
Distributed Systems 11/5/2016

Paul Krzyzanowski 1

Distributed Systems
17. Distributed Lookup

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Lookup

• Look up (key, value)

• Cooperating set of nodes

• Ideally :

– No central coordinator

– Some nodes can be down

2 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Approaches

1. Central coordinator

– Napster

2. Flooding

– Gnutella

3. Distributed hash tables

– CAN, Chord, Amazon Dynamo, Tapestry, …

3 November 5, 2016 © 2014-2016 Paul Krzyzanowski

1. Central Coordinator

• Example: Napster

• Central directory

– Identifies content (names) and the servers that host it

– lookup(name) → {list of servers}

– Download from any of available servers

• Pick the best one by pinging and comparing response times

4 November 5, 2016 © 2014-2016 Paul Krzyzanowski

1. Central Coordinator - Napster

• Pros

– Super simple

– Search is handled by a single server (master)

– The directory server is a single point of control

• Provides definitive answers to a query

• Cons

– Master has to maintain state of all peers

– Server gets all the queries

– The directory server is a single point of control

• No directory, no service!

5 November 5, 2016 © 2014-2016 Paul Krzyzanowski

1. Central Coordinator

• Another example: GFS

– Controlled environment compared to Napster

– Content for a given key is broken into chunks

– Master handles all queries … but not the data

6 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 2

2. Query Flooding

• Example: Gnutella distributed f ile sharing

• Well-known nodes act as anchors

– Nodes with files inform an anchor about their existence

– Nodes select other nodes as peers

8 November 5, 2016 © 2014-2016 Paul Krzyzanowski

2. Query Flooding

• Send a query to peers if a f ile is not present locally

– Each request contains:

• Query key

• Unique request ID

• Time to Live (TTL, maximum hop count)

• Peer either responds or routes the query to its neighbors

– Repeat until TTL = 0 or if the request ID has been processed

– If found, send response (node address) to the requestor

– Back propagation: series of responses reaches originator

9 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Overlay network

An overlay network is a virtual network formed by peer connections

– Any node might know about a small set of machines

– “Neighbors” may not be physically close to you

10

Underlying IP Network

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Overlay network

An overlay network is a virtual network formed by peer connections

– Any node might know about a small set of machines

– “Neighbors” may not be physically close to you

11

Overlay Network

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Flooding Example: Overlay Network

12 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Flooding Example: Query Flood

13

TTL=2

TTL=2

TTL=2

TTL=1

TTL=1

TTL=1

TTL=1

TTL=1

TTL=0

TTL=0

TTL=0

TTL=0

TTL=0

TTL=1

TTL=0

Found!

TTL=0

Query

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 3

Flooding Example: Query response

Found!

14

Back propagation

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Flooding Example: Download

15 November 5, 2016 © 2014-2016 Paul Krzyzanowski

What’s wrong with flooding?

• Some nodes are not alway s up and some are slower than

others

– Gnutella & Kazaa dealt with this by classifying some nodes as

“supernodes” (called “ultrapeers” in Gnutella)

• Poor use of network resources

• Potentially high latency

– Requests get forwarded from one machine to another

– Back propagation (e.g., in Gnutella’s design), where the replies go
through the same chain of machines used in the query, increases

latency even more

16 November 5, 2016 © 2014-2016 Paul Krzyzanowski

3. Distributed Hash Tables

November 5, 2016 © 2014-2016 Paul Krzyzanowski 17

Locating content

• How do we locate distributed content?

– A central server is the easiest

• Can we do better?

18

Napster Central server

Gnutella & Kazaa Network flooding

Optimized to flood supernodes … but it’s still flooding

BitTorrent Nothing!

It’s somebody else’s problem

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Hash tables

• Remember hash f unctions & hash tables?

– Linear search: O(N)

– Tree: O(logN)

– Hash table: O(1)

19 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 4

What’s a hash function? (refresher)

• Hash function

– A function that takes a variable length input (e.g., a string)

and generates a (usually smaller) fixed length result (e.g., an integer)

– Example: hash strings to a range 0-7:

• hash(“Newark”) → 1

• hash(“Jersey City”) → 6

• hash(“Paterson”) → 2

• Hash table

– Table of (key, value) tuples

– Look up a key:

• Hash function maps keys to a range 0 … N-1

 table of N elements
 i = hash(key)
 table[i] contains the item

– No need to search through the table!

