
CS 417 9/19/2016

Paul Krzyzanowski 1

Distributed Systems
04. RPC & Web Services: Case Studies

Paul Krzyzanowski

Rutgers University

Fall 2016

1 © 2013-2016 Paul Krzyzanowski September 19, 2016

Overview of RPC Systems & Web Services

1. Remote Procedure Calls

2. Remote Objects

3. Web Services

2 September 19, 2016 © 2013-2016 Paul Krzyzanowski

ONC (Sun) RPC

3 September 19, 2016 © 2013-2016 Paul Krzyzanowski

ONC (Sun) RPC

• RPC for Unix System V, Linux, BSD, OS X

– ONC = Open Network Computing

– Created by Sun

– RFC 1831 (1995), RFC 5531 (2009)

– Remains in use mostly because of NFS (Network File System)

• Interfaces defined in an Interface Definition Language (IDL)

• IDL compiler is rpcgen

4 September 19, 2016 © 2013-2016 Paul Krzyzanowski

RPC IDL

name.x

program GETNAME {

 version GET_VERS {

 long GET_ID(string<50>) = 1;

 string GET_ADDR(long) = 2;

 } = 1; /* version */

} = 0x31223456;

Interface definition: version 1

5 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Why is versioning important?

name.x

program GETNAME {

 version GET_VERS {

 long GET_ID(string<50>) = 1;

 string GET_ADDR(long) = 2;

 } = 1; /* version */

 version GET_VERS2 {

 long GET_ID(string<50>) = 1;

 string GET_ADDR(string<128>) = 2;

 } = 2; /* version */

} = 0x31223456;

Interface definition: version 2

6 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 2

rpcgen

rpcgen name.x

produces:
– name.h header

– name_svc.c server stub (skeleton)

– name_clnt.c client stub

– [name_xdr.c] optional XDR conversion routines

• Function names derived from IDL function names and version
numbers

• Client gets pointer to result

– Allows it to identify failed RPC (null return)

– Reminder: C doesn’t have exceptions!

7 September 19, 2016 © 2013-2016 Paul Krzyzanowski

What goes on in the system: server

Start server

– Server stub creates a socket and binds any available local port to it

– Calls a function in the RPC library:

• svc_register to register program#, port #

• Contacts the port mapper, rpcbind (portmap on older Linux systems):

– Name server

– Keeps track of

{program #, version #, protocol}  port # bindings

– Server then listens and waits to accept connections

rpcbind
(RPC name server)

Server

process

svc_register

Port X

Port 111

8 September 19, 2016 © 2013-2016 Paul Krzyzanowski

What goes on in the system: client

• Client calls clnt_create with:

– Name of server

– Program #

– Version #

– Protocol#

• clnt_create contacts port mapper on that server to get

the port for that interface

– early binding – done once, not per procedure call

• Communications

– Marshaling to XDR format

(eXternal Data

Representation)

rpcbind
(RPC name server)

Server

process

svc_register

Port X

Port 111

Client

process

clnt_create

Port X

9 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Advantages

• Don’t worry about getting a unique transport address (port)

– But with you need a unique program number per server

– Greater portability

• Transport independent

– Protocol can be selected at run-time

• Application does not have to deal with maintaining message

boundaries, fragmentation, reassembly

• Applications need to know only one transport address

– Port mapper (portmap process)

• Function call model can be used instead of send/receive

• Versioning support between client & server

10 September 19, 2016 © 2013-2016 Paul Krzyzanowski

DCE RPC

11 September 19, 2016 © 2013-2016 Paul Krzyzanowski

DCE RPC

• DCE: set of components designed by The Open Group

(merger of OSF and X/Open) for providing support for

distributed applications

– Distributed file system service, time service, directory service, …

– Not currently adopted in any popular versions of UNIX/Linux

• There was room for improvement in ONC (Sun) RPC

12 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 3

DCE RPC

• Similar to ONC RPC

• Interfaces written in an Interface Definition Notation (IDN)
– Definitions look like function prototypes

• Run-time libraries
– One for TCP/IP and one for UDP/IP

• Authenticated RPC support with DCE security services

• Integration with DCE directory services to locate servers

13 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Unique IDs

ONC RPC required a programmer to pick a “unique” 32-bit

number

DCE: get unique ID with uuidgen

– Generates prototype IDN file with a 128-bit Unique Universal ID

(UUID)

– 10-byte timestamp multiplexed with version number

– 6-byte node identifier (ethernet address on ethernet systems)

