CS417

P
Distributed Systems
18. MapReduce
Paul Krzyzanowsk
Fall 2015
(.

L Background

L

« Traditional programming is serial

* Parallel programming
— Break processing into parts that can be executed concurrently on
multiple processors

* Challenge

— Identify tasks that can run concurrently
and/or groups of data that can be processed concurrently

— Not all problems can be parallelized

November21, 2016 © 20142016 Paul Krzyzanovski

£ MapReduce

(&

» Created by Google in 2004
— Jeffrey Dean and Sanjay Ghemawat

* Inspired by LISP
— Map(function, set of values)
« Applies functionto each value in the set
(map ‘length ‘() (@) (@b)(@abc))= (0123)
— Reduce(function, set of values)
« Combines all the values using a binary function (e.g., +)
(reduce #+'(12345))=> 15

Noverber 21, 2016 © 20142016 Paul Krzyzanowski

Paul Krzyzanowski

11/21/2016

L Credit

L]

Much of this information is from Google:

+ Google Code University [no longer supported]
htipzicode google id.html

+ MapReduce: The programming model andpractice
research.google.compubs/pub36249 himl

See also: http://hadoop.apache.org/com mon/docs/c urre ntf
for the Apache Hadoop version
Read this (the definitive paper):

htip/labs.google comipapers/mapreduce.h tm!

Noverber 21, 2016 © 20142016 Paul Krzyzanaveki 2

L Simplest environment for parallel processing J

* No dependency among data
+ Data can be split into equal-size chunks - shards
» Each process can work on a chunk

* Master/worker approach

Master Worker
« Initializes array and splits it
according to # of workers

Sends each worker the sub-array

* Receives asub-array from master
+ Performs processing

* Sends results to master

Receives the results from each
worker

L J

November 21, 2016 © 20142016 Paul Krzyzanoveki 4

L MapReduce J

» MapReduce
— Framework for parallel computing
— Programmers get simple API
— Don't have to worry about handling
« parallelization
« data distribution
+ load balancing
« fault tolerance

« Allows one to process huge amounts of data (terabytes
and petaby tes) on thousands of processors

(& J

November 21, 2016 © 20142016 Paul Krzyzanoweki 6

L Who has it?

[]

» Google
— Original proprietary implementation

» Apache Hadoop MapReduce
— Most common (open-source) implementation
— Built to specs defined by Google

* Amazon Elastic MapReduce
— Uses Hadoop MapReduce running on Amazon EC2

(& J/

Noverber 21, 2016 © 20142016 Paul Krzyzanoveki 7

L MapReduce

* Map: (input shard) — intermediate(key /v alue pairs)
— Automatically partitioninput data into M shards

— Discard unnecessary data and generate (key, value) sets

— Framework groups together all intermediate values with the same
intermediate key & pass them to the Reduce function
» Reduce: intermediate(key /v alue pairs) — result files
— Input: key & set of values
— Merge these values together to form a smaller set of values

Reduce workers are distributed by partitioning the intermediate key space
into R pieces using a partiioning function (e.g., hash(key) mod R)

The user specifies the # of partitions (R) and the partitioning function

L /

Noverber 21, 2016 © 20142016 Paul Krzyzanowski 9

£ MapReduce: the complete picture

forks
Shard 0 Assign tasks

Shard 1

5 Output
Shard 2 orke file 1

Shard 3 i

Reduce Output
orke file 2

R work items
M work items !
Intermediate fles

(& /

Noverber 21, 2016 © 20142016 Paul Krzyzanouski 1

Shard M-1

Paul Krzyzanowski

11/21/2016

L MapReduce

L]

* Map
Grab the relevant data from the source
User function gets called for each chunk of input
Spits out (key, value) pairs

* Reduce
Aggregate the results
User function gets called for each unique key

(& J

Noverber 21, 2016 © 20142016 Paul Krzyzanaveki 8

L MapReduce: what happens in between? J

(~ Map)
— Grab the relevant data from the source (parse into key, value)
— Write it to an intermediate file !g
S
« Partition =
— Partitioning: identify which of R reducers will handle which keys §
— Map partitions data to target it to one of R Reduce workers based ona
partitioning function (both R and partitioning function user defined)

