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Can we make MapReduce easier? 
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Apache Pig 

• Why ? 

– Make it easy to use MapReduce via scripting instead of Java 

– Make it easy to use multiple MapReduce stages 

– Built-in common operations for join, group, filter, etc. 

• How to use? 

– Use Grunt – the pig shell 

– Submit a script directly to pig 

– Use the PigServer Java class 

– PigPen – Eclipse plugin 

• Pig compiles to sev eral Hadoop MapReduce jobs 
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Apache Pig 
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Count Job 

(in Pig Latin) 

A = LOAD ‘myfile’ AS (x, y, z); 

B = FILTER A by x> 0; 

C = GROUP B by x; 

D = FOREACH A GENERATE 
 x, COUNT(B); 

STORE D into ’output’; 

Pig Framework 

 
• Parse 

• Check 

• Optimize 

• Plan Execution 

• Submit jar to Hadoop 

• Monitor progress 

Hadoop 

Execution 

 
• Map: Filter 

• Reduce: Counter 
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Pig: Loading Data 

Load/store relations in the f ollowing f ormats:  

• PigStorage: f ield-delimited text 

• BinStorage: binary  f iles  

• Binary Storage: single-f ield tuples with a v alue of  bytearray 

• TextLoader: plain-text 

• PigDump: stores using toString() on tuples, one per line 
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Example 

• Each statement defines a new dataset 

– Datasets can be given aliases to be used later 

• FOREACH iterates over the members of a ”bag” 

– Input is grpd: list of log entries grouped by user 

– Output is group, COUNT(log): list of {user, count} 

• FILTER applies conditional filtering 

• ORDER applies sorting 
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log = LOAD ‘test.log’ AS (user, timestamp, query); 

grpd = GROUP log by user; 

cntd = FOREACH grpd GENERATE group, COUNT(log); 

fltrd = FILTER cntd BY cnt > 50; 

srtd = ORDER fltrd BY cnt; 

STORE srtd INTO ‘output’; 
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See pig.apache.org  

f or f ull documentation 
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MapReduce isn’t always the answer 

• MapReduce works well f or certain problems 

– Provides automatic parallelization 

– Automatic job distribution 

 

• For others 

– May require many iterations 

– Data locality usually not preserved between Map and Reduce 

• Lots of communication between map and reduce workers 
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Bulk Synchronous Parallel (BSP) 

• Computing model f or parallel computation 

• Series of  supersteps 

1. Concurrent computation 

2. Communication 

3. Barrier synchronization 
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Bulk Synchronous Parallel (BSP) 
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Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5 

Bulk Synchronous Parallel (BSP) 

• Series of  supersteps 

1. Concurrent computation 

2. Communication 

3. Barrier synchronization 

 

November 21, 2016 © 2014-2016 Paul Krzyzanowski 11 

Initial data 

Initial data 

Initial data 

Initial data 

Compute 

Compute 

Compute 

Compute 

B
a
rr
ie

r 

Input msgs 

Input msgs 

Input msgs 

Input msgs 

Compute 

Compute 

Compute 

Compute 

B
a
rr
ie

r 

Input msgs 

Input msgs 

Input msgs 

Input msgs 

• Processes (workers) are randomly 

assigned to processors  

• Each process uses only local data 

• Each computation is asynchronous of 

other concurrent computation 

• Computation time may vary  

Superstep 0 Superstep 1 

Bulk Synchronous Parallel (BSP) 

• Series of  supersteps 

1. Concurrent computation 

2. Communication 

3. Barrier synchronization 

 

November 21, 2016 © 2014-2016 Paul Krzyzanowski 12 

Initial data 

Initial data 

Initial data 

Initial data 

Compute 

Compute 

Compute 

Compute 

B
a
rr
ie

r 

Input msgs 

Input msgs 

Input msgs 

Input msgs 

Compute 

Compute 

Compute 

Compute 

B
a
rr
ie

r 

Input msgs 

Input msgs 

Input msgs 

Input msgs 

• Messaging is restricted to the end of a 

computation superstep 

• Each worker sends a message to 0 or 

more workers  

• These messages are inputs for the next 

superstep 

Superstep 0 Superstep 1 

End of superstep: 

