CS417

10/31/2016

Google Chubby

-
Distributed Systems
15. Distributed File Systems
Paul Krzyzanowski
Ruigers University
Fall 2016
L
Gotooer 312036 2042016 Pt Keyzarone T

L Chubby

Distributed lock service + simple fault-tolerant file sy stem

* Interfaces
— File access
— Event notification
— File locking

* Chubby is used to:
— Manage coarse-grained, long-term locks (hours or days, not< sec)
« get/release/check lock — identified witha name
— Store small amounts of data associated with a name
« E.g., system configurationinfo, identification of primary coordinators
— Elect masters

» Design priority : av ailability rather than performance

October 31, 2016 © 20142015 Paul Krzyzanaveki 3

£ Chubby Master

* Chubby has at most one master
— All requests from the client go to the master

« All other nodes (replicas) must agree on who the master is
— Paxos consensus protocol used to elect a master
— Master gets a lease time
« Re-run master selection after lease time expires o extend the lease
...orif the master fails
— When a Chubby node receives a proposal for a new master
It will accept it only if the old master’s lease expired

(&

October 31, 2016 © 20142016 Paul Krzyzanowski 5

Paul Krzyzanowski

.

October 31, 2016 © 20142016 Paul Krzyzanaveki

L Chubby Deployment

« Client library + a Chubby cell (5 replica servers)

Chubby
Library

Chubby cell

L

* Memory cache
* Persistent database
* Paxos

(consensus  protocol)

October 31, 2016 © 20142016 Paul Krzyzanoveki

£ Simple User-level AP| for Chubby

* Look up Chubby nodes viaDNS
* Ask any Chubby node for the master node
* File sy stem interface (names & content)

(&

October 31, 2016 © 20142016 Paul Krzyzanoweki



L Chubby: File System Interface

[ ]

* /Is/celllrest/of/name
— /Is: lock senvice (common to all Chubby names)
:resolved to a set of servers in a Chubby cell via DNS lookup

— Irest/of/name: interpreted within the cell
naming looks

. it of like AFS
» Each file has sonorie

— Name

— Data

— Access control list

— Lock

— No modification, access times

— No seek or partial readsiwrites; no symbolic links; no moves

(& J/

October 31, 2016 © 20142015 Paul Krzyzanoveki 7

L Chubby: Locks

» Every file & directory can act as a reader-writer lock
— Either one client can hold an exclusive (writer) lock
— Or multiple clients can hold reader locks

* Locks are advisory

« If aclient releases a lock, the lock is immediately av ailable

« If aclient fails, the lock will be unav ailable for a
lock-delay period (ty pically 1 minute)

L /

October 31, 2016 © 20142016 Paul Krzyzanowski 9

£ Events

« Clients may subscribe to events:
— File content modifications
— Child node added/removed/modified
— Chubby master failed over
— File handle & its lock became invalid
— Lock acquired

— Conflicting lockrequest from another client

(& /

October 31, 2016 © 20142016 Paul Krzyzanowski 1

Paul Krzyzanowski

10/31/2016

~

L Chubby: API

open() Set mode: read, write & lock, change ACL,
event list, lock-delay, create

Py

close()

GetContentsAndStat() Read file contents & metadata

SetContents(), SetACL() Write file contents or ACL

Delete()

Acquire(), TryAcquire(), Release() Lock operations

GetSequencer() Sequence # for a lock

SetSequencer() Associate a sequencer with a file hande

CheckSequencer() Checkif sequencer is valid

October 31, 2016 © 20142015 Paul Krzyzanoveki 8

L Using Locks for Leader Election J

* Using Chubby locks makes leader election easy
— Noneed for user servers to participate ina consensus protocol
— Chubby provides the fault tolerance
— Participant tries to acquire a lock
« Ifit gets it, then it's the master!

« Example: using an elected master to write to a file server
— Participant gets alock, becomes master
* Gets a lock acquisition count
— In each RPC to a server send an acquisition count to the file

— During request processing, a server will reject old (delayed) packets
if (acquisition_count < current_acquisition_count)
reject request /* it must be from a delayed packet */

L J

October 31, 2016 © 20142016 Paul Krzyzanoveki 10

L Chubby client caching & master replication J

* At the client
— Data cached in memory by chubby clients
« Cache is maintained by a Chubby lease, which can be invalidated
— All clients write through to the Chubby master

+ At the master
— Writes are propagated via Paxos consensus to all Chubby replicas
* Replicas remain synchronized
« The master replies to a client after the writes reach a majority of replicas
— Cache invalidations
« Master keeps a list of what each client may be caching
+ Invalidations sent by master and are acknowledged by client
« File is then cacheable again

