
CS 417 20 September 2018

Paul Krzyzanowski 1

Distributed Systems
03r. Python Web Services Programming Tutorial

Paul Krzyzanowski
TA: David Domingo
Rutgers University
Fall 2018

1September 20, 2018

From Web Browsing to Web Services

• Web browser:
– Dominant model for user interaction on the Internet

• Not good for programmatic access to data or
manipulating data
– UI is a major component of the content
– Site scraping is a pain!

2September 20, 2018

Web Services

• We wanted:
– Remotely hosted services – that programs can use
– Machine-to-machine communication

• Problems
– Web pages are content-focused
– Traditional RPC solutions usually used a range of ports

• And we need more than just RPC sometimes
– Many RPC systems didn’t work well across languages
– Firewalls restrict ports & may inspect the protocol
– No support for load balancing

3September 20, 2018

Web Services

• Set of protocols by which services can be published,
discovered, and used in a technology neutral form
– Language & architecture independent

• Applications will typically invoke multiple remote services
– Service Oriented Architecture (SOA)
– SOA = Programming model

• General principles
– Payloads are text (XML or JSON)

• Technology-neutral
– HTTP used for transport

• Use existing infrastructure: web servers, firewalls, load-balancers

4September 20, 2018

REST

• REST stands for REpresentational State Transfer

• REST was first introduced by Roy Fielding in year 2000

• REST is a web standards based architecture
– Uses HTTP Protocol for data communication
– Resource-oriented

• every component is a resource
• a resource is accessed by a common interface using HTTP

standard methods

5September 20, 2018

REST

• REST Server
– simply provides access to resources

• REST client
– accesses and presents the resources

• REST resources
– each resource is identified by URIs/ Global IDs

– representations of a resource
• Text, JSON and XML

• JSON is now the most popular format

6September 20, 2018

CS 417 20 September 2018

Paul Krzyzanowski 2

RESTful Web Services

• A web service is:
– A collection of open protocols
– Standards used for exchanging data between applications or

systems
– Interoperability between different languages (Java and Python) or

platforms (Windows and Linux)

• Web services based on REST Architecture are known as
RESTful Web Services
– Use HTTP methods to implement the concept of REST architecture
– URI (Uniform Resource Identifier) to define a RESTful service
– Resources representation: JSON

7September 20, 2018

Everything Is a Resource

• Any interaction of a RESTful API is an interaction with a
resource.

• Resources are sources of information, typically
documents or services.

• A user can be thought of as resource and thus has an
URL such as in the case of GitHub:

8September 20, 2018

https://api.github.com/users/lrei

Everything Is a Resource

• Resources can have different representations. The
above mentioned user has the following JSON
representation (partial document):

9September 20, 2018

{
"login": "lrei",
"created_at": "2008-11-21T14:48:42Z",
"name": "Luis Rei",
"email": "me@luisrei.com",
"id": 35857,
"blog": "http://luisrei.com"

}

Everything Is a Resource

• Resources are Nouns
– If I want to delete a post whose ID is 233:

– The correct way:

10September 20, 2018

http://api.example.com/posts/delete/233/

http://api.example.com/posts/233/

Send a DELETE HTTP request to the URL:

HTTP Methods

• The following HTTP methods are most commonly used in
a REST based architecture.

• GET − Provides a read only access to a resource.
• PUT − Used to create a new resource.

• DELETE − Used to remove a resource.

• POST − Used to update an existing resource or create a
new resource.

• OPTIONS − Used to get the supported operations on a
resource.

11September 20, 2018

Implementing RESTful Web APIs with
Python & Flask

September 20, 2018 12

CS 417 20 September 2018

Paul Krzyzanowski 3

Flask

• Flask is a microframework for Python based on
Werkzeug, a WSGI utility library

• Flask is a good choice for a REST API because it is:
– Written in Python

– Simple to use

– Flexible

– Multiple good deployment options

– RESTful request dispatching

13September 20, 2018

RESTful Web APIs with Python & Flask

• To install (if not installed):

• We can use the curl command to make test requests.
– curl is a command that lets you transfer data to or from a server

using several protocols, most commonly HTTP
See https://curl.haxx.se

Note: the iLab systems already have flask and python
installed

14September 20, 2018

$ (sudo) pip install flask

RESTful Web APIs with Python & Flask

• Let's begin by making a complete app that responds to
requests at the root, /articles and /articles/:id.

15September 20, 2018

from flask import Flask, url_for
app = Flask(__name__)

@app.route('/')
def api_root():

return 'Welcome\n'

@app.route('/articles')
def api_articles():

return 'List of ' + url_for('api_articles’) + '\n'
…

RESTful Web APIs with Python & Flask

• Let's begin by making a complete app that responds to
requests at the root, /articles and /articles/:id.