Messages received 

by all workers 

Start of superstep: 

Messages delivered 

to all workers 
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Bulk Synchronous Parallel (BSP) 

• Series of  supersteps 

1. Concurrent computation 

2. Communication 

3. Barrier synchronization 
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• The next superstep does not begin until 

all messages have been received 

• Barriers ensure no deadlock: no circular 

dependency can be created 

• Provide an opportunity to checkpoint 

results for fault tolerance 

– If failure, restart computation from last 
superstep 

Superstep 0 Superstep 1 

BSP Implementation: Apache Hama 

• Hama: BSP f ramework on top of  HDFS 

– Provides automatic parallelization & distribution 

– Uses Hadoop RPC 

• Data is serialized with Google Protocol Buffers 

– Zookeeper for coordination (Apache version of Google’s Chubby) 

• Handles notifications for Barrier Sync 

 

• Good f or applications with data locality 

– Matrices and graphs 

– Algorithms that require a lot of iterations 
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Hama programming (high-level) 

• Pre-processing 

– Define the number of peers for the job 

– Split initial inputs for each of the peers to run their supersteps  

– Framework assigns a unique ID to each worker (peer) 

• Superstep: the worker function is a superstep 

– getCurrentMessage() – input messages from previous superstep  

– Compute – your code 

– send(peer, msg) – send messages to a peer 

– sync() – synchronize with other peers (barrier) 

• File I/O 

– Key/value model used by Hadoop MapReduce & HBase 

– readNext(key, value) 

– write(key, value) 
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Bigtable 

For more information 

• Architecture, examples, API 

• Take a look at: 

– Apache Hama project page 

• http://hama.apache.org 

– Hama BSP tutorial 

• https://hama.apache.org/hama_bsp_tutorial.html 

– Apache Hama Programming document 

• http://bit.ly/1aiFbXS 
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf 
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Graphs are common in computing 

• Social links 

– Friends 

– Academic citations 

– Music 

– Movies 

• Web pages 

• Network connectiv ity  

• Roads 

• Disease outbreaks 
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Processing graphs on a large scale is hard 

• Computation with graphs 

– Poor locality of memory access 

– Little work per vertex 

• Distribution across machines 

– Communication complexity 

– Failure concerns 

• Solutions 

– Application-specific, custom solutions 

– MapReduce or databases 

• But require many iterations (and a lot of data movement) 

– Single-computer libraries: limits scale 

– Parallel libraries: do not address fault tolerance 

– BSP: close but too general 
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Pregel: a vertex-centric BSP 

• Input: directed graph 

– A vertex is an object 

• Each vertex uniquely identified with a name 

• Each vertex has a modifiable value 

– Directed edges: links to other objects  

• Associated with source vertex 

• Each edge has a modifiable value 

• Each edge has a target vertex identifier 
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http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html 
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Pregel: computation 

• Computation: series of supersteps 

– Same user-defined function runs on each v ertex 

• Receives messages sent from the previous superstep 

• May modify the state of the vertex or of its outgoing edges 

• Sends messages that will be received in the next superstep 

– Typically  to outgoing edges 

– But can be sent to any known vertex 

• May modify the graph topology  

• Each superstep end with a barrier (synchronization point) 
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Pregel: termination 

Pregel terminates when every vertex votes to halt 

• Initially, every vertex is in an active state 

– Active vertices compute during a superstep 

• Each vertex may choose to deactivate itself by 
voting to halt 

– The vertex has no more work to do 

– Will not be executed by Pregel  

– UNLESS the vertex receives a message 

• Then it is reactivated 

• Will stay active until it votes to halt again 

• Algorithm terminates when all vertices are inactive 
and there are no messages in transit 
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Active 

Inactive 

vote 
to halt 

received 
message 

Vertex 
State Machine 

Pregel: output 

• Output is the set of values output by the vertices 

• Often a directed graph 

– May be non-isomorphic to original since edges & vertices can be added or 
deleted 

… Or summary data 
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Examples of graph computations 

• Shortest path to a node 

– Each iteration, a node sends the shortest distance received to all neighbors  

• Cluster identification 

– Each iteration: get info about clusters from neighbors. 