20 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Considerations with hash tables (refresher)

• Picking a good hash function

– We want uniform distribution of all values of key over the space 0 … N-1

• Collisions

– Multiple keys may hash to the same value

• hash(“Paterson”) → 2

• hash(“Edison”) → 2

– table[i] is a bucket (slot) for all such (key, value) sets

– Within table[i], use a linked list or another layer of hashing

• Think about a hash table that grows or shrinks

– If we add or remove buckets → need to rehash keys and move items

21 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Hash Tables (DHT)

• Create a peer-to-peer v ersion of a (key, value) data store

• How we want it to work

1. A peer (A) queries the data store with a key

2. The data store finds the peer (B) that has the value

3. That peer (B) returns the (key, value) pair to the querying peer (A)

• Make it ef f icient!

– A query should not generate a flood!

22 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Consistent hashing

• Conv entional hashing

– Practically all keys have to be remapped if the table size changes

• Consistent hashing

– Most keys will hash to the same value as before

– On average, K/n keys will need to be remapped

 K = # keys, n = # of buckets

• Example: splitting a bucket

slot a slot b slot c slot d slot e

slot a slot b slot c1 slot d slot e slot c2

Only the keys in slot c get remapped

23 November 5, 2016 © 2014-2016 Paul Krzyzanowski

3. Distributed hashing

• Spread the hash table across multiple nodes

• Each node stores a portion of the key space

• lookup(key) → node ID that holds (key, value)

• Questions

How do we partition the data & do the lookup?

& keep the system decentralized?

 & make the system scalable (lots of nodes)?

 & fault tolerant (replicated data)?

24 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Hashing
Case Study

CAN: Content Addressable Network

25 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 5

CAN design

• Create a logical grid

– x-y in 2-D but not limited to 2-D

• Separate hash f unction per dimension

– hx(key), hy(key)

• A node:

– Is responsible for a range of values in each dimension

– Knows its neighboring nodes

26 November 5, 2016 © 2014-2016 Paul Krzyzanowski

CAN key→node mapping: 2 nodes

y=0

y=ymax

x=xmax x=0

n1 n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2)

 n1 has (key, value)

if x ≥ (xmax/2)
 n2 has (key, value)

xmax/2

n2 is responsible for a zone
x=(xmax/2 .. xmax),

y=(0 .. ymax)

27 November 5, 2016 © 2014-2016 Paul Krzyzanowski

CAN partitioning

y=0

y=ymax

x=xmax x=0

n1

n2

Any node can be split in
two – either horizontally

or vertically

n0

ymax/2

xmax/2

28 November 5, 2016 © 2014-2016 Paul Krzyzanowski

CAN key→node mapping

y=0

y=ymax

x=xmax x=0

n1

n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2) {

 if y < (ymax/2)
 n0 has (key, value)

 else
 n1 has (key, value)
}

if x ≥ (xmax/2)

 n2 has (key, value)

n0

ymax/2

xmax/2

29 November 5, 2016 © 2014-2016 Paul Krzyzanowski

CAN partitioning

y=0

y=ymax

x=xmax x=0

Any node can be split in
two – either horizontally

or vertically

Associated data has to

be moved to the new
node based on

hash(key)

Neighbors need to be

made aware of the new
node

A node knows only of its
neighbors

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9

n7

n3

n5 n6

n2

n11

30 November 5, 2016 © 2014-2016 Paul Krzyzanowski

CAN neighbors

y=0

y=ymax

x=xmax x=0

Neighbors refer to
nodes that share

adjacent zones in the
overlay network

n4 only needs to keep
track of n5, n7, or n8 as

its right neighbor.

