
CS 417 11/21/2016

Paul Krzyzanowski 1

Distributed Systems
21. Graph Computing Frameworks

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Can we make MapReduce easier?

2 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Apache Pig

• Why ?

– Make it easy to use MapReduce via scripting instead of Java

– Make it easy to use multiple MapReduce stages

– Built-in common operations for join, group, filter, etc.

• How to use?

– Use Grunt – the pig shell

– Submit a script directly to pig

– Use the PigServer Java class

– PigPen – Eclipse plugin

• Pig compiles to sev eral Hadoop MapReduce jobs

3 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Apache Pig

4

Count Job

(in Pig Latin)

A = LOAD ‘myfile’ AS (x, y, z);

B = FILTER A by x> 0;

C = GROUP B by x;

D = FOREACH A GENERATE
 x, COUNT(B);

STORE D into ’output’;

Pig Framework

• Parse

• Check

• Optimize

• Plan Execution

• Submit jar to Hadoop

• Monitor progress

Hadoop

Execution

• Map: Filter

• Reduce: Counter

November 21, 2016 © 2014-2016 Paul Krzyzanowski

Pig: Loading Data

Load/store relations in the f ollowing f ormats:

• PigStorage: f ield-delimited text

• BinStorage: binary f iles

• Binary Storage: single-f ield tuples with a v alue of bytearray

• TextLoader: plain-text

• PigDump: stores using toString() on tuples, one per line

5 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Example

• Each statement defines a new dataset

– Datasets can be given aliases to be used later

• FOREACH iterates over the members of a ”bag”

– Input is grpd: list of log entries grouped by user

– Output is group, COUNT(log): list of {user, count}

• FILTER applies conditional filtering

• ORDER applies sorting

6

log = LOAD ‘test.log’ AS (user, timestamp, query);

grpd = GROUP log by user;

cntd = FOREACH grpd GENERATE group, COUNT(log);

fltrd = FILTER cntd BY cnt > 50;

srtd = ORDER fltrd BY cnt;

STORE srtd INTO ‘output’;

November 21, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 11/21/2016

Paul Krzyzanowski 2

See pig.apache.org

f or f ull documentation

7 November 21, 2016 © 2014-2016 Paul Krzyzanowski

MapReduce isn’t always the answer

• MapReduce works well f or certain problems

– Provides automatic parallelization

– Automatic job distribution

• For others

– May require many iterations

– Data locality usually not preserved between Map and Reduce

• Lots of communication between map and reduce workers

November 21, 2016 © 2014-2016 Paul Krzyzanowski 8

Bulk Synchronous Parallel (BSP)

• Computing model f or parallel computation

• Series of supersteps

1. Concurrent computation

2. Communication

3. Barrier synchronization

November 21, 2016 © 2014-2016 Paul Krzyzanowski 9

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

Superstep 0 Superstep 1

Bulk Synchronous Parallel (BSP)

November 21, 2016 © 2014-2016 Paul Krzyzanowski 10

Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5

Bulk Synchronous Parallel (BSP)

• Series of supersteps

1. Concurrent computation

2. Communication

3. Barrier synchronization

November 21, 2016 © 2014-2016 Paul Krzyzanowski 11

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

• Processes (workers) are randomly

assigned to processors

• Each process uses only local data

• Each computation is asynchronous of

other concurrent computation

• Computation time may vary

Superstep 0 Superstep 1

Bulk Synchronous Parallel (BSP)

• Series of supersteps

1. Concurrent computation

2. Communication

3. Barrier synchronization

November 21, 2016 © 2014-2016 Paul Krzyzanowski 12

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

• Messaging is restricted to the end of a

computation superstep

• Each worker sends a message to 0 or

more workers

• These messages are inputs for the next

superstep

Superstep 0 Superstep 1

End of superstep:

Messages received

by all workers

Start of superstep:

Messages delivered

to all workers

CS 417 11/21/2016

Paul Krzyzanowski 3

Bulk Synchronous Parallel (BSP)