— Chubby database is backed up to GFS ewery few hours
\ /

October 31, 2016 © 20142016 Paul Krzyzanoweki 2




CS417 10/31/2016

s ) R
L Client-server file systems i
» Central servers
— Point of congestion, single point of failure
: : - « Alleviate somewhat with replication and client cachin
Distributed Files P 9
— E.g., Coda, oplocks
— Limited replication can lead to congestion
— Separate set of machines to administer
* File data is still centralized
— Afile server stores all data from afile— not split across servers
— Even if replication is in place,
aclient downloads all data for afile from one server
\ y, \ /
oioher 31,2016 © 20142016 P Kizyzanoneki = otober 51,2016 2014 2016 Pauk Krzyzavores m
. 'S N
L Peer-to-peer file system |
» User systems have LOTS of disk space
— (4 TB disks commodity items @ $150)
» Use workstations cooperating as peers to provide file )
system service Internet-based file sync & sharing:
) Dropbox
* Any machine can share/cache/control any block of data P
« Prototy pe serv erless file sy stem
— xFS from Berkeley (1993) demonstrated to be scalable
* Peer-to-peer file sharing
— Bittorrent (2001)
We’ll examine this some more when we look at distributed hash tables
\ y, \ /
Gotoher 31, 2016 T — 5 Gotober o1, 2016 BT T — -
- . . R y .
£ File synchronization | L What's different about dropbox? J
* Client runs on desktop « Most web-based apps have high read to write ratios
. — E.g., twitter, facebook, reddit, ... 100:1, 1000:1, or higher
» Uploads any changes made within a dropbox folder X
« But with Dropbox...
* Huge scale — Everyone’s computer has a complete copy of theirDropbox
— 100+ million users syncing 1 billion files per day — Traffic happens only when changes occur
. — File upload : file download ratioroughly 1:1
¢ Des'Qn * Huge number of uploads compared to traditional services
— Small client that doesn’t take a lot of resources ’ X
ibility of low bandwidth * Must abide by most ACID requirements ... sort of
— Bpect possibility o OW_ an th to user — Atomic: don’t share partially-modified files
— Scalable back-end architecture _ Consistent:
— 99%+ of code written in Pyth_on . « Operations have to be in order and reliable
=server software migrated to Go in 2013 + Cannot delete a file in a shared folder but have others see
— Durable: Files cannot disappear
— (OK to punt on “Isolated”)
\ y, \ /

October 31, 2016 © 20142016 Paul Krzyzanowski 17 October 31, 2016 © 20142016 Paul Krzyzanoweki 18

Paul Krzyzanowski 3



CS417 10/31/2016

L Dropbox: architecture ewolution: version 1 L Dropbox: architecture evolution: version 2

[ ]

— One sernver: web server, app server, mySQL database, sync server — Server ran out of disk space:

moved data to Amazon S3 senvice (keyvalue store)
— Servers became overloaded: moved mySQL DB to another machine
- Clients periodically polled server for changes

1
1
Server [ database |—| Server |—'—| Amazon 53]
[ ] 1

+ Metadata
« Information  about fles

« Files brokeninto 4 MB chunks

+Name, atributes, chunks + Hashes stored per file

__________________________ « Deduplication
+ Sore only one copy among
multple clients

mid 2007 late 2007
0 users ~0 users
\ See htplyoutu be/PEdg L See htplyout bePEAgwsthme )
October . 2016 © 20142016 P auk Kzyzanonsi g October 31, 2016 © 20142016 P aul Krzyzanonskd E)

L Dropbox: architecture evolution: version 3 L Dropbox: architecture evolution: version 4 J

— Move from polling to notifications: add notification serv er — Add more metaservers and blockservers
— Split web server into two: — Blockservers do not access DB directly, they send RPCs to metaservers
« Amazon-hosted server hosts file content and accepts uploads (stored as blocks) — Add a memory cache (memcache) in front of the databaseto avoid scaling

+ Locally-hosted server manages metadata

memcache Amazon S3

|ll Block Server

early 2008 late 2008
50k users ~100k users
\_ See htipJlyoutu be/PE4g \_ See htip:lyoutu be/PE4gwsthmc J
OctoberaL 2016 © 20142016 Pauk Krzyzanowski 2 October 31, 2016 © 20142016 Pauk Krzyzanowsks 2
3 N

£ Dropbox: architecture evolution: version 5

— 10s of millions of clients — Clients have to connect before getting notifications
— Add 2-level hierarchy to notification servers: ~1 million connections/server

