
CS 417 10/31/2016

Paul Krzyzanowski 1

Distributed Systems
14. Network File Systems

Paul Krzyzanowski

Rutgers University

Fall 2016

1 October 31, 2016 © 2014-2016 Paul Krzyzanowski

Accessing files

File sharing with socket-based programs

HTTP, FTP, telnet:

– Explicit access

– User-directed connection to access remote resources

We want more transparency

– Allow user to access remote resources just as local ones

NAS: Network Attached Storage

October 31, 2016 © 2014-2016 Paul Krzyzanowski 2

File service models

Upload/Download model

– Read file: copy file from server to client

– Write file: copy file from client to server

Advantage:

– Simple

Problems:

– Wasteful: what if client needs small
piece?

– Problematic: what if client doesn’t have

enough space?

– Consistency: what if others need to
modify the same file?

Remote access model

File service provides functional interface:

– create, delete, read bytes, write bytes, etc…

Advantages:

– Client gets only what’s needed

– Server can manage coherent view of file

system

Problem:

– Possible server and network congestion

• Servers are accessed for duration of file

access

• Same data may be requested repeatedly

October 31, 2016 © 2014-2016 Paul Krzyzanowski 3

Semantics of file sharing

Sequential Semantics

Read returns result of last write

Easily achieved if

– Only one server

– Clients do not cache data

BUT

– Performance problems if no cache

• Obsolete data

– We can write-through

• Must notify clients holding copies

• Requires extra state, generates

extra traffic

Session Semantics

Relax the rules

• Changes to an open file are
initially visible only to the process
(or machine) that modified it.

• Need to hide or lock file under

modification from other clients

• Last process to modify the file
wins.

October 31, 2016 © 2014-2016 Paul Krzyzanowski 4

Remote File Service

File Directory Service

– Maps textual names for file to internal locations that can be used by
file service

File service

– Provides file access interface to clients

Client module (driv er)

– Client side interface for file and directory service

– if done right, helps provide access transparency

 e.g. implement the file system under the VFS layer

October 31, 2016 © 2014-2016 Paul Krzyzanowski 5

System design issues

October 31, 2016 © 2014-2016 Paul Krzyzanowski 6

CS 417 10/31/2016

Paul Krzyzanowski 2

System Design Issues

• Transparency

– Integrated into OS or access via APIs?

• Consistency

– What happens if more than one user accesses the same file?

– What if files are replicated across servers?

• Security

• Reliability

– What happens when the server or client dies?

• State

– Should the server keep track of clients between requests?

7

Accessing Remote Files

For maximum transparency, implement the client module as a file
system type under VFS

System call interface

VFS

ext4 NTFS procfs
Remote

FS

Sockets

Network protocols

Net devices

network

Kernel-level sockets interface
sosend, soreceive in BSD & Linux

October 31, 2016 © 2014-2016 Paul Krzyzanowski 8

Stateful or Stateless design?

Stateful

Server maintains client-specific state

• Shorter requests

• Better performance in processing

requests

• Cache coherence is possible

– Server can know who’s accessing what

• File locking is possible

Stateless

Server maintains no information on
client accesses

• Each request must identify file and

offsets

• Server can crash and recover

– No state to lose

• Client can crash and recover

• No open/close needed

– They only establish state

• No server space used for state
– Don’t worry about supporting many

clients

• Problems if file is deleted on server

• File locking not possible

October 31, 2016 © 2014-2016 Paul Krzyzanowski 9

Caching

Hide latency to improv e perf ormance f or repeated

accesses

Four places

– Server’s disk

– Server’s buffer cache

– Client’s buffer cache

– Client’s disk

WARNING:
risk of cache

consistency problems

October 31, 2016 © 2014-2016 Paul Krzyzanowski 10

Approaches to caching

• Write-through

– What if another client reads its own (out-of-date) cached copy?

– All accesses will require checking with server

– Or … server maintains state and sends invalidations

• Delay ed writes (write-behind)

– Data can be buffered locally
(watch out for consistency – others won’t see updates!)

– Remote files updated periodically

– One bulk wire is more efficient than lots of little writes

– Problem: semantics become ambiguous

October 31, 2016 © 2014-2016 Paul Krzyzanowski 11

Approaches to caching

• Read-ahead (pref etch)

– Request chunks of data before it is needed.

