

| Cryptography: what is it good for? |
| :--- | :--- |
| - Confidentiality |
| - others cannot read contents of the message |
| - Authentication |
| - determine origin of message |
| - Integrity |
| - verify that message has not been modified |
| - sender should not be able to falsely deny that a message was sent |

Encryption	
Plaintext (cleartext) message P	
Encryption $E(\mathrm{P})$	
Produces Ciphertext, $\mathrm{C}=E(\mathrm{P})$	
Decryption, $\mathrm{P}=\mathrm{D}(\mathrm{C})$	
Cipher = cryptographic algorithm	

$\underbrace{\left.\begin{array}{l}\text { Key distribution } \\ \begin{array}{l}\text { Secure key distribution is the biggest problem with } \\ \text { symmetric cryptography }\end{array} \\ \\ \end{array}\right]}$

Diffie-Hellman Key Exchange
Key distribution algorithm -First algorithm to use public/private "keys" - Not public key encryption - Uses a one-way function Based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation Allows us to negotiate a secret common key without fear of eavesdroppers

Hybrid Cryptosystems

- Session key: randomly-generated key for one communication session
- Use a public key algorithm to send the session key
- Use a symmetric algorithm to encrypt data with the session key
-Uses a one-way function Based on difficulty of compuing discre logatims in a finite field compared with ease of calculating exponentiation

Public key algorithms are almost never used to encrypt messages

- MUCH slower; vulnerable to chosen-plaintext attacks
- RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt than AES-256

Novenber 26, 2018
${ }^{2018}$ Pau Kryzanowsh
Noverber 26, 2018 -2018 Paul Kryzanawowsi

Message Authentication Codes vs. Signatures
$\left.\begin{array}{l}\text { - Message Authentication Code (MAC) } \\ \text { - Hash of message encrypted with a symmetric key: } \\ \text { An intruder will not be able to replace the hash value } \\ \text { - Digital Signature } \\ \text { - Hash of message encrypted with the owner's private key } \\ \text { • Alice encrypts the hash with her private key } \\ \text { - Bob validates it by decrypting it with her public key \& comparing with } \\ \text { hash(M) }\end{array}\right]$

