Distributed Systems

Distributed Systems
17. Distributed Lookup

Paul Krzyzanowski
Rutgers University

Fall 2016

(& J/

Noverber5, 2016 © 20142016 Paul Krzyzanouski 1

~
L Approaches .
1. Central coordinator
— Napster
2. Flooding
— Gnutella
3. Distributed hash tables
— CAN, Chord, Amazon Dynamo, Tapestry ...
\ y,
Noveroers, 2016 EE T T — 3
-)
£ 1. Central Coordinator - Napster i
* Pros
— Super simple
— Search is handled by asingle server (master)
— The directory server is a single point of control
« Provides definitive answers to aquery
« Cons
— Master has to maintain state of all peers
— Server gets all the queries
— The directory server is a single point of control
+ No directory, no senvice!
\ y,
Noverier, 2016 © 20142015 et Kiyzanow s

Paul Krzyzanowski

11/5/2016

. .)
L Distributed Lookup i
* Look up (key, value)
+ Cooperating set of nodes
* Ideally:
— No central coordinator
— Some nodes can be down
\ J
November, 216 2014 2016 Pad Kayzarone z

L 1. Central Coordinator

« Example: Napster

* Central directory
— Identifies content (names) and the servers that host it
— lookup(name) — {list of servers}
— Download fromany of available servers
« Pickthe best one by pinging and comparing response times

L

November5, 2016 © 20142016 Paul Krzyzanoveki

L 1. Central Coordinator

* Another example: GFS
— Controlled environment compared to Napster
— Content for agiven key is broken into chunks
— Master handles all queries ... but not the data

(&

November5, 2016 © 20142016 Paul Krzyzanoweki

Distributed Systems

L 2. Query Flooding
» Example: Gnutella distributed file sharing
» Well-known nodes act as anchors

— Nodes with files inform an anchor about their existence
— Nodes select other nodes as peers

L

Noverber5, 2016 © 20142016 Paul Krzyzanouski

L Overlay network

An owverlay network is avirtual network formed by peer connections
— Any node might know about a small set of machines
— “Neighbors” may not be physically close to you
g N
L Underlying P Network
November 5, 2016 © 20142016 Paul Krzyzanouski

£ Flooding Example: Overlay Network

(&

Noverber5, 2016 © 20142016 Paul Krzyzanowski

Paul Krzyzanowski

11/5/2016

L 2. Query Flooding

[]

» Send a query to peers if afile is not present locally
— Each request contains:
* Query key
« Unique request ID
« Time to Live (TTL, maximum hop count)

* Peer either responds or routes the query to its neighbors
— Repeat until TTL =0 or if the request ID has been processed
— If found, send response (node address) to the requestor
— Back propagation: series of responses reaches originator

(& J

Noverber 5, 2016 © 20142016 Paul Krzyzanaveki 9

L Overlay network J

An overlay network is avirtual network formed by peer connections
— Any node might know about a small set of machines
— “Neighbors” may not be physically close to you

/\~
SN

Overlay Network

November5, 2016 © 20142016 Paul Krzyzanoveki 1

Query

November5, 2016 © 20142016 Paul Krzyzanoweki 13

Distributed Systems 11/5/2016

A N
L Flooding Example: Query response | L Flooding Example: Download i
@
S0y 4
s
Back propagation
\ y, \ /
Noveroers, 2016 © 20142015 P aul Keyzanow M Noveroers, 2016 2014 2016 Pauk Krzyzavores =
. - " . ' N
What's wrong with flooding? |
» Some nodes are not alway s up and some are slower than
others
— Gnutella & Kazaa dealt with this by classifying some nodes as
“supernodes” (called “ultrapeers” in Gnutella) 3 Distributed Hash Tables
* Poor use of network resources
* Potentially high latency
— Requests get forwarded from one machine to another
— Back propagation (e.g., in Gnutella’s design), where the replies go
through the same chain of machines used in the query, increases
latency even more
\ y, \ /
Noveroers, 2016 © 2012016 Pad Kizyzanoneh T Noveroers, 2016 BT T — Y
-)
£ Locating content i L Hash tables J
» How do we locate distributed content? » Remember hash functions & hash tables?
— Acentral server is the easiest — Linear search: O(N)
— Tree: O(logN)
Napster Central server — Hashtable: O(1)
Gnutella & Kazaa Network flooding
Optimized to flood supernodes ... but it's still flooding
BitTorrent Nothing!
It's somebody else’s problem
» Can we do better?
\ y, \ /
Noverier, 2016 © 20142015 et Kiyzanow = Noveroer 5, 2016 © 20142016 Pk Krzyzaroveis o

