
Distributed Systems
09. State Machine Replication & Virtual Synchrony

Paul Krzyzanowski

Rutgers University

Fall 2016

1 © 2014-2016 Paul Krzyzanowski

State machine replication

2 © 2014-2016 Paul Krzyzanowski

State machine replication

• We want high scalability and high availability

– Achieve this via redundancy

• Replicated components will take place of ones that stop working

– Active-passive: replicated components are standing by

– Active-active: replicated components are working

• Replicated state machine

– State machine = program that takes inputs & produces outputs & holds

internal state (data)

– Replicated = run concurrently on several machines

– If all replicas get the same set of inputs in the same order, they will perform
the same computation and produce the same results

– To ensure correct execution & high availability

• Each process must see & process the same inputs in the same sequence

• Obtain consensus at each state transition

3 © 2014-2016 Paul Krzyzanowski

State machine replication

• Replicas = group of machines = process group

– Load balancing (queries can go to any replica)

– Fault tolerance (OK if some die; they all do the same thing)

• Important for replicas to remain consistent

– Need to receive the same messages [usually] in the same order

(causally related messages)

• What if one of the replicas dies?

– Then it does not get updates

– When it comes up, it will be in a state prior to the updates

• Not good – getting new updates will put it in an inconsistent state

4 © 2014-2016 Paul Krzyzanowski

Faults

• Faults may be
– fail-silent: the system does not communicate

• fail-stop: a fail-silent system that remains silent

• fail-recover: a fail-silent system that comes back online

– Byzantine: the system communicates with bad data

• synchronous system vs. asynchronous system
– Synchronous = system responds to a message in a bounded time

– Asynchronous = no assurance of when a message arrives

– E.g., IP packet versus serial port transmission

• IP network = asynchronous

• In a distributed system, we assume processes are:
– Concurrent, asynchronous, failure-prone

5 © 2014-2016 Paul Krzyzanowski

Agreement in faulty systems

Two army problem

– Good processors - faulty communication lines

– Coordinated attack

– Infinite acknowledgement problem

6 © 2014-2016 Paul Krzyzanowski

Agreement in faulty systems

It is impossible to achieve consensus with asynchronous

faulty processes

– There is no foolproof way to check whether a process failed or is

alive but not communicating (or communicating quickly enough)

We have to live with this:

• We cannot reliably detect a failed process

– Moreover, the the system might recover

• But we can propagate knowledge that we think it failed

– Take it out of the group (even if it is alive)

– If it recovers, it will have to re-join

8 © 2014-2016 Paul Krzyzanowski

Virtual Synchrony

9 © 2014-2016 Paul Krzyzanowski

Virtual Synchrony is a software model

Model for group management and group communication

– A process can join or leave a group

– A process can send a message to a group

• Message ordering requirements defined by programmer

Atomic multicast

“A message is either delivered to all processes in the group or to none”

10 © 2014-2016 Paul Krzyzanowski

Group View

Group View = Set of processes currently in the group

• A multicast message is associated with a group view

• Every process in the group should have the same group view

• When a process joins or leaves the group, the group view changes

View change

• View change =

Multicast message announcing the joining or leaving of a process

• Timeouts lead to failure detection

– Group membership change ⇒ the dead member is removed from the group

11 © 2014-2016 Paul Krzyzanowski

Events

Group members receive three types of events

1. New message received

2. View change: group membership change

3. Checkpoint request

• Dump the state of your system so a new process can read it

12 © 2014-2016 Paul Krzyzanowski

View Changes & Virtual Synchrony

13

Time

p

q

r

s

t

G={p} G={p, q} G={p, q, r, s, t} G={r, s, t}

0 10 20 30 40 50 60 70

vi
e
w

 c
h
a
n
g
e
 vi
e
w

 c
h
a
n
g
e

vi
e
w

 c
h
a
n
g
e

© 2014-2016 Paul Krzyzanowski

A view change is a barrier

• What if a message is being multicast during a view change?

– Two multicast messages in transit at the same time:

• view change (vc)

• message (m)

• Need to guarantee “all or nothing” semantics

– m is delivered to all processes in G before any process is delivered a vc

– OR m is not delivered to any process in G

• Reliable multicasts with this property

are virtually synchronous

– All multicasts must take place between view changes

– A view change is a barrier

14

recall the distinction between

receiving a message and
delivering it to the application

© 2014-2016 Paul Krzyzanowski

Virtual Synchrony: implementation example

• ISIS toolkit: fault-tolerant distributed system offering virtual synchrony

– Achieves high update & membership event rates

– Hundreds of thousands of events/second on commodity hardware as of 2009

• Provides distributed consistency

– Applications can create & join groups & send multicasts

– Applications will see the same events in an equivalent order

– Group members can update group state in a consistent, fault-tolerant manner

• Who uses it?

– New York Stock Exchange, Swiss Exchange, US NAVY AEGIS, etc.

– Similar models:

• Microsoft’s scalable cluster service, IBM’s DCS system, CORBA

• Apache Zookeeper (configuration, synchronization, and naming service)

15 © 2014-2016 Paul Krzyzanowski

Implementation: Goals

• Message transmission is asynchronous (e.g., IP)

– Machines may receive messages in different order

• Virtual synchrony

– Preserve the illusion that events happen in the same order

– Uses TCP → reliable point-to-point message delivery

– Multicasting is implemented by sending a message to each group member

– No guarantee that ALL group members receive the message

• The sender may fail before transmission ends

16 © 2014-2016 Paul Krzyzanowski

Implementation: Group Management

• Group Membership Service (GMS)

– Failure detection service

• If a process p reports a process q as faulty

– GMS reports this to every process with a connection to q

– q is taken out of the process group and will need to re-join

• Imposes a consistent view of membership to all members

17 © 2014-2016 Paul Krzyzanowski

Implementation: State Transfer

• When a new member joins a group

– It will need to import the current state of the group

– State transfer:

• Contact an existing member to request a state transfer – checkpoint request

• Initialize the new member (replica) to that checkpoint state

• Important – enforce the group view barrier

– A state transfer is treated as an instantaneous event

– Guarantee that all messages sent to view Gi are delivered to all non-faulty

processes in Gi before the next view change (Gi+1)

18 © 2014-2016 Paul Krzyzanowski

Ensuring all messages are received

• All messages sent to Gi must be delivered to all non-faulty processes

before a view change to Gi+1

• But what if the sender failed?

– Each process stores a message until it know all members received it

– At that time, the message is stable

19 © 2014-2016 Paul Krzyzanowski

View Change

23

view change

P

unstable messages

unstable messages

unstable messages

unstable messages

view change

P

flush

flush

flush

flush

Stable message = received (acknowledged) by all group members

Every process holds a message until it knows that it has been received by the group

View change complete when each process receives a flush message from

every other process in the group

to group

members

to group

members

© 2014-2016 Paul Krzyzanowski

View change summary

• Every process will

– Send any unstable messages to all group members

• Wait for acknowledgements

– Deliver any received messages that are not duplicates

– Send a flush message to the group

– Receive a flush message from every member of the group

• Benefits

– No need for a single master that propagates its updates to replicas

– Not transactional – not limited to one-at-a-time processing

– Message ordering is generally causal within a view – more efficient than

imposing total ordering

24 © 2014-2016 Paul Krzyzanowski

The End

25 © 2014-2016 Paul Krzyzanowski

