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Apache Spark 

• Goal: generalize MapReduce 

– Similar shard-and-gather approach to MapReduce 

– Add fast data sharing & general DAGs (graphs) 

• Generic data storage interfaces 

– Storage agnostic: use HDFS, Cassandra database, whatever 

– Resilient Distributed Data (RDD) sets 

• An RDD is a chunk of data that gets processed – a large collection of stuff 

– In-memory caching 

• More general functional programming model 

– Transformations and actions 

– In Map-Reduce, transformation = map, action = reduce 
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High-level view 

• Job = bunch of transformations & actions on RDDs 

• Cluster manager: Allocates worker nodes 
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High-level view 

• Driver breaks the job into tasks 

• Sends tasks to worker nodes where the data lives 
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Worker node 

• One or more executors 

– JVM process 

– Talks with cluster manager 

– Receives tasks 

• JVM code (e.g., compiled Java,  

Clojure, Scala, Jruby, …) 

• Task = transformation or action 

– Data to be processed (RDD) 

• Local to the node 

– Cache 

• Stores frequently-used data in memory 

• Key to high performance 
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Data & RDDs 

• Data organized into RDDs:  

– Big data: partition it across lots of computers 

• How are RDDs created? 

1. Create from any file stored in HDFS or other storage supported in 
Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.) 

• Created externally (e.g., event stream, text files, database) 

• Example: 

– Query a database & make query the results an RDD 

– Any Hadoop InputFormat, such as a list of files or a directory 

2. Streaming sources (via Spark Streaming) 

• Fault-tolerant stream with a sliding window 

3. An RDD can be the output of a Spark transformation function 

• Example, filter out data, select key-value pairs 
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Properties of RDDs 

Main Properties 

• Immutable 

– You cannot change it – only create new RDDs 

– The framework will eventually collect unused RDDs 

• Partitioned – parts of an RDD go to different servers 

– Default partitioning function = hash(key) mod server_count 

Optional Properties 

• Typed: they’re not BLOBs 

– Embedded data structure – e.g., key-value set 

• Ordered 

– Elements in an RDD can be sorted 

 November 26, 2016 2015-2016 Paul Krzyzanowski 7 



Operations on RDDs 

Two types of operations on RDDs 

• Transformations 

– Lazy – not computed immediately 

– Transformed RDD is recomputed when an action is run on it 

• Work backwards: 

– What RDDs do you need to apply to get an action? 

– What RDDs do you need to apply to get the input to this RDD? 

– RDD can be persisted into memory or disk storage 

 

• Actions 

– Finalizing operations 

• Reduce, count, grab samples, write to file 
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Spark Transformations 

Transformation Description 

map(func) Pass each element through a function 

func 

filter(func) Select elements of the source on 

which func returns true 

flatmap(func) Each input item can be mapped to 0 or 

more output items 

sample(withReplacement, fraction,              

seed) 

Sample a fraction fraction of the data, 

with or without replacement, using a 

given random number generator seed 

union(otherdataset) Union of the elements in the source 

data set and otherdataset 

distinct([numtasks]) The distinct elements of the source 

dataset 
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Spark Transformations 

Transformation Description 

groupByKey([numtasks]) When called on a dataset of (K, V) 

pairs, returns a dataset of (K, seq[V]) 

pairs 

reduceByKey(func, [numtasks]) Aggregate the values for each key 

using the given reduce function 

sortByKey([ascending], [numtasks]) Sort keys in ascending or descending 

order 

join(otherDataset, [numtasks]) Combines two datasets, (K, V) and (K, 

W) into (K, (V, W)) 

cogroup(otherDataset, [numtasks]) Given (K, V) and (K, W), returns (K, 

Seq[V], Seq[W]) 

cartesian(otherDataset) For two datasets of types T and U, 

returns a dataset of (T, U) pairs 
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Spark Actions 

Action Description 

reduce(func) Aggregate elements of the dataset 

using func. 

collect(func, [numtasks]) Return all elements of the dataset as 

an array 

count() Return the number of elements in the 

dataset 

first() Return the first element of the dataset 

take(n) Return an array with the first n 

elements of the dataset 

takeSample(withReplacement, 

fraction, seed) 

Return an array with a random sample 

of num elements of the dataset 
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Spark Actions 

Action Description 

saveAsTextFile(path) Write dataset elements as a text file 

saveAsSequenceFile(path) Write dataset elements as a Hadoop 

SequenceFile 

countByKey () For (K, V) RDDs, return a map of (K, 

Int) pairs with the count of each key 

foreach(func) Run func on each element of the 

dataset 
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Data Storage 

• Spark does not care how source data is stored 

– RDD connector determines that 

– E.g., read RDDs from tables in a Cassandra DB; write new RDDs 

to Cassandra tables 

 

• RDD Fault tolerance 

– RDDs track the sequence of transformations used to create them 

– Enables recomputing of lost data 

• Go back to the previous RDD and apply the transforms again 
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Example: processing logs 

• Transform (creates new RDDs) 

– Grab error message from a log 

– Grab only ERROR messages & extract the source of error 

• Actions : Count mysql & php errors 
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// base RDD  
val lines = sc.textFile("hdfs://...”) 

 

// transformed RDDs  
val errors = lines.filter(_.startsWith("ERROR"))  

val messages = errors.map(_.split("\t")).map(r => r(1)) 
messages.cache()  

 

// action 1  
messages.filter(_.contains("mysql")).count()  

 
// action 2  
messages.filter(_.contains("php")).count()  
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Spark Streaming 

• Map-Reduce & Pregel expect static data 

• Spark Streaming enables processing live data streams 

– Same programming operations  

– Input data is chunked into batches  

• Programmer specifies time interval 
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Spark Streaming: DStreams 

• Discretized Stream = DStream 

– Continuous stream of data (from source or a transformation) 

– Appears as a continuous series of RDDs, each for a time interval 

 

 

 

 

– Each operation on a DStream translates to operations on the RDDs 

 

 

 

 

 

– Join operations allow combining multiple streams 
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Spark Summary 

• Supports streaming 

– Handle continuous data streams via Spark Streaming 

• Fast 

– Often up to 10x faster on disk and 100x faster in memory than 

MapReduce 

– General execution graph model 

• No need to have ”useless” phases just to fit into the model 

– In-memory storage for RDDs 

• Fault tolerant: RDDs can be regenerated 

– You know what the input data set was, what transformations were 

applied to it, and what output it creates 
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The end 

18 November 26, 2016 2015-2016 Paul Krzyzanowski 