– Minimize wait when it actually is needed.

• Write on close

– Admit that we have session semantics.

• Centralized control

– Keep track of who has what open and cached on each node.

– Stateful file system with signaling traffic.

October 31, 2016 © 2014-2016 Paul Krzyzanowski 12

CS 417 10/31/2016

Paul Krzyzanowski 3

NFS
Network File System
Sun Microsystems

October 31, 2016 © 2014-2016 Paul Krzyzanowski 13

NFS Design Goals

• Any machine can be a client or server

• Must support diskless workstations
– Device files refer back to local drivers

• Heterogeneous systems
– Not 100% for all UNIX system call options

• Access transparency: normal file system calls

• Recovery from failure:

– Stateless, UDP, client retries

– Stateless → no locking!

• High Performance

– use caching and read-ahead

October 31, 2016 © 2014-2016 Paul Krzyzanowski 14

NFS Design Goals

Transport Protocol

Initially NFS ran over UDP using Sun RPC

Why was UDP chosen?

- Slightly faster than TCP

- No connection to maintain (or lose)

- NFS is designed for Ethernet LAN environment – relatively reliable

- UDP has error detection (drops bad packets) but no retransmission

 NFS retries lost RPC requests

October 31, 2016 © 2014-2016 Paul Krzyzanowski 15

Client Server

VFS on client; Server accesses local f ile system

16

System call interface

VFS

ext4 procfs
NFS

Client

System call
interface

VFS

ext4 procfs

NFS
Server

NFS Protocols

Mounting protocol

Request access to exported directory tree

Directory & File access protocol

Access files and directories
(read, write, mkdir, readdir, …)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 17

Mounting Protocol

static mounting

– mount request contacts server

Server: edit /etc/exports

Client: mount fluffy:/users/paul /home/paul

October 31, 2016 © 2014-2016 Paul Krzyzanowski 18

CS 417 10/31/2016

Paul Krzyzanowski 4

Mounting Protocol

• Send pathname to serv er

• Request permission to access contents

• Serv er returns f ile handle

– File device #, inode #, instance #

client: parses pathname
 contacts server for file handle

client: create in-memory VFS inode at mount point.
 internally points to rnode for remote files
 - Client keeps state, not the server

19

Directory and file access protocol

• First, perf orm a lookup RPC

– returns file handle and attributes

• lookup is not like open

– No information is stored on server

• handle passed as a parameter f or other f ile access

f unctions

– e.g. read(handle, offset, count)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 20

Directory and file access protocol

NFS has 16 f unctions

– (version 2; six more added in version 3)

null
lookup

create
remove
rename

link
symlink
readlink

read
write

mkdir
rmdir
readdir

getattr
setattr

statfs

October 31, 2016 © 2014-2016 Paul Krzyzanowski 21

NFS Performance

• Usually slower than local

• Improv e by caching at client

– Goal: reduce number of remote operations

– Cache results of
 read, readlink, getattr, lookup, readdir

– Cache file data at client (buffer cache)

– Cache file attribute information at client

– Cache pathname bindings for faster lookups

• Serv er side
– Caching is “automatic” via buffer cache

– All NFS writes are write-through to disk to avoid unexpected data
loss if server dies

October 31, 2016 © 2014-2016 Paul Krzyzanowski 22

Inconsistencies may arise

Try to resolve by validation

– Save timestamp of file

– When file opened or server contacted for new block

• Compare last modification time

• If remote is more recent, invalidate cached data

• Always invalidate data after some time

– After 3 seconds for open files (data blocks)

– After 30 seconds for directories

• If data block is modified, it is:

– Marked dirty

– Scheduled to be written

– Flushed on file close

October 31, 2016 © 2014-2016 Paul Krzyzanowski 23

Improving read performance

• Transf er data in large chunks

– 8K bytes default (that used to be a large chunk!)

• Read-ahead

– Optimize for sequential file access

– Send requests to read disk blocks before they are requested by the
application

October 31, 2016 © 2014-2016 Paul Krzyzanowski 24

CS 417 10/31/2016

Paul Krzyzanowski 5

Problems with NFS

• File consistency

• Assumes clocks are sy nchronized

• Open with append cannot be guaranteed to work

• Locking cannot work

– Separate lock manager added (but this adds stateful behavior)

• No ref erence counting of open f iles

– You can delete a file you (or others) have open!

