CS 417

11/2/16

Distributed Systems

05r. Case study: Google Cluster Architecture

Paul Krzyzanowski

Rutgers University

Fall 2016

November 2, 2016 ©2013.2016 Paul Krzyzanowski 1

L A note about relevancy

This describes the Google search cluster architecture in the mid 2000s. The
search infrastructure was overhauled in 2010 (we'll get to this at the end).

Nevertheless, the lessons are still valid and this demonstrates how incredible
scalability has been achieved using commodity computers by exploiting
parallelism.

A

Noverber 2, 2016 ©2013-2016 Paul Krzyzanowski

L What is needed? J

« Asingle Google search query
— Reads hundreds of megabytes of data
— Uses tens of billions of CPU cycles
« Environment needs to support tens of thousands of queries per second

« Environment must be
— Fault tolerant
— Economical (price-performance ratio matters)
— Energy efficient (this affects price; watts per unit of performance matters)

« Workload should be highly parallelizable
— CPU performance matters less than price/performance ratio

November 2, 2016 ©2013:2016 Paul Krzyzanowski 3

L Key design principles

» Have reliability reside in software, not hardware
— Use low-cost (unreliable) commodity PCs to build a high-end cluster
— Replicate services across machines & detect failures

« Design for best total throughput, not peak server response time
— Response time can be controlled by parallelizing requests
— Rely on replication: this helps with availability too

« Price/performance ratio more important than peak performance

November 2, 2016 ©2013-2016 Paul Krzyzanowski

L Step 1: DNS J

« User’s browser must map google.com to an |IP address

« “google.com” comprises multiple clusters distributed worldwide
— Each cluster contains thousands of machines

« DNS-based load balancing

— Select cluster by taking user’s geographic & network proximity into account
— Load balance across clusters

1. Contact DNS server(s) to
find the DNS server
responsible for google.com|

Google's Load-
balanced DNS

. Google's DNS server
returns addresses based
on location of request

. Contact the appropriate
cluster

November 2, 2016 ©2013-2016 Paul Krzyzanowski

L Step 2: Send HTTP request

« IP address corresponds to a load balancer within a cluster

« Load balancer
— Monitors the set of Google Web Servers (GWS)
— Performs local load balancing of requests among available servers

+« GWS machine receives the query
— Coordinates the execution of the query
— Formats results into an HTML response to the user

Google Web Server [V%7

Hardware Load

| Google Web Server l
Google Web Server
Google Web Server

Balancer

Data center

November 2, 2016 ©2013-2016 Paul Krzyzanowski

Paul Krzyzanowski

CS 417

11/2/16

L Step 3. Find documents via inverted index J

* Index Servers
— Map each query word — {list of documents} (hit list)
« Inverted index generated from web crawlers — MapReduce
— Intersect the hit lists of each per-word query
« Compute relevance score for each document
+ Determine set of documents
« Sort by relevance score

Query word] [Que(vaord] [Query word l

Document list

4

Document list Document list

T
Intersect

November 2, 2016 ©2013.2016 Paul Krzyzanowski 7

L Parallel search through an inverted index J

Inverted index is 10s of terabytes

Search is parallelized

— Index is divided into index shards
« Each index shard is built from a randomly chosen subset of documents
+ Pool of machines serves requests for each shard
« Pools are load balanced

— Query goes to one machine per pool responsible for a shard

.

Final result is ordered list of document identifiers (docids)

Google Web Server |l

jserver: shard N

server: shard N

Noverber 2, 2016 ©2013-2016 Paul Krzyzanowski 8

L Index Servers J

L Step 4. Get title & URL for each docid

* For each docid, the GWS looks up
— Page title
- URL
— Relevant text: document summary specific to the query

* Handled by document servers (docservers)

November 2, 2016 ©2013-2016 Paul Krzyzanowski 10

Shard 0 Shard 1 Shard 2
I PC I PC I PC I
=
=
e e
(PC) (PC)
\ J \ J
Shard 3 Shard N