14 September 19, 2016 © 2013-2016 Paul Krzyzanowski

IDN compiler

Similar to rpcgen:

Generates header, client, and server stubs

15 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Service lookup

Sun RPC requires client to know name of server

DCE allows several machines to be organized into an

administrative entity

cell (collection of machines, files, users)

Cell directory server

Each machine communicates with it for cell services information

16 September 19, 2016 © 2013-2016 Paul Krzyzanowski

DCE service lookup

client
cell

dir server

Request service

lookup from cell

directory server

Return server machine

name

service?

server

17 September 19, 2016 © 2013-2016 Paul Krzyzanowski

DCE service lookup

client
cell

dir server

Connect to endpoint

mapper service and get port

binding from this local name

server

local

dir server

SERVER

service?

port

dced

18 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 4

DCE service lookup

client
cell

dir server

Connect to service and

request remote procedure

execution

local

dir server

SERVER

RPC

server

dced

19 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Marshalling

Standard formats for data

– NDR: Network Data Representation

Goal

– Multi-canonical approach to data conversion

• Fixed set of alternate representations

• Byte order, character sets, and floating-point representation can assume

one of several forms

• Sender can (hopefully) use native format

• Receiver may have to convert

20 September 19, 2016 © 2013-2016 Paul Krzyzanowski

What’s Cool

• DCE RPC improved Sun RPC

– Unique Universal ID

– Multi-canonical marshalling format

– Cell of machines with a cell directory server

• No need to know which machine provides a service

21 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Sun and DCE RPC deficiencies

• If server is not running

– Service cannot be accessed

– Administrator responsible for starting it

• If a new service is added

– There is no mechanism for a client to discover this

• Object oriented languages expect polymorphism

– Service may behave differently based on data types passed to it

22 September 19, 2016 © 2013-2016 Paul Krzyzanowski

The next generation of RPCs

Distributed objects:
support for object oriented languages

DOA: Distributed Object Architecture

23 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Microsoft COM+ (DCOM)

24 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 5

Microsoft DCOM/COM+

COM+: Windows 2000

– Unified COM and DCOM plus support for transactions, resource

pooling, publish-subscribe communication

Extends Component Object Model (COM) to allow objects

to communicate between machines

DDE
Dynamic Data

Exchange

1987

OLE
Object Linking & Embedding

1987

COM
Component Object Model

1992

DCOM
Distributed COM

1996

COM+
DCOM++

2000

.NET
Framework

2002

WCF
Windows Communication Foundation

2007

25 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Activation on server

Service Control Manager (SCM)

– Started at system boot. Functions as RPC server

– Maintains database of installed services

– Starts services on system startup or on demand

– Requests creation of object on server

Surrogate process runs components: dllhost.exe

– Process that loads DLL-based COM objects

One surrogate can handle multiple clients simultaneously

26 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Beneath COM+

Data transfer and function invocation

• Object RPC (ORPC)

• Extension of the DCE RPC protocol

 Standard DCE RPC messages plus:

– Interface pointer identifier (IPID)

• Identifies interface and object where the call will be processed

• Referrals: can pass remote object references

– Versioning & extensibility information

27 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Marshalling

• Marshalling mechanism: NDR

same Network Data Representation used by DCE RPC

– One new data type added: represents a marshaled interface

• Allows one to pass interfaces to objects

• Remember: NDR is multi-canonical

– Efficient when both systems have the same architecture

28 September 19, 2016 © 2013-2016 Paul Krzyzanowski

MIDL

MIDL = Microsoft Interface Definition Language

MIDL files are compiled with an IDL compiler

 DCE IDL + object definitions

Generates C++ code for marshalling and unmarshalling

– Client side is called the proxy

– Server side is called the stub

both are COM objects that are loaded

by the COM libraries as needed

29 September 19, 2016 © 2013-2016 Paul Krzyzanowski

COM+ Distributed Garbage Collection

Object lifetime controlled by remote reference counting

– RemAddRef, RemRelease calls

– Object elided when reference count = 0

30 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 6

COM+ Distributed Garbage Collection

Abnormal client termination

– Insufficient RemRelease messages sent to server

– Object will not be deleted

In addition to reference counting:

Client Pinging

– Server has pingPeriod, numPingsToTimeOut

– Relies on client to ping

• background process sends ping set – IDs of all remote objects on server

– If ping period expires with no pings received,

all references are cleared

31 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Microsoft DCOM/COM+ Contributions

• Fits into Microsoft COM model

• Generic server hosts dynamically loaded objects

– Requires unloading objects (dealing with dead clients)