• Global UID space assumed

October 31, 2016 © 2014-2016 Paul Krzyzanowski 25

Problems with NFS

• File permissions may change

– Invalidating access to file

• No encry ption

– Requests via unencrypted RPC

– Authentication methods available

• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to encrypt

October 31, 2016 © 2014-2016 Paul Krzyzanowski 26

Improving NFS: version 2

• User-lev el lock manager

– Monitored locks: introduces state at server
(but runs as a separate user-level process)
• status monitor: monitors clients with locks

• Informs lock manager if host inaccessible

• If server crashes: status monitor reinstates locks on recovery

• If client crashes: all locks from client are freed

• NV RAM support

– Improves write performance

– Normally NFS must write to disk on server before responding to
client write requests

– Relax this rule through the use of non-volatile RAM

October 31, 2016 © 2014-2016 Paul Krzyzanowski 27

Improving NFS: version 2

• Adjust RPC retries dy namically

– Reduce network congestion from excess RPC retransmissions
under load

– Based on performance

• Client-side disk caching

– cacheFS

– Extend buffer cache to disk for NFS

• Cache in memory first

• Cache on disk in 64KB chunks

October 31, 2016 © 2014-2016 Paul Krzyzanowski 28

Support Larger Environments: Automounter

Problem with mounts

– If a client has many remote resources mounted, boot-time can be
excessive

– Each machine has to maintain its own name space

• Painful to administer on a large scale

Automounter

– Allows administrators to create a global name space

– Support on-demand mounting

October 31, 2016 © 2014-2016 Paul Krzyzanowski 29

Automounter

• Alternativ e to static mounting

• Mount and unmount in response to client demand

– Set of directories are associated with a local directory

– None are mounted initially

– When local directory is referenced

• OS sends a message to each server

• First reply wins

– Attempt to unmount every 5 minutes

• Automounter maps

– Describes how file systems below a mount point are mounted

October 31, 2016 © 2014-2016 Paul Krzyzanowski 30

CS 417 10/31/2016

Paul Krzyzanowski 6

Automounter maps

Example:

 automount /usr/src srcmap

srcmap contains:

cmd -ro doc:/usr/src/cmd

kernel -ro frodo:/release/src \

 bilbo:/library/source/kernel

lib -rw sneezy:/usr/local/lib

Access /usr/src/cmd: request goes to doc

Access /usr/src/kernel:

 ping frodo and bilbo, mount first response

October 31, 2016 © 2014-2016 Paul Krzyzanowski 31

Kernel

VFS

NFS

client

The automounter

automounter

NFS request

NFS mount

NFS request

32

NFS

Server

application

More improvements… NFS v3

• Updated v ersion of NFS protocol

• Support 64-bit f ile sizes

• TCP support and large-block transf ers

– UDP caused more problems on WANs (errors)

– All traffic can be multiplexed on one connection

• Minimizes connection setup

– No fixed limit on amount of data that can be transferred between
client and server

• Negotiate f or optimal transf er size

• Serv er checks access f or entire path f rom client

October 31, 2016 © 2014-2016 Paul Krzyzanowski 33

More improvements… NFS v3

• New commit operation

– Check with server after a write operation to see if data is committed

– If commit fails, client must resend data

– Reduce number of write requests to server

– Speeds up write requests

• Don’t require server to write to disk immediately

• Return f ile attributes with each request

– Saves extra RPCs to get attributes for validation

October 31, 2016 © 2014-2016 Paul Krzyzanowski 34

AFS
Andrew File System
Carnegie Mellon University

 c. 1986(v2), 1989(v3)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 35

AFS

• Design Goal

– Support information sharing on a large scale
e.g., 10,000+ clients

• History

– Developed at CMU

– Became a commercial spin-off: Transarc

– IBM acquired Transarc

– Open source under IBM Public License

– OpenAFS (openafs.org)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 36

CS 417 10/31/2016

Paul Krzyzanowski 7

AFS Assumptions

• Most f iles are small

• Reads are more common than writes

• Most f iles are accessed by one user at a time

• Files are ref erenced in bursts (locality)