Google File System (GFS)

early 2012
>50M users
_ Sr‘s'hr)‘\,'m‘\?\snPFﬂ(‘wi‘me‘) _ Y,
October31, 2016 © 20142016 Paul Krzyzanonski B October 3L, 2016 © 20142016 Paut Kizyzanonski 2

Paul Krzyzanowski 4



CS417

L GFS Goals

 Scalable distributed file sy stem
+ Designed for large data-intensiv e applications
* Fault-tolerant; runs on commodity hardware

+ Delivers high performance to a large number of clients

L

[ ]

October 31, 2016 © 20142016 Paul Krzyzanoveki

L Design Assumptions

* File access:

— Most files are appended, not overwritten
+ Random writes within a file are almost never done
« Once created, files are mostly read; often sequentially

— Workload is mostly:
* Reads: large streaming reads, small random reads —these dominate
+ Large appends
+ Hundreds of processes may append to a file concurrently

* FSwill store a modest number of files for its scale
— approx. a few million

+ Designing the FS APl with the design of apps benéefits the
sy stem
+ Apps can handle arelaxed consistency model

L

October 31, 2016 © 20142016 Paul Krzyzanowski

£ GFS Master & Chunkservers

GFS cluster
— Multiple chunkservers
« Data storage: fixed-size chunks
+ Chunks replicated on several systems
— One master
+ Stores file system metadata (names, attributes)
+ Maps files to chunks

Thousands of
chunkservers

chunkserver

chunkserver

chunkserver

(&

October 31, 2016 © 20142016 Paul Krzyzanowski

Paul Krzyzanowski

10/31/2016

L Design Assumptions

L ]

» Assumptions for conv entional file sy stems don’t work
— E.g., “nost files are small’, “lots have short lifetines”

» Componentfailures are the norm, notan exception
— File system = thousands of storage machines
— Some % not working at any given time

* Files are huge. Multi-TB files arethe nom
— It doesn't make sense to work with billions of nKB-sized files
— 1/O operations and block size choices are also affected

(& J

October 31, 2016 © 20142016 Paul Krzyzanaveki 27

( File System Interface 1
g L

* GFS does not hav e a standard OS-level API
— No POSIX API
— No kernel/VFS implementation
— User-level API for accessing files
— GFS servers are implemented in user space using native Linux FS

* Files organized hierarchically in directories

 Operations
— Basic operations
« Create, delete, open, close, read, write
— Additional operations
* Snapshot: create a copy of a file or directory tree at low cost
+ Append: allow multiple clients to append atomically without locking

L J

October 31, 2016 © 20142016 Paul Krzyzanoveki 2

( GFS Master & Chunksenvers 1
Ly 9

GFS cluster

data blocks

“directories & inodes”

(& J

October 31, 2016

© 20142016 Paul Krzyzanoweki El



CS417

Py

£ GFS Files A
[

file | Atie

is made of 64 MB chunks
IVVVVVVVVVVVVVVYVVYV )

that are replicated

for fault tolerance

‘A\‘A’A'A‘AA‘AA‘A‘A"AAAAAA

O | 0ag
jd 0

chunkserver

D D D Chunks live on
D D chunkservers

chynkserver

chunkserver

‘Checkpant
image

The master manages the file
system namespace:
names and name—{chunk list}

master

In-memory FS metadaa

\ y,
oioher 31,2016 © 20142016 Paut Kizyzanowsa =
N
L Chunks and Chunksenvers |
* Chunk size = 64 MB (default)
— Chunkserver stores a 32-bit checksum with each chunk
« In memory & logged to disk: allows it b detect data corruption
» Chunk Handle
— Globally unique 64-bit number
— Assigned by the master when the chunk is created
» Chunkserv ers store chunks on local disks as Linux files
» Each chunk is replicated on multiple chunkserv ers
— Three replicas (different levels can be specified)
— Popular files may need more replicas to awid hotspots
\ y,
Gotoher 31, 2016 T — =
£ Client Interaction Model i
* GFS client code linked into each app
— No OS-lewvel API
— Interacts with master for metadata-related operations
— Interacts directly with chunkservers for file data
« All reads & writes go directly to chunkservers
« Masteris not a point of congestion
* Neither clients nor chunkserv ers cache data
— Except for the system buffer cache
+ Clients cache metadata
— E.g., location of afile’s chunks
\ y,

October 31, 2016 © 20142016 Paul Krzyzanouski S

Paul Krzyzanowski

10/31/2016

L Core Part of Google Cluster Emvironment

* Google Cluster Environment
— Core senvices: GFS + cluster scheduling system computation close to
— Typically 100s to 1000s ofactive jobs the data
— 200+ clusters, many with 1000s of machines
— Pools of 1000s of clients
— 4+ PB filesystems, 40 GB/s read/write loads

