
CS 417 11/4/2016

Paul Krzyzanowski 1

Distributed Systems
10. Consensus: Paxos

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 4, 2016 © 2014-2015 Paul Krzyzanowski

Consensus Goal

Allow a group of processes to agree on a result

– All processes must agree on the same value

– The value must be one that was submitted by at least one process

(the consensus algorithm cannot just make up a value)

2

We saw versions of this

• Mutual exclusion

– Agree on who gets a resource or who becomes a coordinator

• Election algorithms

– Agree on who is in charge

• Other uses of consensus:

– Manage group membership

– Synchronize state to manage replicas: make sure every group
member agrees on the message ordering of events

– Distributed transaction commit

• General consensus problem:

– How do we get unanimous agreement on a given value?

 Most often, value = sequence number of a message

3

Achieving consensus seems easy!

Designate a sy stem-wide coordinator to determine outcome

BUT … this assumes there are no f ailures

 … or we are willing to wait indef initely f or recov ery

4

Consensus algorithm goal

• Create a f ault-tolerant consensus algorithm that does not

block if a majority of processes are working

• Goal: agree on one result among a group of participants

– Processors may fail (some may need stable storage)

– Messages may be lost, out of order, or duplicated

– If delivered, messages are not corrupted

5

Majority (>50%) agreement is the key part: If a majority of coins show
heads, there is no way that a majority will show tails at the same time.

If members die and others come up, there will be one member in
common with the old group that still holds the information.

Consensus requirements

• Validity

– Only proposed values may be selected

• Unif orm agreement

– No two nodes may select different values

• Integrity

– A node can select only a single value

• Termination (Progress)

– Every node will eventually decide on a value

6

CS 417 11/4/2016

Paul Krzyzanowski 2

Consensus: Paxos

7

Paxos

Goal: provide a consistent ordering of events from multiple clients

– All machines running the algorithm agree on a proposed v alue from a client

• Value = event number, representing the sequence of the event

– The value will be associated with an event or action

– Paxos ensures that no other machine associates the value with another event

Fault-tolerant distributed consensus algorithm

– Does not block if a majority of processes are working

– The algorithm needs a majority (2P+1) of processors survive the
simultaneous failure of P processors

Abortable consensus

– A client’s request may be rejected

– It then has to re-issue the request

8

A Programmer’s View

9

Consensus

algorithm

Client

Process

while (submit_request(R) ! = ACCEPTED) ;

Send results
(total order)

accepted

Submit(R)

Think of R as a key:value pair in a database

Paxos players

• Client: makes a request

• Proposers:

– Get a request from a client and run the protocol to get everyone

in the cluster to agree

– Leader: elected coordinator among the proposers
(not necessary but simplifies message numbering and ensures no
contention) – we don’t need to rely on the presence of a single leader

• Acceptors:

– Multiple processes that remember the state of the protocol

– Quorum = any majority of acceptors

• Learners:

– When agreement has been reached by acceptors, a Learner

executes the request and/or sends a response back to the client

10

T
h

e
s

e
 d

if
fe

re
n

t
ro

le
s

 a
re

 u
s

u
a

ll
y

p

a
rt

 o
f

th
e

 s
a

m
e

 s
y

s
te

m

What Paxos does

• Paxos ensures a consistent ordering in a cluster of machines

– Events are ordered by sequential event IDs (N)

• Client wants to log an event: sends request to a Proposer

– E.g., value, v = “add $100 to my checking account”

• Proposer

– Increments the latest event ID it knows about

• ID = sequence number

– Asks all the acceptors to reserve that event ID

• Acceptors

– A majority of acceptors have to accept the requested event ID

11

Proposal Numbers

• Each proposal has a number (created by proposer)

– Must be unique (e.g., <sequence #>.<process_id>)

• Newer proposals take precedence ov er older ones

• Each acceptor

– Keeps track of the largest number it has seen so far

– Lower proposal numbers get rejected

• Acceptor sends back the {number, value} of the currently accepted
proposal

• Proposer has to “play fair”:

– It will ask the acceptors to accept the {number, value}

– Either its own or the one it got from the acceptor

12

CS 417 11/4/2016

Paul Krzyzanowski 3

Paxos in action
Goal: have all acceptors agree to a value v associated with a proposal

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Leader

Paxos nodes: one machine may serve several roles

13

Acceptor

Proposer

Proposer

Learner

Acceptor

Paxos in action: Phase 0

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Client sends a request to a proposer

request(v)

14

Paxos in action: Phase 1a – PREPARE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: creates a proposal #N (N acts like a Lamport time stamp),
where N is greater than any previous proposal number used by this proposer

Send to Quorum of Acceptors (however many you can reach – but a majority)

Acceptor

Prepare(N)

15

N = < seq# . process_ID >

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Acceptor: if proposer’s ID > any previous proposal
 promise to ignore all requests with IDs < N

 reply with info about highest past proposal: { N’, value }

Acceptor

Promise(N’, [value])

Promise to ignore all

proposals < N

Promise contains the previous N

16

Paxos in action: Phase 2a – ACCEPT

Client

Acceptor

Acceptor

Quorum

Learner

Proposer: if proposer receives promises from the quorum (majority):
 Attach a value v to the proposal (the event).