– Once referenced, a file is likely to be referenced again

October 31, 2016 © 2014-2016 Paul Krzyzanowski 37

AFS Design Decisions

Whole f ile serv ing

– Send the entire file on open

Whole f ile caching

– Client caches entire file on local disk

– Client writes the file back to server on close

• if modified

• Keeps cached copy for future accesses

October 31, 2016 © 2014-2016 Paul Krzyzanowski 38

AFS Design

• Each client has an AFS disk cache

– Part of disk devoted to AFS (e.g. 100 MB)

– Client manages cache in LRU manner

• Clients communicate with set of trusted serv ers

• Each serv er presents one identical name space to clients

– All clients access it in the same way

– Location transparent

October 31, 2016 © 2014-2016 Paul Krzyzanowski 39

AFS Server: cells

• Serv ers are grouped into administrativ e entities called cells

• Cell: collection of

– Servers

– Administrators

– Users

– Clients

• Each cell is autonomous but cells may cooperate and

present users with one uniform name space

October 31, 2016 © 2014-2016 Paul Krzyzanowski 40

AFS Server: volumes

Disk partition contains

 f ile and directories

Volume
– Administrative unit of organization

• E.g., user’s home directory, local source, etc.

– Each volume is a directory tree (one root)

– Assigned a name and ID number

– A server will often have 100s of volumes

Grouped into volumes

October 31, 2016 © 2014-2016 Paul Krzyzanowski 41

Namespace management

Clients get inf ormation v ia cell directory serv er (Volume

Location Serv er) that hosts the Volume Location Database

(VLDB)

Goal:

 ev ery one sees the same namespace

 /afs/cellname/path

 /afs/mit.edu/home/paul/src/try.c

October 31, 2016 © 2014-2016 Paul Krzyzanowski 42

CS 417 10/31/2016

Paul Krzyzanowski 8

Communication with the server

• Communication is v ia RPC ov er UDP

• Access control lists used f or protection

– Directory granularity

– UNIX permissions ignored (except execute)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 43

AFS cache coherence

On open:

– Server sends entire file to client

 and provides a callback promise:

– It will notify the client when any other process modifies the file

If a client modif ied a f ile:

– Contents are written to server on close

When a serv er gets an update:

– it notifies all clients that have been issued the callback promise

– Clients invalidate cached files

October 31, 2016 © 2014-2016 Paul Krzyzanowski 44

AFS cache coherence

If a client was down

– On startup, contact server with timestamps of all cached files to
decide whether to invalidate

If a process has a f ile open

– It continues accessing it even if it has been invalidate

– Upon close, contents will be propagated to server

AFS: Session Semantics
(vs. sequential semantics)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 45

AFS replication and caching

• Read-only v olumes may be replicated on multiple serv ers

• Whole f ile caching not f easible f or huge f iles

– AFS caches in 64KB chunks (by default)

– Entire directories are cached

• Adv isory locking supported

– Query server to see if there is a lock

• Ref errals

– An administrator may move a volume to another server

– If a client accesses the old server, it gets a referral to the new one

October 31, 2016 © 2014-2016 Paul Krzyzanowski 46

AFS key concepts

• Single global namespace

– Built from a collection of volumes

– Referrals for moved volumes

– Replication of read-only volumes

• Whole-f ile caching

– Offers dramatically reduced load on servers

• Callback promise

– Keeps clients from having to poll the server to invalidate cache

October 31, 2016 © 2014-2016 Paul Krzyzanowski 47

AFS summary

AFS benefits

– AFS scales well

– Uniform name space

– Read-only replication

– Security model supports mutual authentication, data encryption

AFS drawbacks

– Session semantics

– Directory based permissions

– Uniform name space

October 31, 2016 © 2014-2016 Paul Krzyzanowski 48

CS 417 10/31/2016

Paul Krzyzanowski 9

CODA
COnstant Data Availability
Carnegie-Mellon University

c. 1990-1992

October 31, 2016 © 2014-2016 Paul Krzyzanowski 49

CODA Goals

Descendant of AFS

 CMU, 1990-1992

Goals

1. Provide better support for replication than AFS

 – support shared read/write files

2. Support mobility of PCs

October 31, 2016 © 2014-2016 Paul Krzyzanowski 50

Mobility

• Goal: Improv e f ault tolerance

• Prov ide constant data av ailability in disconnected

env ironments

• Via hoarding (user-directed caching)

– Log updates on client

– Reintegrate on connection to network (server)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 51

Modifications to AFS

• Support replicated f ile v olumes

• Extend mechanism to support disconnected operation

• A v olume can be replicated on a group of serv ers

– Volume Storage Group (VSG)

• Replicated v olumes

– Volume ID used to identify files is a Replicated Volume ID

– One-time lookup

• Replicated volume ID  list of servers and local volume IDs

• Cache results for efficiency

– Read files from any server

– Write to all available servers

October 31, 2016 © 2014-2016 Paul Krzyzanowski 52

Disconnected volume servers

AVSG: Accessible Volume Storage Group

– Subset of VSG

What if some volume servers are down?