• Series of supersteps

1. Concurrent computation

2. Communication

3. Barrier synchronization

November 21, 2016 © 2014-2016 Paul Krzyzanowski 13

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
a
rr
ie

r

Input msgs

Input msgs

Input msgs

Input msgs

• The next superstep does not begin until

all messages have been received

• Barriers ensure no deadlock: no circular

dependency can be created

• Provide an opportunity to checkpoint

results for fault tolerance

– If failure, restart computation from last
superstep

Superstep 0 Superstep 1

BSP Implementation: Apache Hama

• Hama: BSP f ramework on top of HDFS

– Provides automatic parallelization & distribution

– Uses Hadoop RPC

• Data is serialized with Google Protocol Buffers

– Zookeeper for coordination (Apache version of Google’s Chubby)

• Handles notifications for Barrier Sync

• Good f or applications with data locality

– Matrices and graphs

– Algorithms that require a lot of iterations

November 21, 2016 © 2014-2016 Paul Krzyzanowski 14

Hama programming (high-level)

• Pre-processing

– Define the number of peers for the job

– Split initial inputs for each of the peers to run their supersteps

– Framework assigns a unique ID to each worker (peer)

• Superstep: the worker function is a superstep

– getCurrentMessage() – input messages from previous superstep

– Compute – your code

– send(peer, msg) – send messages to a peer

– sync() – synchronize with other peers (barrier)

• File I/O

– Key/value model used by Hadoop MapReduce & HBase

– readNext(key, value)

– write(key, value)

November 21, 2016 © 2014-2016 Paul Krzyzanowski 15

Bigtable

For more information

• Architecture, examples, API

• Take a look at:

– Apache Hama project page

• http://hama.apache.org

– Hama BSP tutorial

• https://hama.apache.org/hama_bsp_tutorial.html

– Apache Hama Programming document

• http://bit.ly/1aiFbXS
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf

November 21, 2016 © 2014-2016 Paul Krzyzanowski 16

Graphs are common in computing

• Social links

– Friends

– Academic citations

– Music

– Movies

• Web pages

• Network connectiv ity

• Roads

• Disease outbreaks

November 21, 2016 © 2014-2016 Paul Krzyzanowski 17

Processing graphs on a large scale is hard

• Computation with graphs

– Poor locality of memory access

– Little work per vertex

• Distribution across machines

– Communication complexity

– Failure concerns

• Solutions

– Application-specific, custom solutions

– MapReduce or databases

• But require many iterations (and a lot of data movement)

– Single-computer libraries: limits scale

– Parallel libraries: do not address fault tolerance

– BSP: close but too general

November 21, 2016 © 2014-2016 Paul Krzyzanowski 18

CS 417 11/21/2016

Paul Krzyzanowski 4

Pregel: a vertex-centric BSP

• Input: directed graph

– A vertex is an object

• Each vertex uniquely identified with a name

• Each vertex has a modifiable value

– Directed edges: links to other objects

• Associated with source vertex

• Each edge has a modifiable value

• Each edge has a target vertex identifier

November 21, 2016 © 2014-2016 Paul Krzyzanowski 19

http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html

8

4

12
2

1 6

10

0

9

1

9

2

2

5
14

11

Pregel: computation

• Computation: series of supersteps

– Same user-defined function runs on each v ertex

• Receives messages sent from the previous superstep

• May modify the state of the vertex or of its outgoing edges

• Sends messages that will be received in the next superstep

– Typically to outgoing edges

– But can be sent to any known vertex

• May modify the graph topology

• Each superstep end with a barrier (synchronization point)

November 21, 2016 © 2014-2016 Paul Krzyzanowski 20

1 6

10

0

9

2

2
14

11

Pregel: termination

Pregel terminates when every vertex votes to halt

• Initially, every vertex is in an active state

– Active vertices compute during a superstep

• Each vertex may choose to deactivate itself by
voting to halt

– The vertex has no more work to do

– Will not be executed by Pregel

– UNLESS the vertex receives a message

• Then it is reactivated

• Will stay active until it votes to halt again

• Algorithm terminates when all vertices are inactive
and there are no messages in transit

November 21, 2016 © 2014-2016 Paul Krzyzanowski 21

Active

Inactive

vote
to halt

received
message

Vertex
State Machine

Pregel: output

• Output is the set of values output by the vertices

• Often a directed graph

– May be non-isomorphic to original since edges & vertices can be added or
deleted

… Or summary data

November 21, 2016 © 2014-2016 Paul Krzyzanowski 22

Examples of graph computations

• Shortest path to a node

– Each iteration, a node sends the shortest distance received to all neighbors

• Cluster identification

– Each iteration: get info about clusters from neighbors.