. J
(- shuffle (Sort))
— Fetch the relevant partition of the output from all mappers §
— Sort by keys (different mappers may have output the same key) 5

=
* Reduce §
— Input is the sorted output of mappers &
— Call the user Reduce function per key with the list of values for that key o
to aggregate the resuits
/
\ /
November 21, 2016 © 20142016 Paul Krzyzanouski 10

L Step 1: Split input files into chunks (shards) J

« Break up the input data into M pieces (typically 64 MB)

| Shard 0 I Shard 1 I Shard 2 l Shard 3 l lshard M—1|

Input files

Divided into M shards

(& J

November 21, 2016 © 20142016 Paul Krzyzanoweki 12

CS417 11/21/2016

™) R
L Step 2: Fork processes | L Step 3: Run Map Tasks i
« Start up many copies of the programon a cluster of machines « Reads contents of the input shard assigned to it
- 1 master: scheduler & coordinator « Parses keyhvalue pairs out of the input data
— Lots of workers
. . « Passes each pair to a user-defined map function
+ ldie workers are assigned either: — Produces intermediate key/value pairs
— map tasks (each works on a Sﬁard) - t.here.are M map tasks — These are buffered in memory
— reduce tasks (each works on intermediate files) — there are R
* R = # partitions, defined by the user
User read
program Remote fork Map
worker
\ J \ y,
Noverber 21, 2016 © 20142016 Paut Kizyzanoneka g November 21, 2016 © 20142016 Paut Kizyzanowsa =
- -)] -
Step 4: Create intermediate files | L Step 4a. Partitioning .
« Intermediate keyhalue pairs produced by the user’s mep function + Map data will be processed by Reduce workers
buffered in memory and are periodically written to the local disk — The user's Reduce function will be called once per unique key generated
— Partitioned into R regions by a partitioning function by Map.
« This means we will need to sort all the (key, value) data by keys and
decide which Reduce worker processes which keys — the Reduce
worker will do this
« Partition function: decides which of R reduce workers will work on
Intermediate file which key
- — Default function: hash(key) mod R
local wig — Map worker partitions the data by keys
« Each Reduce worker will read their partition from every Map worker
\. J \ J
Noverber 21, 2016 © 20122016 P Kzyzanoveki 5 November 21, 2016 © 20142016 Pauk Krzyzanowsks 16
- ™)
£ Step 5: Reduce Task: sorting i L Step 6: Reduce Task: Reduce J
« Reduce worker gets notified by the master about the location of + The sort phase grouped data with a unique intermediate key
intermediate files for its partition
P) « User’s Reduce function is given the key and the set of intermediate
* Uses RPCs toread the data from the local disks of the map workers values for that key
+ When the reduce worker reads intermediate data for its partition = < key, (valuel, value2, value3, valued, ...)>
— It sorts the data by the intermediate keys . L
— All occurrences of the same key are grouped together The output of the Reduce function is appended to an output file
Intermediate
file
Intermediate |__€Mote reag write
file L
Intermediate
file
\ J \ J
Novermoer 21, 2016 © 20142016 Paut Krzyzanoneki I November 21, 2016 '© 20142016 Pauk Kizyzanowsks s

Paul Krzyzanowski 3

CS417

~
L Step 7: Return to user |
* When all map and reduce tasks have completed, the
master wakes up the user program
» The MapReduce callin the user program returns and the
program can resume execution.
— Output of MapReduce is available in R output files
\ y,
Noverer 21, 2016 2014 2016 Pauk Krzyzavone A
~
Example i
« Count # occurrences of each word in a collection of documents
« Map:
— Parse data; output each word and a count (1)
* Reduce:
— Sort: sort by keys (words)
— Reduce: Sum together counts each key (word)
map(String key, String value):
// key: document name, value: document contents
for each word w in value:
EmitIntermediate(w, "1");
reduce(String key, Iterator values):
// key: a word; values: a list of counts
int result = 0;
for each v in values:
result += ParselInt(v);
Emit(AsString(result));
\ y,
Noverber 21, 2016 EE T T — Y
~
Fault tolerance i
» Master pings each worker periodically
— If no response is received within a certain time, the worker is
marked as failed
— Map or reduce tasks given to this worker are reset back to the initial
state and rescheduled for other workers.
\ y,

