom(new FileInputStream(fname)) ;
for (Airport a: al.getAirportlList()) {

System.out.println (
"State: " _l_ p'getstate () + " " _I_ "name: " _I_ p.getName () _I_ " "
+ "COde: " _I_ p.getCOde () + " " _I_ "lat: " _|_ p.getLat() + " 1A
+ "lon: " + p.getlLon());
}
_ J

« Make sure protobuf.jar is in your CLASSPATH

* You should see output like

state: AL name: Anniston code: ANB lat: 33.58 lon: -85.85
state: AL name: Auburn code: AUO lat: 32.67 lon: -85.44
state: AL name: Birmingham code: BHM lat: 33.57 lon: -86.75
state: AL name: Centreville code: CKL lat: 32.9 lon: -87.25

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 37

[Step 2a: Write a skeletal standalone program)

* You know you can read the protocol buffer data
* Don’t worry about RMI for now

» Write standalone programs
— Create Places and Airports classes (pick names you like)

— Places
» Constructor reads in the places database

« main() can be a test function that takes a place name, looks it up, and
prints results

— Airports
» Constructor reads in the airports database
« main() can initially be a test function that looks up an airport

- J

September 23, 2016 © 2014-2016 Paul Krzyzanowski 38

(Step 2b: Refine the skeletal program

* Modify your Airports main() to look for closest airports
» Take latitude & longitude as parameters

* Find the 5 closest airports

— Use the formula in the assignment to compute great circle distance
d = 60 cos™'(sin(lat,) sin(lat,) + cos(lat,) cos(lat,) cos(lon,-lon,))
— You don’t need a clever algorithm
 Just go through the list of airports
» Compute the distance
» See if each new distance should displace your list of n shortest distances

— Print the results
* Check that the results look right!

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski 39

[Step 3a: Make sure you can use RM|

« Again, ignore the assignment for now
* Download the RMI sample program

« Compile and run it

— This will make sure you have no problems with RMI
— ... and no problems with CLASSPATH

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

40

[Step 3b: Define Interfaces

* Define interface

« Airportsinterface (pick a name)

 Placesinterface (pick a name)
— takes a place name and returns latitude & longitude

.

— takes latitude & longitude and returns a list of airport info structures

September 23, 2016 © 2014-2016 Paul Krzyzanowski

41

[Step 3b: Create servers, client & add RMI

» Create servers for Airports & Places
— Copy the sample RMI server
— All it does is
» Get a port from the command line
* Instantiate the class
* Register it with rmiregistry
* Your client will:
— Call Naming.lookup to look up the Places & Airport servers
— Places p = places.findplace(place _name)
— Airportinfo closest[] airports.nearest(p.lat, p.long)
— lterate through the list and print the results

.

September 23, 2016 © 2014-2016 Paul Krzyzanowski

42

_

The end

September 23, 2016

© 2014-2016 Paul Krzyzanowski

43