– Reference counting and pinging

• Support for references to instantiated objects

• But… COM+ was a Microsoft-only solution

– And it did not work well across firewalls because of dynamic ports

32 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Java RMI

33 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Java RMI

• Java language had no mechanism for invoking remote

methods

• 1995: Sun added extension

– Remote Method Invocation (RMI)

– Allow programmer to create distributed applications where methods

of remote objects can be invoked from other JVMs

34 September 19, 2016 © 2013-2016 Paul Krzyzanowski

RMI components

Client

– Invokes method on remote object

Server

– Process that owns the remote object

Object registry

– Name server that relates objects with names

35 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Interoperability

RMI is built for Java only!

– No goal of OS interoperability (as CORBA)

– No language interoperability (goals of SUN, DCE, and CORBA)

– No architecture interoperability

No need for external data representation

– All sides run a JVM

Benefit: simple and clean design

36 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 7

RMI similarities

Similar to local objects

– References to remote objects can be passed as parameters

(not as pointers, of course)

• You can execute methods on a remote object

– Objects can be passed as parameters to remote methods

– Object can be cast to any of the set of interfaces supported by the

implementation

• Operations can be invoked on these objects

37 September 19, 2016 © 2013-2016 Paul Krzyzanowski

RMI differences

• Objects (parameters or return data) passed by value

– Changes will visible only locally

• Remote objects are passed by reference

– Not by copying remote implementation

– The “reference” is not a pointer. It’s a data structure:

 { IP address, port, time, object #, interface of remote object }

• RMI generates extra exceptions

38 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Classes to support RMI

• remote class:

– One whose instances can be used remotely

– Within its address space: regular object

– Other address spaces:

• Remote methods can be referenced via an object handle

• serializable class:

– Object that can be marshaled

– If object is passed as parameter or return value of a remote method

invocation, the value will be copied from one address space to

another

• If remote object is passed, only the object handle is copied between

address spaces

39 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Classes to support RMI

• remote class:

– One whose instances can be used remotely

– Within its address space: regular object

– Other address spaces:

• Remote methods can be referenced via an object handle

• serializable class:

– Object that can be marshaled

– If object is passed as parameter or return value of a remote method

invocation, the value will be copied from one address space to

another

• If remote object is passed, only the object handle is copied between

address spaces

40

needed for remote objects

needed for parameters

September 19, 2016 © 2013-2016 Paul Krzyzanowski

Stub & Skeleton Generation

• Automatic stub generation since Java 1.5

– Need stubs and skeletons for the remote interfaces

– Automatically built from java files

– Pre 1.5 (still supported) generated by separate compiler: rmic

• Auto-generated code:

– Skeleton

• Server-side code that calls the actual remote object implementation

– Stub

• Client side proxy for the remote object

• Communicates method invocations on remote objects to the server

41 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Naming service

We need to look an object up by name

Get back a remote object reference to perform remote

object invocations

Object registry does this: rmiregistry running on the server

42 September 19, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 8

Server

Register object(s) with Object Registry

Stuff obj = new Stuff();

Naming.bind(“MyStuff”, obj);

43 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Client

Client contacts rmiregistry to look up name

rmiregistry service returns a remote object reference.

lookup method gives reference to local stub.

 The stub now knows where to send requests

Invoke remote method(s):

test.func(1, 2, “hi”);

MyInterface test = (MyInterface)

 Naming.lookup(“rmi://www.pk.org/MyStuff”);

44 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Java RMI infrastructure

bind lookup

 remote

reference

serialized arguments

marshal stream

rmiregistry

45

Local object

Client Stub

“remote”

call

Remote Reference Layer Remote Reference Layer

Transport Layer Transport Layer

Skeleton

Remote object

Client Server

September 19, 2016 CS 417 - Paul Krzyzanowski

① ②

③

④

RMI Distributed Garbage Collection

• Two operations: dirty and clean

• Local JVM sends a dirty call to the server JVM when the

object is in use

– The dirty call is refreshed based on the lease time given by the

server

• Local JVM sends a clean call when there are no more

local references to the object

• Unlike DCOM:

no incrementing/decrementing of references

46 September 19, 2016 © 2013-2016 Paul Krzyzanowski

Remote Services

Web Services

September 19, 2016 © 2013-2016 Paul Krzyzanowski 47

From Web Browsing to Web Services

• Web browser:

– Dominant model for user interaction on the Internet

• Not good for programmatic access to data or

manipulating data

– UI is a major component of the content

– Site scraping is a pain!