Noverber 21, 2016 © 20142016 Paul Krzyzanowski 2

Paul Krzyzanowski

11/21/2016

~
L MapReduce: the complete picture i
fork
Shard 0 Assign tasks
Shard 1 =2 IF
— Reduce Output
Shard 2 e file 1
Shard 3 Mep IF
Reduce Output
orkel file 2
Shard M1 3 IE :
0 R work items
M work items
Intermediate files
L MAP ===p SHUFFLE ===$ REDUCE)

Noverber 21, 2016 © 20142016 Paul Krzyzanaveki 20

L Example J

It will be seen that this mere painstaking itl a 4736
burrower and grub-worm of apoor devil | | will 1 a1 aback 2

of a Sub-Sub appears to have gone be 1 a1 abaft 2

through the long Vaticans and street- seenl aback 1 abandon 3
stalls of the earth, picking up whatever that 1 aback 1 abandoned 7
random allusions to whales he could this 1 abaft 1 abandonedly 1
anyways find in any book whatsoever, mere 1 abaft 1 abandonment 2
sacred or profane. Therefore you must painstaking 1 abandon 1 abased 2

not, inevery case at least, take the burrower 1 abandon 1 abasement 1

abandon 1 abashed 2
abandoned 1 abate 1

abandoned 1 abated 3
Vating 2
abandoned 1 abbreviate 1

higgledy-piggledy whale statements, and 1
however authentc, in these extracts, for | | grub-worm1
verible gospel cetology. Far from it of

As touching the ancient authors
generally, as well as the poets he|

appearing, these extracts are solely deii 1
valuable or entertaining, as afording a of 1 abandoned 1 abbreviation 1
glancing bird's eye view of what has a1 abandoned 1 abeam 1
been promiscuously said, hought, sub-sub1 abandonedly 1 abed 2
fancied, and sung of Leviathan, by many | | appears 1 abandonment 1 abednego 1
nations and generatons, including our w01 abandonment 1 abel 1
own. have 1 abased 1 abhorred 3
gone 1 abased 1 abhorrence 1

November 21, 2016 © 20142016 Paul Krzyzanoveki 2

£ Locality J

* Input and Output files
— GFS (Google File System)
— Bigtable

* MapReduce runs on GFS chunkservers
— Keep computation close to the files if possible

* Master tries to schedule map worker on one of the
machines that has a copy of the input chunk it needs.

