Distributed Systems

24. Cryptographic Systems: A Brief Introduction

Paul Krzyzanowski

Rutgers University

Fall 2018

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure

Cryptography: what is it good for?

Confidentiality

- others cannot read contents of the message

Authentication

- determine origin of message

Integrity

- verify that message has not been modified

Nonrepudiation

- sender should not be able to falsely deny that a message was sent

Confidentiality

Encryption

Plaintext (cleartext) message P

Encryption *E(*P)

Produces Ciphertext, C = *E*(P)

```
Decryption, P = D(C)
```

Cipher = cryptographic algorithm

Terms: types of ciphers

- Symmetric algorithm
 - Shared keys
 - Key length \rightarrow difficulty of attack
- Public key algorithm
 - Key pairs: private key & a shared public key

Key distribution

Secure key distribution is the biggest problem with symmetric cryptography

Distributing Keys

Manual: pre-shared keys

- Initial configuration, out of band (send via USB key, recite, ...)

Trusted third party

- Knows all keys
- Alice creates a session key
- Encrypts it with her key sends to Trent
- Trent decrypts it and sends it to Bob

Public key cryptography

- Alice encrypts a message with Bob's public key
- Only Bob can decrypt

Diffie-Hellman

Hybrid cryptosystems

Diffie-Hellman Key Exchange

Key distribution algorithm

- First algorithm to use public/private "keys"
- Not public key encryption
- Uses a **one-way function**

Based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation

Allows us to negotiate a secret **common key** without fear of eavesdroppers

Hybrid Cryptosystems

- Session key: randomly-generated key for one communication session
- Use a public key algorithm to send the session key
- Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages

- MUCH slower; vulnerable to chosen-plaintext attacks
- RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt than AES-256

Message Integrity

Hash functions

Cryptographic hash function (also known as a digest)

- Input: arbitrary data
- Output: fixed-length bit string
- Properties

- One-way function

• Given *H*=*hash*(*M*), it should be difficult to compute *M*, given *H*

Collision resistant

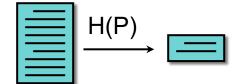
- Given *H*=*hash(M)*, it should be difficult to find *M'*, such that *H*=*hash(M'*)
- For a hash of length L, a perfect hash would take 2^(L/2) attempts

– Efficient

• Computing a hash function should be computationally efficient

Message Authentication Codes vs. Signatures

Message Authentication Code (MAC)

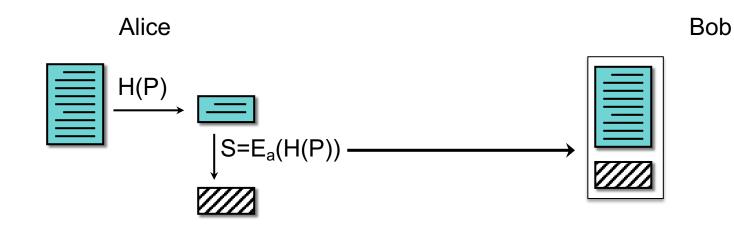

Hash of message encrypted with a symmetric key:
An intruder will not be able to replace the hash value

Digital Signature

- Hash of message encrypted with the owner's private key
 - Alice encrypts the hash with her private key
 - Bob validates it by decrypting it with her public key & comparing with hash(M)
- Provides non-repudiation: recipient cannot change the encrypted hash

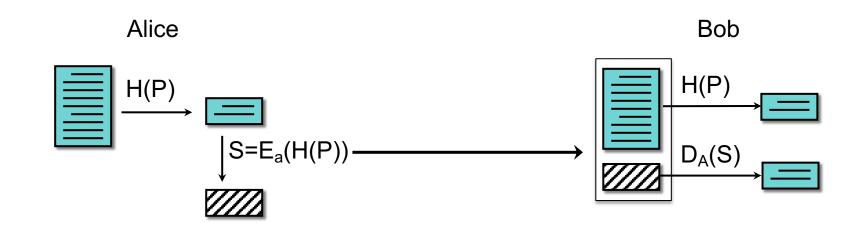
Alice

Bob


Alice generates a hash of the message

November 26, 2018

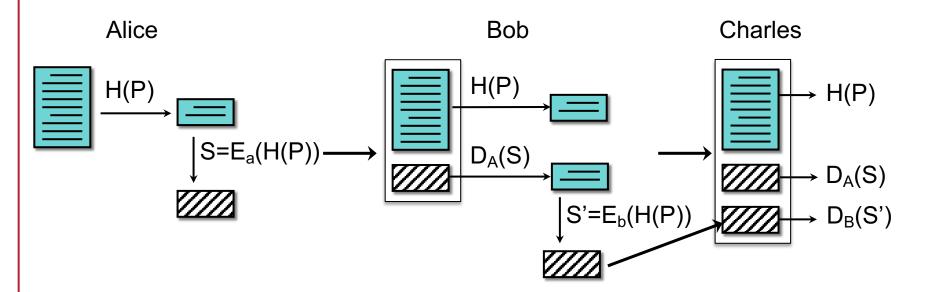
© 2018 Paul Krzyzanowski


Alice encrypts the hash with her private key This is her **<u>signature</u>**.