September 19, 2016 © 2013-2016 Paul Krzyzanowski 48

CS 417 9/19/2016

Paul Krzyzanowski 9

Web Services

• We want

– Remotely hosted services – that programs can use

– Machine-to-machine communication

• Problems

– Web pages are content-focused

– Traditional RPC solutions usually used a range of ports

• And we need more than just RPC sometimes

– Many RPC systems didn’t work well across languages

– Firewalls restrict ports & may inspect the protocol

– No support for load balancing

September 19, 2016 © 2013-2016 Paul Krzyzanowski 49

Web Services

• Set of protocols by which services can be published,

discovered, and used in a technology neutral form

– Language & architecture independent

• Applications will typically invoke multiple remote services

– Service Oriented Architecture

• General principles

– Payloads are text (XML or JSON)

• Technology-neutral

– HTTP used for transport

• Use existing infrastructure: web servers, firewalls, load-balancers

September 19, 2016 © 2013-2016 Paul Krzyzanowski 50

Service Oriented Architecture (SOA)

• SOA = Programming model

• App is integration of network-accessible services

(components)

• Each service has a well-defined interface

• Components are unassociated & loosely coupled

September 19, 2016 © 2013-2016 Paul Krzyzanowski 51

Neither service depends on the

other: all are mutually independent

Neither service needs to know

about the internal structure of the

others

XML RPC

September 19, 2016 © 2013-2016 Paul Krzyzanowski 52

Origins

• Born: early 1998

• Data marshaled into XML messages

– All request and responses are human-readable XML

• Explicit typing

• Transport over HTTP protocol

– Solves firewall issues

• No IDL compiler support for most languages

– Lots of support libraries for other languages

– Great support in some languages – those that support introspection

(Python, Perl)

• Example: WordPress uses XML-RPC

September 19, 2016 © 2013-2016 Paul Krzyzanowski 53

XML-RPC example

<methodCall>

 <methodName>

 sample.sumAndDifference

 </methodName>

 <params>

 <param><value><int> 5 </int></value></param>

 <param><value><int> 3 </int></value></param>

 </params>

</methodCall>

September 19, 2016 © 2013-2016 Paul Krzyzanowski 54

CS 417 9/19/2016

Paul Krzyzanowski 10

XML-RPC data types

• int

• string

• boolean

• double

• dateTime.iso8601

• base64

• array

• struct

September 19, 2016 © 2013-2016 Paul Krzyzanowski 55

Assessment

• Simple (spec about 7 pages)

• Humble goals

• Good language support

– Little/no function call transparency for some languages

• No garbage collection, remote object references, etc.

– Focus is on data messaging over HTTP transport

• Little industry support (Apple, Microsoft, Oracle, …)

– Mostly grassroots and open source

September 19, 2016 © 2013-2016 Paul Krzyzanowski 56

SOAP

September 19, 2016 © 2013-2016 Paul Krzyzanowski 57

SOAP origins

(Simple) (Object) Access Protocol

• Since 1998 (latest: v1.2 April 2007)

• Started with strong Microsoft & IBM support

• Specifies XML format for messaging

– Not necessarily RPC

• Continues where XML-RPC left off:

– XML-RPC is a 1998 simplified subset of SOAP

– user defined data types

– ability to specify the recipient

– message specific processing control

– and more …

• Usually XML over HTTP

September 19, 2016 © 2013-2016 Paul Krzyzanowski 58

SOAP

• Stateless messaging model

• Basic facility is used to build other interaction models

– Request-response

– Request-multiple response

• Objects marshaled and unmarshaled to SOAP-format

XML

• Like XML-RPC, SOAP is a messaging format

– No garbage collection or object references

– Does not define transport

– Does not define stub generation

September 19, 2016 © 2013-2016 Paul Krzyzanowski 59

From Messaging to Web Services

• Things like SOAP give us a messaging structure

• What else is useful for services?