Paul Krzyzanowski 3

Distributed Systems 11/5/2016

~
L What's a hash function? (refresher) | L Considerations with hash tables (refresher)
* Hash function « Picking a good hash function
— A function that takes a variable length input (e.g., a string) — We want uniform distribution of all values ofkey over the space0 ... N-1
and generates a (usually smaller) fixed length result (e.g., an integer)
— Example: hash strings to arange 0-7: . .
+ hash("Newark’) — 1 Collisions
« hash(“Jersey City’) — 6 — Multiple keys may hash to the same value
« hash(“Paterson’) — 2 * hash(‘Paterson’) — 2
« Hashtable « hash(‘Edison’) — 2
— table[i] is a bucket (slot) for all such (key, value) sets
= Table of (key, value) tuples — Within table[i], use a linked list or another layer of hashing
— Look up a key:
+ Hash function maps keys toarange O... N-1
table of N elements « Think about a hash table that grows or shrinks
ta;;;alsil;(;jen{a}ns the item — If we add or remove buckets — need to rehash keys and move items
— No need to search through the table!
\ J \ y,
Noverbers, 2016 © 20142016 Paul Kzyzanousia) Novenbers, 2016 2014 2016 Pauk Krzyzavores 7
- .) . -
L Distributed Hash Tables (DHT) | L Consistent hashing J
 Create a peer-to-peer version of a (key, value) data store « Conv entional hashing
— Practically all keys have to be remapped if the table size changes
* How we want it to work Consistent hashing
1. Apeer (A) queries the data store with a key — Most keys will hash to the same value as before
2. The data store finds the peer (B) that has the value — Onawerage, K/n keys will need to be remapped
3. That peer (B) returns the (key value) pair to the querying peer (A) K =#keys, n = # of buckets
.« Make it efficient! + Example: splitting a bucket Only the keys in slot ¢ get remapped
— Aqueryshould not generate a flood!
slot e
slot e
\. J \ J
Noverbers, 2016 © 2012016 Pad Kizyzanoneh z Novembers, 2016 BT T — 2
- i i) s N
£ 3. Distributed hashing |
» Spread the hash table across multiple nodes
» Each node stores a portion of the key space
* lookup(ke node 1D that holds (key, value tetrd i
p(key) — (key, value) Distributed Hashing
Case Study
* Questions
How do we partition the data & do the lookup? .
& keep the system decentralized? CAN: Content Addressable Network
&make the system scalable (lots of nodes)?
& fault tolerant (replicated data)?
\ J \ J
Novermbers, 2016 © 20142016 Paut Krzyzanoneki 2 Novembers, 2016 © 20142016 Pk Krzyzaroveis %

Paul Krzyzanowski 4

Distributed Systems

. I
E CAN design |
* Create alogical grid
— %y in 2-D but not limited to 2-D
+ Separate hash function per dimension
— hu(key), hy(key)
+ Anode:
— Is responsible for a range of values in each dimension
— Knows its neighboring nodes
\ J
Noveroers, 2016 2014 2016 Pauk Krzyzavone 3
.. .)
CAN partitioning |
Y=Ymax
Any node can be splitin
two — either horizontally
or vertically
Ymax/2
y=0
x=0 Xmax/2 X=Xmax
\ /
Noveroers, 2016 © 20142016 Patk Kreyzanoveia E)

E CAN partitioning

Y=Ymax
Any node can be splitin
two — either horizontally
or vertically

Associated data hasto
be moved to the new
node based on

Ymax/2 hash(key)

Neighbors need to be
made aware of the new
node

A node knows only of its
neighbors

y=0
*x=0 Xmax/2 X=Xmax

Novembers, 2016 © 20142016 Paul Krzyzanovweki EJ

Paul Krzyzanowski

\ J

11/5/2016

L CAN key—node mapping: 2 nodes 1

Y=Ymax

x = hashy(key)
y = hashy (key)

if X < (Xmax/2)
n; has (key, value)

i X2 (Xmax/2)
ny has (key, value)

n; is responsible for a zone
X=(Xmax/2 .- Xmax):
¥=(0 . Ymax)

x=0 Xmax/2 X=Xmax

. J

Noverber 5, 2016 © 20142016 Paul Krzyzanoveki 27

E CAN key—node mapping 1

Y=Ymax
X = hashy(key)

y = hashy (key)

i X < (max/2) {
ify < (Ymax/2)
ng has (key, value)
else
n; has (key, value)

Ymax/2

if X2 (Xmax/2)
ny has (key, value)

y=0
x=0 Xmax/2 X=Xmax
. J

November5, 2016 © 20142016 Paul Krzyzanowski 2

E CAN neighbors]

Y=Ymax

Neighbors refer to
nodes that share
adjacent zones in the
overlay network

n4 only needs to keep
track of ns, n7, ar ng as

Ymax/2 its right neighbor.

y=0
x=0 Xmax/2 X=Xmax
\. /

November5, 2016 © 20142016 Paul Krzyzanoveki a

Distributed Systems

L CAN routing

Y=Ymax

Ymax/2

lookup(key) on a node
that does not own the
value

Compute

hashy(key), hashy(key)
and route request to a
neighboring node

Ideally: route to
minimize distance to
destination

y=0
x=0 Xmax/2 X=Xmax

(.
o

Distributed Hashing

Case Study

Chord
L

Noverber5, 2016 © 20142016 Paul Krzyzanowski

£ Key assignment

* Bxample: n=16; system with 4 nodes (so far)
« Key value data is stored ata successor
— anode whose value is 2 hash(key)
~

Node 14 is responsible for
keys 11,12, 13,14

No nodes at these empty

positions
I
/7 e

N
N
A Y
/
Node 10 s responsible for P
keys 9, 10 o’
Node 8 is responsible for
keys4,5,6,7,8
.