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9

n7

n3

n5 n6

n2

n11

31 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 6

CAN routing

y=0

y=ymax

x=xmax x=0

lookup(key) on a node
that does not own the

value

Compute

hashx(key), hashy(key)
and route request to a

neighboring node

Ideally: route to

minimize distance to
destination

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9

n7

n3

n5 n6

n2

n11

32 November 5, 2016 © 2014-2016 Paul Krzyzanowski

CAN

• Perf ormance

– For n nodes in d dimensions

– # neighbors = 2d

– Average route for 2 dimensions = O(√n) hops

• To handle f ailures

– Share knowledge of neighbor’s neighbors

– One of the node’s neighbors takes over the failed zone

33 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Hashing
Case Study

Chord

34 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Chord & consistent hashing

• A key is hashed to an m-bit v alue: 0 … (2m-1)

• A logical ring is constructed f or the v alues 0 ... (2m-1)

• Nodes are placed on the ring at hash(IP address)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node

hash(IP address) = 3

35 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Key assignment

• Example: n=16; system with 4 nodes (so far)

• Key, value data is stored at a successor

– a node whose value is ≥ hash(key)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 4, 5, 6, 7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

36

No nodes at these empty

positions

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Handling query requests

• Any peer can get a request (insert or query). If the hash(key) is not for its
ranges of keys, it forwards the request to a successor.

• The process continues until the responsible node is found

– Worst case: with p nodes, traverse p-1 nodes; that’s O(N) (yuck!)

– Average case: traverse p/2 nodes (still yuck!)

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 4, 5, 6, 7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

37

Query(hash(key)=9)

Node #10 can process the
request

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 7

Let’s figure out three more things

1. Adding/remov ing nodes

2. Improv ing lookup time

3. Fault tolerance

38 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Adding a node

• Some keys that were assigned to a node’s successor now get
assigned to the new node

• Data for those (key, value) pairs must be moved to the new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 was responsible for

keys 4, 5, 6, 7, 8

Now it’s responsible for keys

7, 8

Node 10 is responsible for

keys 9, 10

Node 14 is responsible for

keys 11, 12, 13, 14

39

New node added: ID = 6
Node 6 is responsible

for keys 4, 5, 6

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Removing a node

• Keys are reassigned to the node’s successor

• Data for those (key, value) pairs must be moved to the successor

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for

keys 7, 8

Node 10 was responsible for

keys 9, 10

Node 14 was responsible for

keys 11, 12, 13, 14

40

Node 6 is responsible

for keys 4, 5, 6

Node 14 is now responsible

for keys 9, 10, 11, 12, 13, 14

November 5, 2016 © 2014-2016 Paul Krzyzanowski

Node 10 removed

Move (key, value)

data to node 14

Fault tolerance

• Nodes might die

– (key, value) data would need to be replicated

– Create R replicas, storing each one at R-1 successor nodes in the ring

• Need to know successors

– A node needs to know how to find its successor’s successor (or more)

• Easy if it knows all nodes!

– When a node is back up, it needs to check with successors for updates

– Any changes need to be propagated to all replicas

41 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Performance

• We’re not thrilled about O(N) lookup

• Simple approach f or great perf ormance

– Have all nodes know about each other

– When a peer gets a node, it searches its table of nodes for the node
that owns those values

– Gives us O(1) performance

– Add/remove node operations must inform everyone

– Maybe not a good solution if we have millions of peers (huge tables)

42 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Finger tables

• Compromise to av oid large tables at each node

– Use finger tables to place an upper bound on the table size

• Finger table = partial list of nodes

• At each node, ith entry in f inger table identif ies node that
succeeds it by at least 2i-1 in the circle

– finger_table[0]: immediate (1st) successor

– finger_table[1]: successor after that (2nd)

– finger_table[2]: 4th successor

– finger_table[3]: 8th successor

– …

• O(log N) nodes need to be contacted to f ind the node that
owns a key
 … not as cool as O(1) but way better than O(N)

43 November 5, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Systems 11/5/2016

Paul Krzyzanowski 8

Improving performance even more

• Let’s rev isit O(1) lookup

• Each node keeps track of all current nodes in the group

– Is that really so bad?

– We might have thousands of nodes … so what?

• Any node will now know which node holds a (key, value)

• Add or remov e a node: send updates to all other nodes

44 November 5, 2016 © 2014-2016 Paul Krzyzanowski

The end

November 5, 2016 © 2014-2016 Paul Krzyzanowski 62