16September 20, 2018

…
@app.route('/articles/<articleid>’)
def api_article(articleid):

return 'You are reading ' + articleid + '\n'

if __name__ == '__main__':
app.run()

RESTful Web APIs with Python & Flask

• You can use curl to make the requests using:

• The responses will be, respectively,

17September 20, 2018

$ curl http://127.0.0.1:5000/

$ curl http://127.0.0.1:5000/
GET /
Welcome

$ curl http://127.0.0.1:5000/articles
GET /articles
List of /articles

$ curl http://127.0.0.1:5000/articles/123
GET /articles/123
You are reading 123

GET Parameters

• Let’s begin by making a complete app that responds to
requests at /hello and handles an optional GET
parameter

18September 20, 2018

from flask import request

@app.route('/hello')
def api_hello():

if 'name' in request.args:
return 'Hello ' + request.args['name'] + '\n'

else:
return 'Hello John\n'

if __name__ == '__main__':
app.run()

CS 417 20 September 2018

Paul Krzyzanowski 4

GET Parameters

• The server will reply in the following manner:

19September 20, 2018

$ curl http://127.0.0.1:5000/hello
GET /hello
Hello John

$ curl http://127.0.0.1:5000/hello?name=Peter
GET /hello?name=Peter
Hello Peter

Request Methods (HTTP Verbs)

• Let’s modify the to handle different HTTP verbs:

20September 20, 2018

@app.route('/echo', methods = ['GET', 'POST', 'PUT', 'DELETE'])
def api_echo():

if request.method == 'GET':
return "ECHO: GET\n"

elif request.method == 'POST':
return "ECHO: POST\n"

elif request.method == 'PUT':
return "ECHO: PUT\n"

elif request.method == 'DELETE':
return "ECHO: DELETE\n"

Request Methods (HTTP Verbs)

• To curl the -X option can be used to specify the request
type:

• The replies to the different request methods will be:

21September 20, 2018

$ curl -X POST http://127.0.0.1:5000/echo

GET /echo
ECHO: GET

POST /echo
ECHO: POST
…

Request Data & Headers

• Usually POST is accompanied by data

– That data can be in one of multiple formats:

plain text, JSON, XML, your own data format, a binary file

• Accessing the HTTP headers is done using

the request.headers dictionary ("dictionary-like object")

and the request data using the request.data string

• If the mimetype is application/json, request.json will

contain the parsed JSON

22September 20, 2018

Request Data & Headers

23September 20, 2018

• Usually POST is accompanied by data
– That data can be in one of multiple formats
– plain text, JSON, XML, your own data format, a binary file

from flask import json

@app.route('/messages', methods = ['POST’])
def api_message():

if request.headers['Content-Type'] == 'text/plain':
return "Text Message: " + request.data + '\n'

elif request.headers['Content-Type'] == 'application/json':
return json.dumps(request.json)

else:
return "415 Unsupported Media Type ;)"

Request Data & Headers

24September 20, 2018

• To specify the content type with curl:

• The replies to the different content types will be:

$ curl -H "Content-type: application/json" -X POST \
http://127.0.0.1:5000/messages -d '{"message": "Hello Data"}'

POST /messages "Hello Data"
Content-type: text/plain
Text Message: Hello Data

POST /messages {"message": "Hello Data"}
Content-type: application/json
{"message": "Hello Data"}

CS 417 20 September 2018

Paul Krzyzanowski 5

Responses

25September 20, 2018

• Responses are handled by Flask's Response class:

from flask import Response

@app.route('/hello', methods = ['GET’])
def api_hello():

data = { 'hello': 'world', 'number': 3 }
js = json.dumps(data)
resp = Response(js, status=200, mimetype='application/json’)
return resp

Responses

26September 20, 2018

• To view the response HTTP headers using curl, specify
the -i option:

• The response returned by the server, with headers
included, will be:

$ curl -i http://127.0.0.1:5000/hello

GET /hello

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: <…>

Server: <…>

Date: <…>

{ "hello": "world", "number": 3 }

Status Codes & Errors

27September 20, 2018

• 200 is the default status code reply for GET requests in
both of these examples

• There are certain cases where overriding the defaults is
necessary: error handling

Status Codes & Errors

28September 20, 2018

@app.errorhandler(404)
def not_found(error=None):

message = { 'status': 404, 'message': 'Not Found:' + request.url }
resp = jsonify(message)
resp.status_code = 404
return resp

@app.route('/users/<userid>', methods = ['GET’])
def api_users(userid):

users = { '1’: 'john', '2’: 'steve', '3’: 'bill’ }
if userid in users:

return jsonify({ userid: users[userid] })
else:

return not_found()

Status Codes & Errors

29September 20, 2018

• This produces:

GET /users/2
HTTP/1.0 200 OK { "2": "steve" }

GET /users/4
HTTP/1.0 404 NOT FOUND
{

"status": 404,
"message": "Not Found: http://127.0.0.1:5000/users/4"

}

Other Useful Links

30September 20, 2018

• iLab: https://www.cs.rutgers.edu/resources/instructional-
lab

• JSON: http://www.json.org/

• Flask Framework: http://flask.pocoo.org/

• Flask Quick Start:
http://flask.pocoo.org/docs/0.12/quickstart/

• Implementing a RESTful Web API with Python & Flask:
http://blog.luisrei.com/articles/flaskrest.html

https://www.cs.rutgers.edu/resources/instructional-lab
http://www.json.org/
http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.12/quickstart/
http://blog.luisrei.com/articles/flaskrest.html

CS 417 20 September 2018

Paul Krzyzanowski 6

The end

31September 20, 2018