Noverber 5, 2016 © 20142016 P ackK #fzanouski

Paul Krzyzanowski

11/5/2016

L CAN

« Performance
— For nnodes ind dimensions
— #neighbors = 2d
— Average route for 2 dimensions = O(\n) hops

« To handle failures
— Share knowledge of neighbor’s neighbors
— One of the node’s neighbors takes over the failed zone

.

Noverber 5, 2016 © 20142016 Paul Krzyzanaveki B

L Chord & consistent hashing

« Akey is hashed to an mbit value: 0... (2™-1)
« Alogical ring is constructed for the values 0 ... (2™-1)
« Nodes are placed on the ring at hash(IP address)

Node

z' hash(IP address) =3

November5, 2016 © 20142016 Paul Krzyzanoveki E3

L Handling query requests

« Any peer can get a request (nsert or query). If the hash(key) is not for its
ranges of keys, it forwards the request to a successor.

The process continues until the responsible node is found
~ Worst case:with p nodes, raversep-1nodes; thats O(N) (yuck!)

~ Average case:traversep/2 nodes (sl yuck) Query(hash(e)=9)

Node 14 is responsible for
keys 11,12, 13, 14

Node 10 s responsible for
keys 9, 10

Node 8 is responsible for
keys4,5,6,7,8

(&

November5, 2016 © 20142016 Paul Krzyzanoveki a7

Distributed Systems 11/5/2016

A N
, . .
L Let’s figure out three more things | L Adding a node i
1. Adding/removing nodes - Some keys that were assigned to anode’s successor now get
5 ina look X assigned to the new node
. Improving lookup time :
P 9 P « Data for those (key, value) pairs must be moved to the new node
3. Fault tolerance Node 14 is responsible for ,’ N .
keys 11,12, 13, 14
Node 3 is responsible for
\K keys 15,0, 1,2, 3
4
Node 6 is responsible
for keys 4,5, 6
Node 10 is responsible for
keys 9, 10 Q
\ Node 8 was responsible for
keys4,5,6,7,8
Now its responsible for keys
7,8
\ y, \ /
Noveroers, 2016 © 20142015 P aul Keyzanow = Noveroers, 2016 2014 2016 Pauk Krzyzavorey Bl
" ™
Removing a node | L Fault tolerance n
* Keys are reassigned to the node’s successor * Nodes might die
- Data for those (key, value) pairs must be moved to the successor - (key, value) data would need to bereplicated
— Create R replicas, storing each one atR-1 successor nodes inthe ring
Node 14 was responsible for
keys11,12,13, 14 + Need to know successors
Node 14 is now responsible
for keys 9, 10, 11,12, 13, 14 $ Node 3 is responsible for — A node needs to know how to find its successor’s successor (or more)
K keys15,0,1,2,3 « Easy if it knows all nodes!
— When a node is back up, itneeds to check with successors for updates
— Any changes need to be propagated to all replicas
Node 6 is responsible
for keys 4,5, 6
Node 10 was responsible for
keys 9, 10
Node 8 is responsible for
keys 7,8
\ y, \ /
Noveroers, 2016 © 2012016 Pad Kizyzanoneh [Noveroers, 2016 BT T — @
M -
Performance Finger tables
9 g .
» We're not thrilled about O(N) lookup » Compromise to av oid large tables at each node
— Usefinger tables to place an upper bound on the table size
» Simple approach for great performance + Finger table = partial list of nodes
_ Hawe all nodes know about each other + At each node, it" entry in finger table identifies node that
)) succeeds it by at least 2" in the circle
— When a peer gets anode, it searches its table of nodes for the node —finger_table[0]: immediate (1) successor
that owns those values)
) — finger_table[1]: successor after that (29)
— Gives us O(1) performance — finger_table[2]: 4" successor
— Add/remove node operations must inform everyone — finger_table[3]: 8" successor
— Maybe not a good solution if we have millions of peers (huge tables) T
* O(log N) nodes need to be contacted to find the node that
owns a key
... not as cool as O(1) but way better than O(N)
\ y, \ /
Noverier, 2016 © 20142015 et Kiyzanow @ Noveroer 5, 2016 © 20142016 Pk Krzyzaroveis B

Paul Krzyzanowski 7

Distributed Systems

L Improving performance even more

* Let’s revisit O(1) lookup

» Each node keeps track of all current nodes in the group
— Is that really so bad?
— We might have thousands of nodes ... so what?

» Any node will now know which node holds a (key, value)

» Add or remov e a node: send updates to all other nodes

L

[]

Noverber5, 2016 © 20142016 Paul Krzyzanoveki

Paul Krzyzanowski

11/5/2016

.

The end

Noverber 5, 2016

© 20142016 Paul Krzyzanaveki