\— | ——)
November2, 2016 ©2013:2016 Paui Kizyzanowski 3
L Parallelizing document lookup J
« Like index lookup, document lookup is partitioned & parallelized
« Documents distributed into smaller shards
— Each shard = subset of documents
« Pool of load-balanced servers responsible for processing each shard
« Together, document servers access a cached copy of the entire web!
e
N
- :
—rzm]
J

November 2, 2016 ©2013-2016 Paul Krzyzanowski 11

L Additional operations

« In parallel with search:
— Send query to a spell-checking system
— Send query to an ad-serving system to generate ads

« When all the results are in, GWS generates HTML output:

— Sorted query results
« With page titles, summaries, and URLs
« Ads

- Spelling correction suggestions

Hardware
Load Balancer

Spell checker

November 2, 2016 ©2013-2016 Paul Krzyzanowski 12

Paul Krzyzanowski

CS 417

11/2/16

L Lesson: exploit parallelism

Change to Caffeine

« Instead of looking up matching documents in a large index
— Do many lookups for documents in smaller indices
— Merge results together: merqing is simple & inexpensive

« Divide the stream of incoming queries
— Among geographically-distributed clusters
— Load balance among query servers within a cluster

« Linear performance improvement with more machines
— Shards don’t need to communicate with each other
— Increase # of shards across more machines to improve performance

In 2010, Google remodeled its search infrastructure

Old system
— Based on MapReduce (on GFS) to generate index files
— Batch process: next phase of MapReduce cannot start until first is complete
Web crawling — MapReduce — propagation
— Initially, Google updated its index every 4 months. Around 2000, it reindexed and
propagated changes every month
Process took about 10 days
Users hitting different servers might get different results

New system, named Caffeine
— Fully incremental system: Based on BigTable running on GFS2
— Support indexing many more documents: ~100 petabytes
— High degree of interactivity: web crawlers can update tables dynamically
— Analyze web continuously in small chunks
Identify pages that are likely to change frequently
— BTW, MapReduce is not dead. Caffeine uses it in some places, as do lots of other
services.

November 2, 2016 ©2013.2016 Paul Krzyzanowski 13

Noverber 2, 2016

©2013-2016 Paul Krzyzanowski 14

Main References

L GFS to GFS2

* GFS was designed with MapReduce in mind
— But found lots of other applications
— Designed for batch-oriented operations

* Problems
— Single master node in charge of chunkservers
— All info (metadata) about files is stored in the master’s memory — limits
total number of files
— Problems when storage grew to tens of petabytes (102 bytes)
— Automatic failover added (but still takes 10 seconds)

— Designed for high throughput but delivers high latency: master can
become a bottleneck
— Delays due to recovering from a failed replica chunkserver delay the client

« GFS2
— Distributed masters
— Support smaller files: chunks go from 64 MB to 1 MB
— Designed specifically for BigTable (does not make GFS obsolete)

Web Search for a Planet: The Google Cluster Architecture
Luiz André Barroso, Jeffrey Dean, Urs Hoizle
Google, Inc.
research google.com/archive/googlecluster.him!

Our new search index: Caffeine
~ The Official Google Blog

GFS: Evolution on Fast-forward
~ Marshall Kirk McKusick, Sean Qunlan

~ Association for Computing Machinery, August 2009
~ hiipiqueue.acm.org/detail cim?id=1594206.

Google search index splits with MapReduce
- CadeMetz

~ The Register, September 2010

- hitp/Sept/2008/08/12igoogle_file_system_part_deux/

Google File System Il: Dawn of the Multiplying Master Nodes
ade Metz

~ The Register, August 2009
~ itpiwwwtheregister.co.uki2010/09/08igoogle_caffeine_explained!

Exclusive: How Google’s Algorithm Rules the Web
~ Stevenl

- Wired Magazine, March 2010

~ itpdiwww.wired.com/magazine/2010/02/ff_google_algorithmyall/1

November 2, 2016 ©2013-2016 Paul Krzyzanowski

\

November 2, 2016 ©2013:2016 Paul Krzyzanowski 15
r
\

November 2, 2016 ©2013-2016 Paul Krzyzanowski 17

Paul Krzyzanowski