 On f irst download, contact ev ery one y ou can and get a

v ersion timestamp of the f ile

October 31, 2016 © 2014-2016 Paul Krzyzanowski 53

Reconnecting disconnected servers

If the client detects that some serv ers hav e old v ersions

– Some server resumed operation

– Client initiates a resolution process

• Updates servers: notifies server of stale data

• Resolution handled entirely by servers

• Administrative intervention may be required

(if conflicts)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 54

CS 417 10/31/2016

Paul Krzyzanowski 10

AVSG = Ø

• If no serv ers are accessible

– Client goes to disconnected operation mode

• If f ile is not in cache

– Nothing can be done… fail

• Do not report f ailure of update to serv er

– Log update locally in Client Modification Log (CML)

– User does not notice

October 31, 2016 © 2014-2016 Paul Krzyzanowski 55

Reintegration

Upon reconnection

– Commence reintegration

Bring serv er up to date with CML log playback

– Optimized to send latest changes

Try to resolv e conf licts automatically

– Not always possible

October 31, 2016 © 2014-2016 Paul Krzyzanowski 56

Support for disconnection

Keep important f iles up to date

– Ask server to send updates if necessary

Hoard database

– Automatically constructed by monitoring the user’s activity

– And user-directed prefetch

October 31, 2016 © 2014-2016 Paul Krzyzanowski 57

CODA summary

• Session semantics as with AFS

• Replication of read/write v olumes

– Clients do the work of writing replicas (extra bandwidth)

– Client-detected reintegration

• Disconnected operation

– Client modification log

– Hoard database for needed files

• User-directed prefetch

– Log replay on reintegration

October 31, 2016 © 2014-2016 Paul Krzyzanowski 58

DFS (AFS v3)
Distributed File System

October 31, 2016 © 2014-2016 Paul Krzyzanowski 59

DFS

• Goal

– AFS: scalable performance but session semantics were hard to live with

– Create a file system similar to AFS but with a strong consistency model

• History

– Part of Open Group’s Distributed Computing Environment

– Descendant of AFS - AFS version 3.x

• Assume (like AFS):

– Most file accesses are sequential

– Most file lifetimes are short

– Majority of accesses are whole file transfers

– Most accesses are to small files

October 31, 2016 © 2014-2016 Paul Krzyzanowski 60

CS 417 10/31/2016

Paul Krzyzanowski 11

Caching and Server Communication

• Increase ef f ective perf ormance with

– Caching data that you read

• Safe if multiple clients reading, nobody writing

– read-ahead

• Safe if multiple clients reading, nobody writing

– write-behind (delaying writes to the server)

• Safe if only one client is accessing file

• Goal:

– Minimize times client informs server of changes, use fewer

messages with more data vs. lots of messages with little data

October 31, 2016 61 © 2014-2016 Paul Krzyzanowski

DFS Tokens

Cache consistency

maintained by tokens

Token

–Guarantee from server that a
client can perform certain
operations on a cached file

–Server grants & revokes tokens

• Open tokens
– Allow token holder to open a file

– Token specifies access
(read, write, execute, exclusive-write)

• Data tokens
– Applies to a byte range

– read token - can use cached data

– write token - write access, cached
writes

• Status tokens
– read: can cache file attributes

– write: can cache modified attributes

• Lock tokens
– Holder can lock a byte range of a file

October 31, 2016 62 © 2014-2016 Paul Krzyzanowski

Living with tokens

• Serv er grants and rev okes tokens

– Multiple read tokens OK

– Multiple read and a write token or multiple write tokens not OK if
byte ranges overlap

• Revoke all other read and write tokens

• Block new request and send revocation to other token holders

October 31, 2016 © 2014-2016 Paul Krzyzanowski 63

DFS key points

• Caching

– Token granting mechanism

• Allows for long term caching and strong consistency

– Caching sizes: 8K – 256K bytes

– Read-ahead (like NFS)