– Add myself 

– Pass useful clusters to neighbors (e.g., within a certain depth or size) 

• May combine related vertices 

• Output is a smaller set of disconnected vertices representing clusters of interest 

• Graph mining 

– Traverse a graph and accumulate global statistics  

• Page rank 

– Each iteration: update web page ranks based on messages from incoming 

links. 
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Simple example: find the maximum value 

• Each vertex contains a value 

• In the first superstep: 

– A vertex sends its value to its neighbors 

• In each successive superstep: 

– If a vertex learned of a larger value from its incoming messages, 
it sends it to its neighbors 

– Otherwise, it votes to halt 

• Eventually, all vertices get the largest value 

• When no vertices change in a superstep, the algorithm terminates 
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Simple example: find the maximum value 

Semi-pseudocode: 
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class MaxValueVertex 

    : public Vertex<int, void, int> { 

  void Compute(MessageIterator *msgs) { 

 int maxv = GetValue(); 

 for (; !msgs->Done(); msgs->Next()) 

  maxv = max(msgs.Value(), maxv); 

 

 if (maxv > GetValue()) || (step == 0)) { 

  *MutableValue() = maxv; 

  OutEdgeIterator out = GetOutEdgeIterator(); 

  for (; !out.Done(); out.Next()) 

   sendMessageTo(out.Target(), maxv) 

 } else 

  VoteToHalt(); 

 } 

  } 

}; 

1. vertex value type; 2. edge value type 

(none!); 3. message value type 

find maximum value 

send maximum 

value to all 

edges 

Simple example: find the maximum value 
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3 6 2 1 Superstep 0 

Inactive vertex Active vertex  

6 6 2 6 Superstep 1 

Superstep 0: Each vertex propagates its own value to connected vertices  
 

Superstep 1: V0 updates its value: 6 > 3 
   V3 updates its value: 6 > 1 
   V1 and V2 do not update so vote to halt 

 

V0 V1 V2 V3 

Simple example: find the maximum value 
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3 6 2 1 Superstep 0 

Inactive vertex  Active vertex 

6 6 2 6 Superstep 1 

6 6 6 6 Superstep 2 

Superstep 2: V1 receives a message – becomes active  
   V3 updates its value: 6 > 2 

   V1, V2, and V3 do not update so vote to halt 
 

V0 V1 V2 V3 

Simple example: find the maximum value 
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Inactive vertex Active vertex  

6 6 6 6 Superstep 2 

6 6 6 6 Superstep 3 

V0 V1 V2 V3 

Superstep 3: V1 receives a message – becomes active  
   V3 receives a message – becomes active 

   No vertices update their value – all vote to halt 
Done!  
 

Locality 

• Vertices and edges remain on the machine that does the 

computation 

 

• To run the same algorithm in MapReduce  

– Requires chaining multiple MapReduce operations 

– Entire graph state must be passed from Map to Reduce 

… and again as input to the next Map 
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Pregel API: Basic operations 

• A user subclasses a Vertex class 

• Methods 

– Compute(MessageIterator*): Executed per active vertex in each superstep 

• MessageIterator identifies incoming messages from previous supersteps 

– GetValue(): Get the current value of the vertex 

– MutableValue(): Set the value of the vertex 

– GetOutEdgeIterator(): Get a list of outgoing edges 

• .Target(): identify target vertex on an edge 

• .GetValue(): get the value of the edge 

• .MutableValue(): set the value of the edge 

– SendMessageTo(): send a message to a vertex 

• Any number of messages can be sent 

• Ordering among messages is not guaranteed 

• A message can be sent to any vertex (but our vertex needs to have its ID) 
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Pregel API: Advanced operations 

Combiners 

• Each message has an overhead – let’s reduce # of messages 

– Many vertices are processed per worker (multi -threaded) 