– Add myself

– Pass useful clusters to neighbors (e.g., within a certain depth or size)

• May combine related vertices

• Output is a smaller set of disconnected vertices representing clusters of interest

• Graph mining

– Traverse a graph and accumulate global statistics

• Page rank

– Each iteration: update web page ranks based on messages from incoming

links.

November 21, 2016 © 2014-2016 Paul Krzyzanowski 23

Simple example: find the maximum value

• Each vertex contains a value

• In the first superstep:

– A vertex sends its value to its neighbors

• In each successive superstep:

– If a vertex learned of a larger value from its incoming messages,
it sends it to its neighbors

– Otherwise, it votes to halt

• Eventually, all vertices get the largest value

• When no vertices change in a superstep, the algorithm terminates

November 21, 2016 © 2014-2016 Paul Krzyzanowski 24

CS 417 11/21/2016

Paul Krzyzanowski 5

Simple example: find the maximum value

Semi-pseudocode:

November 21, 2016 © 2014-2016 Paul Krzyzanowski 25

class MaxValueVertex

 : public Vertex<int, void, int> {

 void Compute(MessageIterator *msgs) {

 int maxv = GetValue();

 for (; !msgs->Done(); msgs->Next())

 maxv = max(msgs.Value(), maxv);

 if (maxv > GetValue()) || (step == 0)) {

 *MutableValue() = maxv;

 OutEdgeIterator out = GetOutEdgeIterator();

 for (; !out.Done(); out.Next())

 sendMessageTo(out.Target(), maxv)

 } else

 VoteToHalt();

 }

 }

};

1. vertex value type; 2. edge value type

(none!); 3. message value type

find maximum value

send maximum

value to all

edges

Simple example: find the maximum value

November 21, 2016 © 2014-2016 Paul Krzyzanowski 26

3 6 2 1 Superstep 0

Inactive vertex Active vertex

6 6 2 6 Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V0 updates its value: 6 > 3
 V3 updates its value: 6 > 1
 V1 and V2 do not update so vote to halt

V0 V1 V2 V3

Simple example: find the maximum value

November 21, 2016 © 2014-2016 Paul Krzyzanowski 27

3 6 2 1 Superstep 0

Inactive vertex Active vertex

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

Superstep 2: V1 receives a message – becomes active
 V3 updates its value: 6 > 2

 V1, V2, and V3 do not update so vote to halt

V0 V1 V2 V3

Simple example: find the maximum value

November 21, 2016 © 2014-2016 Paul Krzyzanowski 28

Inactive vertex Active vertex

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

V0 V1 V2 V3

Superstep 3: V1 receives a message – becomes active
 V3 receives a message – becomes active

 No vertices update their value – all vote to halt
Done!

Locality

• Vertices and edges remain on the machine that does the

computation

• To run the same algorithm in MapReduce

– Requires chaining multiple MapReduce operations

– Entire graph state must be passed from Map to Reduce

… and again as input to the next Map

November 21, 2016 © 2014-2016 Paul Krzyzanowski 30

Pregel API: Basic operations

• A user subclasses a Vertex class

• Methods

– Compute(MessageIterator*): Executed per active vertex in each superstep

• MessageIterator identifies incoming messages from previous supersteps

– GetValue(): Get the current value of the vertex

– MutableValue(): Set the value of the vertex

– GetOutEdgeIterator(): Get a list of outgoing edges

• .Target(): identify target vertex on an edge

• .GetValue(): get the value of the edge

• .MutableValue(): set the value of the edge

– SendMessageTo(): send a message to a vertex

• Any number of messages can be sent

• Ordering among messages is not guaranteed

• A message can be sent to any vertex (but our vertex needs to have its ID)

November 21, 2016 © 2014-2016 Paul Krzyzanowski 31

CS 417 11/21/2016

Paul Krzyzanowski 6

Pregel API: Advanced operations

Combiners

• Each message has an overhead – let’s reduce # of messages

– Many vertices are processed per worker (multi -threaded)