– Service definition: create software to create the right SOAP

messages

– Service discovery

– Message delivery

September 19, 2016 © 2013-2016 Paul Krzyzanowski 60

CS 417 9/19/2016

Paul Krzyzanowski 11

Web Services and WSDL

• Web Services Description Language

– Analogous to an IDL

• A WSDL document describes a set of services

– Name, operations, parameters, where to send requests

– Goal is that organizations will exchange WSDL documents

• If you get WSDL document, you can feed it to a program that will

generate software to send and receive SOAP messages

September 19, 2016 © 2013-2016 Paul Krzyzanowski 61

WSDL Document Contents

Service

 Name & address

Port 1

 Methods for accessing the service

 Example ports: SOAP, HTTP GET, HTTP POST

Binding

 Describes the data format & protocol for a port

 E.g., RPC style

PortType 1

Operations that the service can implement

Messages: definition of the input and output message for each operation

Port 2 …

September 19, 2016 CS 417 - Paul Krzyzanowski 62

WSDL Structure

<definitions>

 <types>

 data type used by web service: defined via XML Schema syntax

 </types>

 <message>

 describes data elements of operations: parameters

 </message>

 <portType>

 describes service: operations, and messages involved

 </portType>

 <binding>

 defines message format & protocol details for each port

 </binding>

</definitions>

September 19, 2016 CS 417 - Paul Krzyzanowski 63

WSDL structure: port types

<definitions name="MobilePhoneService“ target=…>

<portType name="MobilePhoneService_port">

<operation name="getListOfModels">

<operation name="getPrice">

<Input message="PhoneModel"/>

<output message="PhoneModelPrice"/>

1. type definitions

<output message="ListOfPhoneModels"/>

3. messaging spec

2
.
s
e
rv

ic
e
 d

e
fi

n
it

io
n

September 19, 2016 CS 417 - Paul Krzyzanowski 64

WSDL part 3: messaging spec

<binding name="MobilePhoneService_Binding“

 type="MobilePhoneService_port">

 <soap:binding style="rpc“

 transport="http://schemas.xmlsoap.org/soap/http“ />

 <operation name="getPrice">

 <soap:operation soapAction="urn:MobilePhoneService"/>

 <input>

 <soap:body encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/“

 namespace="urn:MobilePhoneService" use="encoded"/>

 </input>

 <output>

 <soap:body encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/“

 namespace="urn:MobilePhoneService" use="encoded" />

 </output>

 </operation>

</binding>

September 19, 2016 © 2013-2016 Paul Krzyzanowski 65

What do we do with WSDL?

It’s an IDL – not meant for human consumption

Interface

definition

WSDL

document e.g., wsdl.exe,

Java2WSDL

WSDL

document
Code

e.g., Axis2 WSDL2Java
(apache Eclipse plug-in)

September 19, 2016 © 2013-2016 Paul Krzyzanowski 66

CS 417 9/19/2016

Paul Krzyzanowski 12

Java Web Services

September 19, 2016 © 2013-2016 Paul Krzyzanowski 67

JAX-WS: Java API for XML Web Services

• Lots of them! We’ll look at one

• JAX-WS (evolved from earlier JAX-RPC)

– Java API for XML-based Web-Service messaging & RPCs

– Invoke a Java-based web service using Java RMI

– Interoperability is a goal

• Use SOAP & WSDL

• Java not required on the other side (client or server)

• Service

– Defined to clients via a WSDL document

September 19, 2016 © 2013-2016 Paul Krzyzanowski 68

JAX-WS: Creating an RPC Endpoint

• Server

– Define an interface (Java interface)

– Implement the service

– Create a publisher

• Creates an instance of the service and publishes it with a name

• Client

– Create a proxy (client-side stub)

• wsimport command takes a WSDL document and creates a stub

– Write a client that creates an instance of the service and invokes

methods on it (calling the proxy)

September 19, 2016 © 2013-2016 Paul Krzyzanowski 69

JAX-RPC Execution Steps

1. Java client calls a method on a stub

2. Stub calls the appropriate web service

3. Server gets the call and directs it to the framework

4. Framework calls the implementation

5. The implementation returns results to the framework

6. The framework returns the results to the server

7. The server sends the results to the client stub

8. The client stub returns the information to the caller

Client

Stub

Protocol
(SOAP/HTTP)

JAX-WS

Servlets

Servlet

Framework

Protocol
(SOAP/HTTP)

SOAP/HTTP/TCP/IP

September 19, 2016 © 2013-2016 Paul Krzyzanowski 70

Web Clients: AJAX

Asynchronous JavaScript And XML

– Bring web services to web clients (JavaScript)

• Asynchronous

– Client not blocked while waiting for result

• JavaScript

– Request can be invoked from JavaScript (using HTTPRequest)

– JavaScript may also modify the Document Object Model (CSS)

– how the page looks

• XML

– Data sent & received as XML

September 19, 2016 CS 417 - Paul Krzyzanowski 71

AJAX & XMLHTTP

• Allow Javascript to make HTTP requests and process
results (change page without refresh)

 xmlhttp = new XMLHttpRequest();

 xmlhttp.open(“POST”, “demo.html”, true);

 xmlhttp.send();