Bring the

File system
master

Scheduling | Job
Master scheduler

Lease (lock)

Chunk Scheduling
Server Slave

Chunk Scheduling
Server Slave

Linux

Linux

_ _ manager.for
mutex
Machine 1 Machine n
i\ J
October 31, 2016 © 20142016 P aul Krzyzanonskd

L Master J

* Maintains all file system metadata
— Namespace
— Access control info
— Filename to chunks mappings
— Current locations of chunks

« Manages
— Chunkleases (locks)
— Garbage collection (freeing unused chunks)
— Chunk migration (copying/moving chunks)

« Master replicates its data for fault tolerance

« Periodically communicates with all chunkservers
— Via heartbeat messages
— To get state and send commands

October 31, 2016 © 20142016 Paul Krzyzanoveki 3

L One master = simplified design J

« All metadata stored in master’'s memory
— Superfast access

+ Namespaces and name-to-chunk maps
— Stored in memory
— Also persist in an operationlog onthe disk
* Replicated onto remote machines for backup

« Operation log
— similar to a journal
— All operations are logged
— Periodic checkpoints (stored in a B-tree) to avoid playing back entire log

* Master does not store chunk locations persistently
— This is queried from all the chunkservers: avoids consistency problems

October 31, 2016 © 20142016 Paul Krzyzanousk ¥



CS417

L Why Large Chunks?

[ ]

* Default chunk size = 64MB
(compare to Linux ext4 block sizes: typically 4 KB and up to 1 MB)

Reduces need for frequent communication with master to get chunk
location info

Clients can easily cache info to refer to all data of large files
— Cached data has timeouts to reduce possibility of reading stale data

Large chunk makes it feasible to keep a TCP connection open to a
chunkserver for an extended time

Master stores <64 bytes of metadata for each 64MB chunk

October 31, 2016 © 20142016 Paul Krzyzanoveki E3

Writing to files

* Less frequent than reading

* Master grants achunk lease to one of the replicas
— This replicawill be the primary replica chunkserver
— Primary can request lease extensions, if needed
— Master increases the chunk version number and informs replicas

October 31, 2016 © 20142016 Paul Krzyzanowski 40

Writing to files: two phases

Phase 2: Write data
Add it to the file (commit)
— Client waits for replicas to acknowledge receiving the data
— Send a write request to the primary, identifying the data that was sent
— The primary is responsible for serialization of writes
« Assigns consecutve serial numbers to all writes that it received

« Applies writes in serial-number order and forwards write requests in order
to secondaries

— Once all acknowledgements have been received, the primary
acknowledges the client

2

primary
chunkserver

client

3

October 31, 2016 © 20142016 Paul Krzyzanowski a2

Paul Krzyzanowski

10/31/2016

f

Reading Files

1. Contact the master
2. Get file’'s metadata: list chunk handles

3. Get the location of each of the chunk handles
— Multiple replicated chunkservers per chunk

4. Contact any av ailable chunkserverfor chunk data

L ]

October 31, 2016 © 20142016 Paul Krzyzanaveki

Writing to files: two phases

Phase 1: Send data
Deliver data but don’t write to the file
— Aclientis given alist of replicas

« Identifying the primary and secondaries

— Clientwrites to the closest replicachunkserver
» Replicaforwards the data to another replicachunkserver
» That chunkserver forwards to another replicachunkserver

— Chunkservers store this data ina cache

[ client H chunkserver H chunkserver H chunkserver ]
1 2 3

October 31, 2016 © 20142016 Paul Krzyzanoveki

Writing to files

* Note:
Data Flow (phase 1) is different fromControl Flow (phase 2)

» Data Flow:
— Client to chunkserver to chunkserver to chunkserver...
— Order does not matter

« Control Flow (write):
— Client to primary to all secondaries
— Order maintained

* Chunk version numbers are used to detect if any replica
has stale data (was not updated because it was down)

October 31, 2016 © 20142016 Paul Krzyzanoweki



CS417

L Namespace

[ ]

» No per-directory data structure like most file sy stems
— E.g., directory file contains names of all files in the directory

* No aliases (hard or sy mbolic links)

* Namespace is a single lookup table
— Maps pathnames to metadata

L

October 31, 2016 © 20142016 Paul Kizyzanouski

L HDFS Design Goals & Assumptions

* HDFSis an open source (Apache) implementation
inspired by GFS design

« Similar goals and same basic design as GFS
— Run on commodity hardware
— Highlyfault tolerant
— High throughput — Designed for large data sets
— OKto relax some POSIX requirements
— Large scale deployments
+ Instance of HDFS may comprise 1000s of servers
« Each server stores part of the file system’s data