• Don’t have to wait for entire file before using it as with AFS

• File protection v ia access control lists (ACLs)

• Communication v ia authenticated RPCs

• Essentially AFS v 2 with serv er-based token granting

– Server keeps track of who is reading and who is writing files

– Server must be contacted on each open and close operation to

request token

October 31, 2016 © 2014-2016 Paul Krzyzanowski 64

SMB
Server Message Blocks
Microsoft

c. 1987

October 31, 2016 © 2014-2016 Paul Krzyzanowski 65

SMB Goals

• File sharing protocol for Windows 9x/NT/20xx/ME/XP/Vista/Windows
7/Windows 8/Windows 10 …

• Protocol for sharing:

Files, devices, communication abstractions (named pipes), mailboxes

• Servers: make file system and other resources available to clients

• Clients: access shared file systems, printers, etc. from servers

Design Priority:

locking and consistency over client caching

October 31, 2016 © 2014-2016 Paul Krzyzanowski 66

CS 417 10/31/2016

Paul Krzyzanowski 12

SMB Design

• Request-response protocol

– Send and receive message blocks
• name from old DOS system call structure

– Send request to server (machine with resource)

– Server sends response

• Connection-oriented protocol

– Persistent connection – “session”

• Each message contains:

– Fixed-size header

– Command string (based on message) or reply string

October 31, 2016 © 2014-2016 Paul Krzyzanowski 67

Message Block

• Header: [fixed size]

– Protocol ID

– Command code (0..FF)

– Error class, error code

– Tree ID – unique ID for resource in use by client (handle)

– Caller process ID

– User ID

– Multiplex ID (to route requests in a process)

• Command: [variable size]

– Param count, params, #bytes data, data

October 31, 2016 © 2014-2016 Paul Krzyzanowski 68

SMB commands

• Files

– Get disk attributes

– create/delete directories

– search for file(s)

– create/delete/rename file

– lock/unlock file area

– open/commit/close file

– get/set file attributes

• Print-related

– Open/close spool file

– write to spool

– Query print queue

• User-related

– Discover home system for user

– Send message to user

– Broadcast to all users

– Receive messages

October 31, 2016 © 2014-2016 Paul Krzyzanowski 69

Protocol Steps

• Establish connection

October 31, 2016 © 2014-2016 Paul Krzyzanowski 70

Protocol Steps

• Establish connection

• Negotiate protocol

– negprot SMB

– Responds with version number of protocol

October 31, 2016 © 2014-2016 Paul Krzyzanowski 71

Protocol Steps

• Establish connection

• Negotiate protocol

• Authenticate/set session parameters

– Send sesssetupX SMB with username, password

– Receive NACK or UID of logged-on user

– UID must be submitted in future requests

October 31, 2016 © 2014-2016 Paul Krzyzanowski 72

CS 417 10/31/2016

Paul Krzyzanowski 13

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource (similar to mount)

– Send tcon (tree connect) SMB with name of shared resource

– Server responds with a tree ID (TID) that the client will use in future

requests for the resource

October 31, 2016 © 2014-2016 Paul Krzyzanowski 73

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource – tcon

• Send open/read/write/close/… SMBs

October 31, 2016 © 2014-2016 Paul Krzyzanowski 74

SMB Evolves
Common Internet File System (1996)
SMB 2 (2006)
SMB 3 (2012)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 75

SMB Evolves

• History

– SMB was reverse-engineered for non-Microsoft platforms

• samba.org

– Microsoft released SMB protocol to X/Open in 1992

– Common Internet File System (CIFS)

• SMB as implemented in 1996 for Windows NT 4.0

October 31, 2016 © 2014-2016 Paul Krzyzanowski 76

Caching and Server Communication

• Increase ef f ective perf ormance with

– Caching

• Safe if multiple clients reading, nobody writing

– read-ahead

• Safe if multiple clients reading, nobody writing

– write-behind

• Safe if only one client is accessing file

• Minimize times client inf orms serv er of changes

77

Oplocks

Serv er grants opportunistic locks (oplocks) to client

– Oplock tells client how/if it may cache data

– Similar to DFS tokens (but more limited)