• Tell object:
– Type of request you’re making

– URL to request

– Function to call when request is made

– Info to send along in body of request

September 19, 2016 © 2013-2016 Paul Krzyzanowski 72

CS 417 9/19/2016

Paul Krzyzanowski 13

AJAX on the Web

• AJAX ushered in Web 2.0

• Early high-profile AJAX sites:

– Google Maps, Gmail, Kayak, Amazon Zuggest, Del.icio.us Director,

Writely, …

September 19, 2016 CS 417 - Paul Krzyzanowski 73

The future of SOAP?

• SOAP

– Dropped by Google in 2006

– Alternatives: AJAX, XML-RPC, REST, …

– Allegedly complex because “we want our tools to read it, not

people”
 – unnamed Microsoft employee

• Microsoft

– Provides a mix of REST, JSON, and SOAP APIs

– http://www.bing.com/developers/

• Still lots of support

September 19, 2016 © 2013-2016 Paul Krzyzanowski 74

REST

REpresentational State Transfer

• Stay with the principles of the web

– Four HTTP commands let you operate on data (a resource):

• PUT (create)

• GET (read)

• POST (update)

• DELETE (delete)

• Messages contain representation of data

September 19, 2016 © 2013-2016 Paul Krzyzanowski 75

CRUD:

Create, Read, Update, Delete

Resource-oriented services

• Blog example

– Get a snapshot of a user’s blogroll:

• HTTP GET //rpc.bloglines.com/listsubs

• HTTP authentication handles user identification

– To get info about a specific subscription:

• HTTP GET http://rpc.bloglines.com/getitems?s={subid}

September 19, 2016 © 2013-2016 Paul Krzyzanowski 76

Resource-oriented services

• Get parts info

HTTP GET //www.parts-depot.com/parts

• Returns a document containing a list of parts

<?xml version="1.0"?>

<p:Parts xmlns:p="http://www.parts-depot.com"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <Part id="00345" xlink:href="http://www.parts-depot.com/parts/00345"/>

 <Part id="00346" xlink:href="http://www.parts-depot.com/parts/00346"/>

 <Part id="00347" xlink:href="http://www.parts-depot.com/parts/00347"/>

 <Part id="00348" xlink:href="http://www.parts-depot.com/parts/00348"/>

</p:Parts>

September 19, 2016 © 2013-2016 Paul Krzyzanowski 77

Resource-oriented services

• Get detailed parts info:

HTTP GET //www.parts-depot.com/parts/00345

• Returns a document with information about a specific part

?xml version="1.0"?>

<p:Part xmlns:p="http://www.parts-depot.com" xmlns:xlink="http://www.w3.org/1999/xlink">

 <Part-ID>00345</Part-ID>

 <Name>Widget-A</Name>

 <Description>This part is used within the frap assembly</Description>

 <Specification xlink:href="http://www.parts-depot.com/parts/00345/specification"/>

 <UnitCost currency="USD">0.10</UnitCost>

 <Quantity>10</Quantity>

</p:Part>

September 19, 2016 © 2013-2016 Paul Krzyzanowski 78

CS 417 9/19/2016

Paul Krzyzanowski 14

REST vs. RPC Interface Paradigms

Example from wikipedia:

RPC
 getUser(), addUser(), removeUser(), updateUser(),

 getLocation(), AddLocation(), removeLocation()

 exampleObject = new ExampleApp(“example.com:1234”);

 exampleObject.getUser();

REST
 http://example.com/users

 http://example.com/users/{user}

 http://example.com/locations
 userResource =

 new Resource(“http://example.com/users/001”);

 userResource.get();

September 19, 2016 © 2013-2016 Paul Krzyzanowski 79

Examples of REST services

• Various Amazon APIs

• Yahoo! Search APIs

• Flickr

• Twitter

• Google Glass

• Open Zing Services – Sirius radio
svc://Radio/ChannelList

svc://Radio/ChannelInfo?sid=001-siriushits1&ts=2007091103205

• Tesla Model S & Model X
https://owner-api.teslamotors.com/api/1/vehicles/vehicle_id/command/set_valet_mode

https://owner-api.teslamotors.com/api/1/vehicles/vehicle_id/command/flash_lights

 September 19, 2016 CS 417 - Paul Krzyzanowski 80

The End

81 © 2013-2016 Paul Krzyzanowski September 19, 2016