(& J

November 21, 2016

© 20142016 Paul Krzyzanoweki 2

CS417 11/21/2016

A N
L Other Examples | L Other Examples i
« Distributed grep (search for w ords) » Count URL access frequency
— Search for words in lots of docunents — Find the frequency of each URL in web logs
— Map: emit a line if it matches a given pattern — Map: process logs of web page access; output <URL, 1>
— Reduce: just copy the intermediate data to the output — Reduce: add all values for the same URL
RED Reduce Map Reduce
Loput: line of text P - .
Loput: *, [lines] oput: line from log lnput: url, [accesses]
If pattern matches " . .
Quinit: (", ine) Qutput: lines Qutput: (url, 1) Qutput: url, sum(accesses)
\ J \ y,
Noverber 21, 2016 © 20142016 Paut Kizyzanowsa = November 21, 2016 © 20142016 Paut Kizyzanoveid %
o)
L Other Examples | L Other Examples J
» Reverse w eb-link graph * Inverted index
— Find where page links come from — Find what docunrents contain a specific word
— Map: output <target, source>for each link to target in a page source — Map: parse document, emit <word, documentID> pairs
— Reduce: concatenate the list of all source URLs associated with a — Reduce: for each word, sort the corresponding document IDs
target.
Emit a <word, list(document-ID)> pair
Output <target, list(source)> The set of all output pairs is an inverted index
Map Reduce Map Reduce
loput: HTML files Loput: target, [sources] Joput: document Joput: word, [doc_id]
Quitput: (target, source) Quitput: target, [sources]) Qutput (word, doc_id) Qutput: word, [doc_id])
\. J \ J
Noverber 21, 2016 © 20142016 Pauk Krzyzanowski 7 Noveroer 21, 2016 BT T — 3
~
£ Other Examples | L Other Examples: Two rounds J
» Stock summary » Average salaries in regions
— Find average daily gain of each conpany from 1/1/2000 — 12/31/2015 — Show zip codes where average salaries are in the ranges:
— Data is aset of lines: { date, company start_price, end_price } (1) <$100K (2) $100K ... $500K (3) > $500K
— Data is a set of lines: { name, age, address, zip, salary }
Map N Reduce
o P Loput: zip, [salary]
Map Quiput: (2ip, salary) Qutput: zip, average([salary])
£ = “4/1/2000" && Reduce
date <= “12/31/2015 Loput: company, [daily_gains] Show average salary for each zipcode
——Quitput- (company, Qutput: word, average([daily_gains]) (Map (zip, salary) R (N
end_price-start_price) if (salary < 100K) Reduce
outpu{*<$100K", zip) loput: range, [zips]
elseif (salary >500K) >
output(*>$500K", zip) Qutput: range
else $100.500K" 21 For z in zips
output(H | zip)) L output(z))
\ J \ J
» November 21, 2016 © 20142016 Paut Kizyzanovek E)

Noverber 21, 2016 © 20142016 Paul Krzyzanouski

Paul Krzyzanowski

CS417

L MapReduce for Rendering Map Tiles

{ Shuffle »

Input » Map

Emic each to all
overlapping latitude-
longitude rectangles

Geagraphic Render tile using

. Sort by key
feature List {koy= Rect. Td} features

. Take wash.}

1, Lake Wash.)

Jsect with pem

Reduce r Output

data for all enclosed Rendered tiles

[]

\ J
Noverber 21, 2016 © 20142016 Paut Kizyzanowsa an
. 7\
All is not perfect i
» MapReduce was used to process webpage data collected by
Google's craners.
— It would extract the links and metadata needed to search the pages
— Determine the site's PageRank
» The process took around eight hours.
— Results were moved to search servers.
— This was done continuously.
Web Migrate to
[crawlers):%MapReduce }:%search SEvES
\ J
Y
~ 8 hours!
\. J
Noverber 21, 2016 T — =
X A
In Practice .
* Most data not simple files
— B-trees, tables, SQL databases, memory-mapped key-values
» Hardly ever use textual data: slow & hard to parse
— Most I/O encoded with Protocol Buffers
\ J

Noverber 21, 2016 © 20142016 Paul Krzyzanouski

Paul Krzyzanowski

11/21/2016

L MapReduce Summary

* Get alot of data

* Map
— Parse & extract items of interest

* Sort (shuffle) & partition

* Reduce
— Aggregate results

» Write to output files

L]

Noverber 21, 2016 © 20142016 Paul Krzyzanoveki

L All'is not perfect

* Web has become more dynamic
— an 8+ hour delay is a lot for some sites

Goal: refresh certain pages within seconds

MapReduce
— Batch-oriented
— Not suited for near-real-time processes
— Cannot start a new phase until the previous has completed
+ Reduce cannot start unti allMap workers have completed
— Suffers from “stragglers” —workers that take too long (or fail)
— This was done continuously

MapReduce is still used for many Google services

Search framework updated in 2009-2010: Caffeine
— Index updated by making direct changes to data stored in Bigtable
— Data resides in Colossus (GFS2) instead of GFS

November 21, 2016 © 20142016 Paul Krzyzanoveki

(More info
Ly

» Good tutorial presentation & examples at:
http:/research.google.com/pubs/pub36249ht ml

* The definitive paper:
http:/labs.goog le.com/papers/mapreduce.html

(&

November 21, 2016 © 20142016 Paul Krzyzanousk

CS417 11/21/2016

The End

Paul Krzyzanowski 7