* But
— No support for concurrent appends

L

October 31, 2016 © 20142016 Paul Krzyzanowski

£ HDFS Architecture

* Written in Java
* Master/Slav e architecture

* Single NameNode
— Master server responsible for the namespace & access control

» Multiple DataNodes
— Responsible for managing storage attached to its node

» Afileis split into one or more blocks
— Typical block size = 128 MB (vs. 64 MB for GFS)
— Blocks are stored in a set of DataNodes

(&

October 31, 2016 © 20142016 Paul Krzyzanowski

Paul Krzyzanowski

10/31/2016

L HDFS: Hadoop Distributed File System

« Primary storage system for Hadoop applications

+ Hadoop

— Software library — framework that allows for the distributed processing of large data
sets across clusters of computers

Hadoop includes:

~ MapReduce™:sofware framework for distributed processingoflarge data sets on compute clusters.
— Avro™:Adata serialization system.

— Cassandra™:Ascalable mult-master database with no single points offailure.

— Chukwa™:Adata collection systemfor managing large distributed systems.

— HBase™:Ascalable, distibuted database thatsupports stuctured data storage for large tables.

~ Hive™:Adatawarehouse infrastructure thatprovides data summarization and ad hoc querying

~ Mahout™: AScalable machine learning and data mining library

— Pig™: Ahigh-level data-flow language and execution frameworkfor parallel computation

— ZooKeeper™: Ahigh-performance coordination sewicefor distributed applicatons.

\§ J

October 31, 2016 © 20142016 Paul Krzyzanoveki 45

L HDFS Design Goals & Assumptions J

* Write-once, read-many file access model

+ Afile’s contents will not change
— Simplifies data coherency
— Suitable for web crawlers and MapReduce applications

L J

October 31, 2016 © 20142016 Paul Krzyzanoveki a7

GFS J

that are replicated
for fault tolerance

D D D Chunks  live on
D D chunkservers

chypkserver

chunkserver chunkserver

The master manages the

master file systemnamespace

In-memory FS metadata

© 20142016 Paul Krzyzanousk a9

(&

October 31, 2016



CS417 10/31/2016

™ N
L HDFS ( NameNode (= GFS master)
9 g 9
i A fil "
| il | A - Executes metadata operations
is made of 128 MB blocks - open, close, rename
— Maps file blocks to DataNodes
that are replicated — Maintains HDFS namespace
for fault tolerance
» Transaction log (EditLog) records every change that occurs to file
system metadata
— Entire file system namespace + file-block mappings is stored in memory
D D D D D D D — ... and stored in afile (Fsimage) for persistence
Blocks live on
0 0 0 0@ O~ s s
+ NameNode receives a periodic Heartbeat and Blockreport from each
DataNgge DataNode DataNode DataNode DataNode
— Heartbeat = “l am alive” message
The master manages the — Blockreport = list of all blocks on a datanode
NameNode file system namespace « Keep track of which DataNodes own which blocks & replication count
i\ J \§ J
October . 2016 © 20142016 Paul Kzyzanonsi E) October 31, 2016 © 20142016 Paul Kryzanousid B

L DataNode (= GFS chunkserver) L Rack-Aware Reads & Replica Selection J

* Responsible for serving read/write requests * Client sends request to NameNode

« Blocks are replicated for fault tolerance — Receiwes list of blocks and replicaDataNodes per block

— App can specify # replicas at creation time
— Can be changed later » Client tries to read from the closest replica
— Prefer same rack

— Else same data center

— Location awareness is configured by the admin

* Blocks are stored in the local file sy stem at the DataNode

L / L J

October 31, 2016 © 20142016 Paul Krzyzanowski 52 October 31, 2016 © 20142016 Paul Krzyzanoveki 53

. A 'S ~
£ Writes

« Client caches file datainto atemp file

+ When temp file 2 one HDFS block size
— Client contacts NameNode
— NameNode inserts file name into file system hierarchy & allocates a data block
— Responds to client with the destination data block The End
— Client writes to the block at the corresponding DataNode

+ When afile is closed, remaining data is transferred to a DataNode
— NameNode is informed that the file is closed
— NameNode commits file creation operation into a persistent store (log)

« Data writes are chained: pipelined
— Client writes to the first (closest) DataNode
— That DataNode writes the data stream to the second DataNode
— And soon...

(& / (& J

October 31, 2016 © 20142016 Paul Krzyzanowski 5 October 31, 2016 © 20142016 Paul Krzyzanousk 55

Paul Krzyzanowski 9