Alice sends Bob the message & the encrypted hash

November 26, 2018

© 2018 Paul Krzyzanowski


- 1. Bob decrypts the hash using Alice's public key
- 2. Bob computes the hash of the message sent by Alice

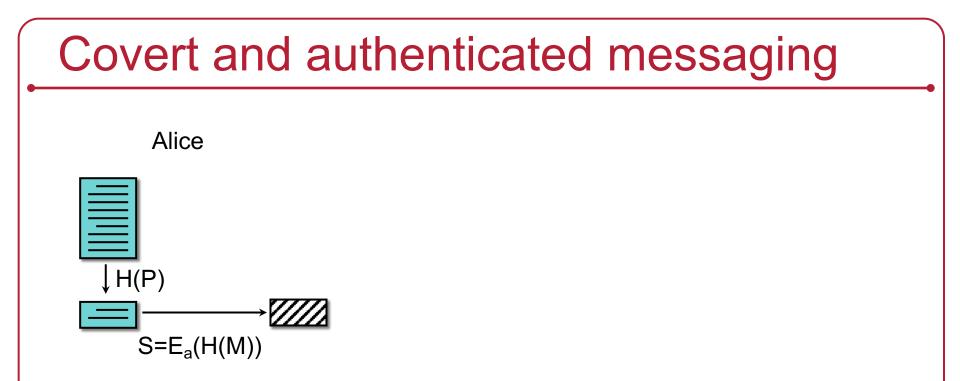
If the hashes match, the signature is valid

- the encrypted hash must have been generated by Alice

Digital signatures: multiple signers

Charles:

- Generates a hash of the message, H(P)
- Decrypts Alice's signature with Alice's public key
 - Validates the signature: $D_A(S) \stackrel{?}{=} H(P)$
- Decrypts Bob's signature with Bob's public key
 - Validates the signature: $D_B(S) \stackrel{?}{=} H(P)$

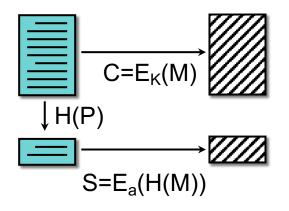

Covert AND authenticated messaging

If we want to keep the message secret

- combine encryption with a digital signature

Use a <u>session key</u>:

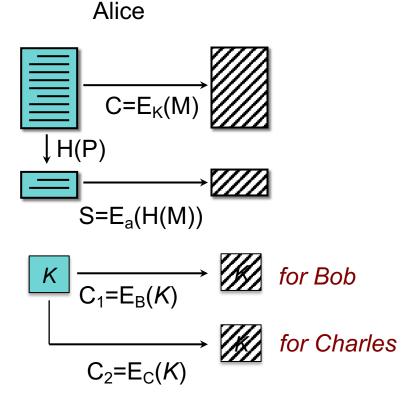
- Pick a random key, K, to encrypt the message with a symmetric algorithm
- encrypt K with the public key of each recipient
- for signing, encrypt the hash of the message with sender's private key



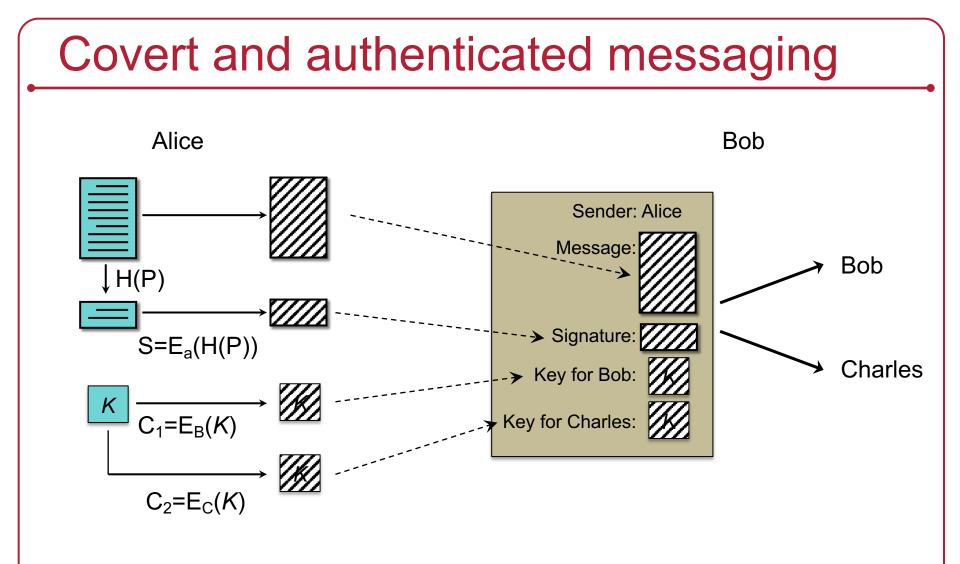
Alice generates a digital signature by encrypting the message with her private key

November 26, 2018

Covert and authenticated messaging


Alice

Alice picks a random key, *K*, and encrypts the message *P* with it using a symmetric cipher


November 26, 2018

Covert and authenticated messaging

Alice encrypts the session key for each recipient of this message using their public keys

November 26, 2018

The aggregate message is sent to Bob & Charles

The end