 Send Accept to quorum with the chosen value
If promise was for another {N, v}, proposer MUST accept v for the highest accepted proposal

Acceptor

Promise to ignore all

proposals < N

Accept (N, v)

17

Proposer

Paxos in action: Phase 2b – ANNOUNCE

Client

Proposer

Acceptor

Quorum

Learners

Acceptor: if the promise still holds, then announce the value v
 Send Accepted message to Proposer and every Learner

 BUT: if a higher proposal # may have been received during this time
 then send NACK to proposer so it can try again

Acceptor

Accepted

Acceptor

Accepted(N)

18

Announce(N, v)

CS 417 11/4/2016

Paul Krzyzanowski 4

Paxos in action: Phase 3 – ANNOUNCE

Client

Proposer

Acceptor

Quorum

Learner: Respond to client and/or take action on the request

Acceptor

Promise to ignore all

proposals < N

Acceptor

19

Announce(N, v)

Server

Server

Server

Learners

Paxos: A Simple Example – All Good

20

Paxos in action: Phase 0

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Client sends a request to a proposer

Request(“e”)

21

Paxos in action: Phase 1a – PREPARE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: picks a sequence number: 5
Send to Quorum of Acceptors

Acceptor Prepare(5:“e”)

22

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Acceptor: Suppose 5 is the highest sequence # any acceptor has seen
 Each acceptor PROMISES not to accept any lower numbers

Acceptor

Promise(5:“e”)

Promise to ignore all

proposals < 5

23

Paxos in action: Phase 2a – ACCEPT

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: Proposer receives the promise from a majority of acceptors
 Proposer must accept that <seq, value>

Acceptor

Promise to ignore all

proposals < N

Accept(5,“e”)

24

CS 417 11/4/2016

Paul Krzyzanowski 5

Paxos in action: Phase 2b – ANNOUNCE

Client

Proposer

Acceptor

Quorum

Learners

Acceptor: Acceptors state that they accepted the request

Acceptor

Accepted

Acceptor

Accepted(5,“e”)

25

Announce(5,“e”)

Announce(5,“e”)

Paxos: A Simple Example – Higher Offer

26

Paxos in action: Phase 0

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Client sends a request to a proposer

Request(“e”)

27

Paxos in action: Phase 1a – PREPARE

Client

Acceptor

Acceptor

Quorum

Learner

Proposer: picks a sequence number: 5
Send to Quorum of Acceptors

Acceptor Prepare(5:“e”)

28

Prepare(7:“f”)

One acceptor receiv es a higher
offer BEFORE it gets this PREPARE

message

Proposer

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Acceptor: Suppose 5 is the highest sequence # any acceptor has seen
 Each acceptor PROMISES not to accept any lower numbers

Acceptor

Promise(5:“e”)

29

Promise(7:“f”)

Promise(5:“e”)

Paxos in action: Phase 2a – ACCEPT

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: Proposer receives the higher # offer and MUST change its mind

Acceptor

Promise to ignore all

proposals < N

Accept(7,“f”)

30

CS 417 11/4/2016

Paul Krzyzanowski 6

Paxos in action: Phase 2b – ANNOUNCE

Client

Proposer

Acceptor

Quorum

Learners

Acceptor: Acceptors state that they accepted the request

Acceptor

Accepted

Acceptor

Accepted(7,“f”)

31

Announce(7,“f”)

Announce(7,“f”)

Paxos: Keep trying if you need to

• A proposal N may fail because

– The acceptor may have made a new promise to ignore all proposals less

than some value M >N

– A proposer does not receive a quorum of responses: either promise
(phase 1b) or accept (phase 2b)

• Algorithm then has to be restarted with a higher proposal #

32

Paxos summary

• Paxos allows us to ensure consistent (total) ordering ov er

a set of ev ents in a group of machines

– Events = commands, actions, state updates

• Each machine will hav e the latest state or a prev ious

v ersion of the state

• Paxos used in:

– Cassandra lightweight transactions

– Google Chubby lock manager / name server

– Google Spanner, Megastore

– Microsoft Autopilot cluster management service from Bing

– Vmware NSX Controller

– Amazon Web Services

33

Paxos summary

To make a change to the system:

– Tell the proposer (leader) the event/command you want to add

• Note: these requests may occur concurrently

• Leader = one elected proposer. Not necessary for Paxos algorithm but an
optimization to ensure a single, increasing stream of proposal numbers. Cuts

down on rejections and retries.

– The proposer picks its next highest event ID and asks all the acceptors to
reserve that event ID

• If any acceptor sees has seen a higher event ID, it rejects the proposal & returns

that higher event ID

• The proposer will have to try again with another event ID

– When the maj ority of acceptors accept the proposal, accepted events
are sent to learners, which can act on them (e.g., update system state)

• Fault tolerant: need 2k+1 servers for k fault tolerance

34

The End

November 4, 2016 35 © 2014-2015 Paul Krzyzanowski