Client must request an oplock

– oplock may be
• Granted

• Revoked by the server at some future time

• Changed by server at some future time

October 31, 2016 © 2014-2016 Paul Krzyzanowski 78

CS 417 10/31/2016

Paul Krzyzanowski 14

Level 1 oplock (exclusive access)

– Client can open file for exclusive access

– Arbitrary caching

– Cache lock information

– Read-ahead

– Write-behind

If another client opens the f ile, the serv er has f ormer client

break its oplock:

– Client must send server any lock and write data and acknowledge
that it does not have the lock

– Purge any read-aheads

October 31, 2016 © 2014-2016 Paul Krzyzanowski 79

Level 2 oplock (multiple readers)

• Lev el 1 oplock is replaced with a Lev el 2 lock if another

process tries to read the f ile

• Multiple clients may hav e the same f ile open as long as

none are writing

• Cache reads, f ile attributes

– Send other requests to server

• Lev el 2 oplock rev oked if any client opens the f ile f or writing

80

Batch oplock (remote open even if local closed)

• Client can keep f ile open on serv er ev en if a local process

that was using it has closed the f ile

– Exclusive R/W open lock + data lock + metadata lock

• Client requests batch oplock if it expects programs may

behav e in a way that generates a lot of traf fic (e.g.

accessing the same f iles ov er and ov er)

– Designed for Windows batch files

• Batch oplock is exclusiv e: one client only

– revoked if another client opens the file

October 31, 2016 © 2014-2016 Paul Krzyzanowski 81

Filter oplock (allow preemption)

• Open f ile f or read or write

• Allow clients with filter oplock to be suspended while

another process preempted f ile access.

– E.g., indexing service can run and open files without causing
programs to get an error when they need to open the file

• Indexing service is notified that another process wants to access the file.

• It can abort its work on the file and close it or finish its indexing and then

close the file.

October 31, 2016 © 2014-2016 Paul Krzyzanowski 82

Leases (SMB ≥ 2.1; Windows ≥ 7)

• Same purpose as oplock: control caching

• Lease ty pes

– Read-cache (R) lease: cache results of read; can be shared

– Write-cache (W) lease: cache results of writes; exclusive

– Handle-cache (H) lease: cache file handles; can be shared

• Optimizes re-opening files

• Leases can be combined: R, RW, RH, RWH

• Leases def ine oplocks:

– Read oplock (R) – essentially same as Level 2

– Read-handle (RH) – essentially same as Batch

– Read-write (RW)– essentially the same as Level 1

– Read-write-handle (RWH)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 83

See https://blogs.msdn.mic ros oft.c om/ ope nsp ecifica tion /20 09/ 05/ 22/cli ent -cac hing -fe atu res -opl ock-v s-le ase/

No oplock

• All requests must be sent to the serv er

• Can work f rom cache only if by te range was locked by

client

October 31, 2016 © 2014-2016 Paul Krzyzanowski 84

CS 417 10/31/2016

Paul Krzyzanowski 15

Microsoft Dfs

• “Distributed File System”

– Provides a logical view of files & directories

– Organize multiple SMB shares into one file system

– Provide location transparency & redundancy

• Each computer hosts volumes

 \\servername\dfsname

Each Dfs tree has one root volume and one level of leaf volumes.

• A volume can consist of multiple shares

– Alternate path: load balancing (read-only)

– Similar to Sun’s automounter

• Dfs = SMB + naming/ability to mount server shares on other server shares

 85 October 31, 2016 © 2014-2016 Paul Krzyzanowski

Redirection via referrals

• A share can be replicated (read-only) or mov ed through

Microsof t’s Df s

• Client opens old location:

– Receives STATUS_DFS_PATH_NOT_COVERED

– Client requests referral:
 TRANS2_DFS_GET_REFERRAL

– Server replies with new server

October 31, 2016 © 2014-2016 Paul Krzyzanowski 86

SMB (CIFS) Summary

• Statef ul model with strong consistency

• Oplocks of f er f lexible control f or distributed consistency

– Oplocks mechanism supported in base OS: Windows

NT/XP/Vista/7/8/9/10, 20xx

• Df s of fers namespace management

October 31, 2016 © 2014-2016 Paul Krzyzanowski 87

SMB2 and SMB3

• SMB was…

– Chatty: common tasks often required multiple round trip messages

– Not designed for WANs

• SMB 2

– Protocol dramatically cleaned up

– New capabilities added

– SMB2 is the default network file system in Apple Mavericks (10.9)