– Pregel can combine messages targeted to one vertex into one message

• Combiners are application specific

– Programmer subclasses a Combiner class and overrides Combine() method

• No guarantee on which messages may be combined

November 21, 2016 © 2014-2016 Paul Krzyzanowski 32

Combiner
Sums input messages

4

8

1

5

6

24

Combiner
Minimum value

15

12

71

11

15

11

Pregel API: Advanced operations

Aggregators

• Handle global data

• A vertex can provide a value to an aggregator during a superstep

– Aggregator combines received values to one value

– Value is available to all vertices in the next superstep

• User subclasses an Aggregator class

• Examples

– Keep track of total edges in a graph

– Generate histograms of graph statistics

– Global flags: execute until some global condition is satisfied

– Election: find the minimum or maximum vertex

November 21, 2016 © 2014-2016 Paul Krzyzanowski 33

Pregel API: Advanced operations

Topology modification

• Examples

– If we’re computing a spanning tree: remove unneeded edges

– If we’re clustering: combine vertices into one vertex

• Add/remove edges/vertices

• Modifications visible in the next superstep

November 21, 2016 © 2014-2016 Paul Krzyzanowski 34

Pregel Design

November 21, 2016 © 2014-2016 Paul Krzyzanowski 35

Execution environment

• Many copies of the program
are started on a cluster of machines

• One copy becomes the master

– Will not be assigned a portion of the graph

– Responsible for coordination

• Cluster’s name server = chubby

– Master registers itself with the name service

– Workers contact the name service

to find the master

November 21, 2016 © 2014-2016 Paul Krzyzanowski 36

Rack

40-80 computers

Cluster

1,000s to 10,000+ computers

Partition assignment

• Master determines # partitions in graph

• One or more partitions assigned to each worker

– Partition = set of vertices

– Default: for N partitions

 hash(vertex ID) mod N ⇒ worker

May deviate: e.g., place vertices representing the same web site in one partition

– More than 1 partition per worker: improves load balancing

• Worker

– Responsible for its section of the graph

– Each worker knows the vertex assignments of other workers

November 21, 2016 © 2014-2016 Paul Krzyzanowski 37

CS 417 11/21/2016

Paul Krzyzanowski 7

Input assignment

• Master assigns parts of the input to each worker

– Data usually sits in GFS or Bigtable

• Input = set of records

– Record = vertex data and edges

– Assignment based on file boundaries

• Worker reads input

– If it belongs to any of the vertices it manages, messages sent locally

– Else worker sends messages to remote workers

• After data is loaded, all vertices are active

November 21, 2016 © 2014-2016 Paul Krzyzanowski 38

Computation

• Master tells each worker to perform a superstep

• Worker:

– Iterates through vertices (one thread per partition)

– Calls Compute() method for each active vertex

– Delivers messages from the previous superstep

– Outgoing messages

• Sent asynchronously

• Delivered before the end of the superstep

• When done

– worker tells master how many vertices will be active in the next superstep

• Computation done when no more active vertices in the cluster

– Master may instruct workers to save their portion of the graph

November 21, 2016 © 2014-2016 Paul Krzyzanowski 39

Send messages

Compute

Deliver messages

Superstep done

Handling failure

• Checkpointing

– Controlled by master … every N supersteps

– Master asks a worker to checkpoint at the start of a superstep

• Save state of partitions to persistent storage

– Vertex values

– Edge values

– Incoming messages

– Master is responsible for saving aggregator values

• Master sends “ping” messages to workers

– If worker does not receive a ping within a time period
⇒ Worker terminates

– If the master does not hear from a worker
⇒ Master marks worker as failed

• When failure is detected

– Master reassigns partitions to the current set of workers

– All workers reload partition state from most recent checkpoint

November 21, 2016 © 2014-2016 Paul Krzyzanowski 40

Pregel outside of Google

• Apache Giraph

– Initially created at Yahoo

– Used at Facebook to analyze the social graph of users

– Runs under Hadoop MapReduce framework

• Runs as a Map-only job

• Adds fault-tolerance to the master by using ZooKeeper for coordination

• Uses Java instead of C++

November 21, 2016 © 2014-2016 Paul Krzyzanowski 41

== Chubby

Conclusion

• Vertex-centric approach to BSP

• Computation = set of supersteps

– Compute() called on each vertex per superstep

– Communication between supersteps: barrier synchronization

• Hides distribution from the programmer

– Framework creates lots of workers

– Distributes partitions among workers

– Distributes input

– Handles message sending, receipt, and synchronization

– A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance

November 21, 2016 © 2014-2016 Paul Krzyzanowski 42

The End

November 21, 2016 43 © 2014-2016 Paul Krzyzanowski