– Pregel can combine messages targeted to one vertex into one message  

• Combiners are application specific 

– Programmer subclasses a Combiner class and overrides Combine() method 

• No guarantee on which messages may be combined 
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Combiner 
Sums input messages  
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Combiner 
Minimum value 

15 

12 
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15 

11 

Pregel API: Advanced operations 

Aggregators 

• Handle global data 

• A vertex can provide a value to an aggregator during a superstep 

– Aggregator combines received values to one value 

– Value is available to all vertices in the next superstep 

• User subclasses an Aggregator class 

• Examples 

– Keep track of total edges in a graph 

– Generate histograms of graph statistics 

– Global flags: execute until some global condition is satisfied 

– Election: find the minimum or maximum vertex 
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Pregel API: Advanced operations 

Topology modification 

• Examples 

– If we’re computing a spanning tree: remove unneeded edges 

– If we’re clustering: combine vertices into one vertex 

• Add/remove edges/vertices 

• Modifications visible in the next superstep 
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Pregel Design 
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Execution environment 

• Many copies of the program 
are started on a cluster of machines 

 

• One copy becomes the master 

– Will not be assigned a portion of the graph 

– Responsible for coordination 

 

• Cluster’s name server = chubby 

– Master registers itself with the name service 

– Workers contact the name service  

to find the master 
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Rack 

40-80 computers 

Cluster 

1,000s to 10,000+ computers 

Partition assignment 

• Master determines # partitions in graph 

• One or more partitions assigned to each worker 

– Partition = set of vertices 

– Default: for N partitions 
 

 hash(vertex ID) mod N ⇒ worker 
 

May deviate: e.g., place vertices representing the same web site in one partition 

 

– More than 1 partition per worker: improves load balancing 

 

• Worker 

– Responsible for its section of the graph 

– Each worker knows the vertex assignments of other workers 
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Input assignment 

• Master assigns parts of the input to each worker 

– Data usually sits in GFS or Bigtable 

 

• Input = set of records 

– Record = vertex data and edges 

– Assignment based on file boundaries  

 

• Worker reads input 

– If it belongs to any of the vertices it manages, messages sent locally 

– Else worker sends messages to remote workers  

 

• After data is loaded, all vertices are active 
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Computation 

• Master tells each worker to perform a superstep 

• Worker: 

– Iterates through vertices (one thread per partition) 

– Calls Compute() method for each active vertex 

– Delivers messages from the previous superstep 

– Outgoing messages 

• Sent asynchronously 

• Delivered before the end of the superstep 

• When done 

– worker tells master how many vertices will be active in the next superstep 

• Computation done when no more active vertices in the cluster 

– Master may instruct workers to save their portion of the graph 
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Send messages 

Compute 

Deliver messages 

Superstep done 

Handling failure 

• Checkpointing 

– Controlled by master … every N supersteps 

– Master asks a worker to checkpoint at the start of a superstep 

• Save state of partitions to persistent storage 

– Vertex values 

– Edge values 

– Incoming messages  

– Master is responsible for saving aggregator values 

• Master sends “ping” messages to workers 

– If worker does not receive a ping within a time period 
⇒ Worker terminates 

– If the master does not hear from a worker 
⇒ Master marks worker as failed 

• When failure is detected 

– Master reassigns partitions to the current set of workers  

– All workers reload partition state from most recent checkpoint 
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Pregel outside of Google 

• Apache Giraph 

– Initially created at Yahoo 

– Used at Facebook to analyze the social graph of users 

– Runs under Hadoop MapReduce framework 

• Runs as a Map-only job 

• Adds fault-tolerance to the master by using ZooKeeper for coordination 

• Uses Java instead of C++ 
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== Chubby 

Conclusion 

• Vertex-centric approach to BSP 

• Computation = set of supersteps 

– Compute() called on each vertex per superstep 

– Communication between supersteps: barrier synchronization 

 

• Hides distribution from the programmer 

– Framework creates lots of workers  

– Distributes partitions among workers  

– Distributes input 

– Handles message sending, receipt, and synchronization 

– A programmer just has to think from the viewpoint of a vertex 

 

• Checkpoint-based fault tolerance 
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The End 
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