• SMB3

– Added RDMA and multichannel support; end-to-end encryption

• RDMA = Remote DMA (Direct Memory Access)

– Windows 8 / Windows Server 2012: SMB 3.0

– SMB3 was default on Apple Yosemite (10.10)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 88

SMB2 Additions

• Reduced complexity

– From >100 commands to 19

• Pipelining support

– Send additional commands before the response to a previous one
is received

– Credit-based flow control

• Goal: keep more data in flight and use available network bandwidth

• Server starts with a small # of “credits” and scales up as needed

• Server sends credits to client

• Client needs credits to send a message and decrements credit balance

• Allows server to control buffer overflow

• Note: TCP uses congestion control, which yields to data loss and wild
oscillations in traffic intensity

October 31, 2016 © 2014-2016 Paul Krzyzanowski 89

SMB2 Additions

• Compounding support

– Avoid the need to have commands that combine operations

– Send an arbitrary set of commands in one request

– E.g., instead of RENAME:

• CREATE (create new file or open existing)

• SET_INFO

• CLOSE

• Larger reads/writes

• Caching of f older & f ile properties

• “Durable handles”

– Allow reconnection to server if there was a temporary loss of
connectivity

October 31, 2016 © 2014-2016 Paul Krzyzanowski 90

CS 417 10/31/2016

Paul Krzyzanowski 16

Benefits

• Transf er 10.7 GB ov er 1 Gbps WAN link with 76 ms RTT

– SMB: 5 hours 40 minutes: rate = 0.56 MB/s

– SMB2: 7 minutes, 45 seconds: rate = 25 MB/s

October 31, 2016 © 2014-2016 Paul Krzyzanowski 91

SMB3

• Key f eatures

– Multichannel support for network scaling

– Transparent network failover

– “SMBDirect” – support for Remote DMA in clustered environments

• Enables direct, low-latency copying of data blocks from remote memory

without CPU intervention

– Direct support for virtual machine files

• Volume Shadow Copy

• Enables volume backups to be performed while apps continue to write to
files.

– End-to-end encryption

October 31, 2016 © 2014-2016 Paul Krzyzanowski 92

NFS version 4
Network File System
Sun Microsystems

October 31, 2016 © 2014-2016 Paul Krzyzanowski 93

NFS version 4 enhancements

• Statef ul serv er

• Compound RPC

– Group operations together

– Receive set of responses

– Reduce round-trip latency

• Statef ul open/close operations

– Ensures atomicity of share reservations for windows file sharing

(CIFS)

– Supports exclusive creates

– Client can cache aggressively

October 31, 2016 © 2014-2016 Paul Krzyzanowski 94

NFS version 4 enhancements

• create, link, open, remov e, rename

– Inform client if the directory changed during the operation

• Strong security

– Extensible authentication architecture

• File sy stem replication and migration

– Mirror servers can be configured

– Administrator can distribute data across multiple servers

– Clients don’t need to know where the data is: server will send

referrals

• No concurrent write sharing or distributed cache coherence

October 31, 2016 © 2014-2016 Paul Krzyzanowski 95

NFS version 4 enhancements

• Statef ul locking

– Clients inform servers of lock requests

– Locking is lease-based; clients must renew leases

• Improv ed caching

– Server can delegate specific actions on a file to enable more
aggressive client caching

– Close-to-open consistency

• File changes propagated to server when file is closed

• Client checks timestamp on open to avoid accessing stale cached copy

– Similar to CIFS oplocks

• Clients must disable caching to share files

• Callbacks

– Notify client when file/directory contents change

October 31, 2016 © 2014-2016 Paul Krzyzanowski 96

CS 417 10/31/2016

Paul Krzyzanowski 17

Review: Core Concepts

• NFS

– RPC-based access

• AFS

– Long-term caching

• DFS

– AFS + tokens for consistency and efficient caching

• CODA

– Read/write replication & disconnected operation

• SMB/CIFS

– RPC-like access with strong consistency

– Oplocks (tokens) to support caching

– Dfs: add-on to provide a consistent view of volumes (AFS-style)

97

The End

October 31, 2016 103 © 2014-2016 Paul Krzyzanowski

