
Distributed Systems

22. Spark

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 26, 2016 2015-2016 Paul Krzyzanowski

Apache Spark

• Goal: generalize MapReduce

– Similar shard-and-gather approach to MapReduce

– Add fast data sharing & general DAGs (graphs)

• Generic data storage interfaces

– Storage agnostic: use HDFS, Cassandra database, whatever

– Resilient Distributed Data (RDD) sets

• An RDD is a chunk of data that gets processed – a large collection of stuff

– In-memory caching

• More general functional programming model

– Transformations and actions

– In Map-Reduce, transformation = map, action = reduce

November 26, 2016 2015-2016 Paul Krzyzanowski 2

High-level view

• Job = bunch of transformations & actions on RDDs

• Cluster manager: Allocates worker nodes

November 26, 2016 2015-2016 Paul Krzyzanowski 3

Client (Driver Program)

Client

app

Spark

Context

Cluster

Manager

Job

High-level view

• Driver breaks the job into tasks

• Sends tasks to worker nodes where the data lives

November 26, 2016 2015-2016 Paul Krzyzanowski 4

Client (Driver Program)

Client

app

Workers

Task

Task

Task

Task

Spark

Context

Cluster

Manager

Job

Worker node

• One or more executors

– JVM process

– Talks with cluster manager

– Receives tasks

• JVM code (e.g., compiled Java,

Clojure, Scala, Jruby, …)

• Task = transformation or action

– Data to be processed (RDD)

• Local to the node

– Cache

• Stores frequently-used data in memory

• Key to high performance

November 26, 2016 2015-2016 Paul Krzyzanowski 5

Executor

Task

Cache

Task Task

Local data

Cluster Manager

Data & RDDs

• Data organized into RDDs:

– Big data: partition it across lots of computers

• How are RDDs created?

1. Create from any file stored in HDFS or other storage supported in
Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)

• Created externally (e.g., event stream, text files, database)

• Example:

– Query a database & make query the results an RDD

– Any Hadoop InputFormat, such as a list of files or a directory

2. Streaming sources (via Spark Streaming)

• Fault-tolerant stream with a sliding window

3. An RDD can be the output of a Spark transformation function

• Example, filter out data, select key-value pairs

 6 November 26, 2016 2015-2016 Paul Krzyzanowski

Properties of RDDs

Main Properties

• Immutable

– You cannot change it – only create new RDDs

– The framework will eventually collect unused RDDs

• Partitioned – parts of an RDD go to different servers

– Default partitioning function = hash(key) mod server_count

Optional Properties

• Typed: they’re not BLOBs

– Embedded data structure – e.g., key-value set

• Ordered

– Elements in an RDD can be sorted

 November 26, 2016 2015-2016 Paul Krzyzanowski 7

Operations on RDDs

Two types of operations on RDDs

• Transformations

– Lazy – not computed immediately

– Transformed RDD is recomputed when an action is run on it

• Work backwards:

– What RDDs do you need to apply to get an action?

– What RDDs do you need to apply to get the input to this RDD?

– RDD can be persisted into memory or disk storage

• Actions

– Finalizing operations

• Reduce, count, grab samples, write to file

8 November 26, 2016 2015-2016 Paul Krzyzanowski

Spark Transformations

Transformation Description

map(func) Pass each element through a function

func

filter(func) Select elements of the source on

which func returns true

flatmap(func) Each input item can be mapped to 0 or

more output items

sample(withReplacement, fraction,

seed)

Sample a fraction fraction of the data,

with or without replacement, using a

given random number generator seed

union(otherdataset) Union of the elements in the source

data set and otherdataset

distinct([numtasks]) The distinct elements of the source

dataset

November 26, 2016 2015-2016 Paul Krzyzanowski 9

Spark Transformations

Transformation Description

groupByKey([numtasks]) When called on a dataset of (K, V)

pairs, returns a dataset of (K, seq[V])

pairs

reduceByKey(func, [numtasks]) Aggregate the values for each key

using the given reduce function

sortByKey([ascending], [numtasks]) Sort keys in ascending or descending

order

join(otherDataset, [numtasks]) Combines two datasets, (K, V) and (K,

W) into (K, (V, W))

cogroup(otherDataset, [numtasks]) Given (K, V) and (K, W), returns (K,

Seq[V], Seq[W])

cartesian(otherDataset) For two datasets of types T and U,

returns a dataset of (T, U) pairs

November 26, 2016 2015-2016 Paul Krzyzanowski 10

Spark Actions

Action Description

reduce(func) Aggregate elements of the dataset

using func.

collect(func, [numtasks]) Return all elements of the dataset as

an array

count() Return the number of elements in the

dataset

first() Return the first element of the dataset

take(n) Return an array with the first n

elements of the dataset

takeSample(withReplacement,

fraction, seed)

Return an array with a random sample

of num elements of the dataset

November 26, 2016 2015-2016 Paul Krzyzanowski 11

Spark Actions

Action Description

saveAsTextFile(path) Write dataset elements as a text file

saveAsSequenceFile(path) Write dataset elements as a Hadoop

SequenceFile

countByKey () For (K, V) RDDs, return a map of (K,

Int) pairs with the count of each key

foreach(func) Run func on each element of the

dataset

November 26, 2016 2015-2016 Paul Krzyzanowski 12

Data Storage

• Spark does not care how source data is stored

– RDD connector determines that

– E.g., read RDDs from tables in a Cassandra DB; write new RDDs

to Cassandra tables

• RDD Fault tolerance

– RDDs track the sequence of transformations used to create them

– Enables recomputing of lost data

• Go back to the previous RDD and apply the transforms again

November 26, 2016 2015-2016 Paul Krzyzanowski 13

Example: processing logs

• Transform (creates new RDDs)

– Grab error message from a log

– Grab only ERROR messages & extract the source of error

• Actions : Count mysql & php errors

14

// base RDD
val lines = sc.textFile("hdfs://...”)

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))

val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()

November 26, 2016 2015-2016 Paul Krzyzanowski

Spark Streaming

• Map-Reduce & Pregel expect static data

• Spark Streaming enables processing live data streams

– Same programming operations

– Input data is chunked into batches

• Programmer specifies time interval

15 November 26, 2016 2015-2016 Paul Krzyzanowski

Spark Streaming: DStreams

• Discretized Stream = DStream

– Continuous stream of data (from source or a transformation)

– Appears as a continuous series of RDDs, each for a time interval

– Each operation on a DStream translates to operations on the RDDs

– Join operations allow combining multiple streams

16 November 26, 2016 2015-2016 Paul Krzyzanowski

Spark Summary

• Supports streaming

– Handle continuous data streams via Spark Streaming

• Fast

– Often up to 10x faster on disk and 100x faster in memory than

MapReduce

– General execution graph model

• No need to have ”useless” phases just to fit into the model

– In-memory storage for RDDs

• Fault tolerant: RDDs can be regenerated

– You know what the input data set was, what transformations were

applied to it, and what output it creates

17 November 26, 2016 2015-2016 Paul Krzyzanowski

The end

18 November 26, 2016 2015-2016 Paul Krzyzanowski

