CS 417 - DISTRIBUTED SYSTEMS

Week 6: Distributed File Systems
Part 4: Parallel File Systems

© 2021 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.

Client-server file systems

* Central servers
— Point of congestion, single point of failure

* Alleviate somewhat with replication and client caching
— E.g., Coda, tokens, (aka leases, oplocks)
— Limited replication can lead to congestion

* File data is still centralized
— A file server stores all data from a file — not split across servers

— Even if replication is in place,
a client downloads all data for a file from one server

* File sizes are limited to the capacity available on a server
— What if you need a 1,000 TB file?

CS 417 © 2021 Paul Krzyzanowski 2

What is a parallel file system?

« Conventional file systems
— Store data & metadata on the same storage device

— Example:
 Linux directories are just files that contain lists of names & inodes

* inodes are data structures placed in well-defined areas of the disk that contain information about
the file

 Parallel file systems
— File data can span multiple servers
— Metadata can be on separate servers from the data

— Metadata = information about the file
* Includes name, access permissions, timestamps, file size, & locations of data blocks
— Data = actual file contents

CS 417 © 2021 Paul Krzyzanowski 3

Google File System (GFS)

(= Apache Hadoop Distributed File System)

CS 417 © 2021 Paul Krzyzanowski

GFS Goals

 Scalable distributed file system
» Designed for large data-intensive applications
 Fault-tolerant; runs on commodity hardware

* Delivers high performance to a large number of clients

CS 417 © 2021 Paul Krzyzanowski 5

Design Assumptions

« Assumptions for conventional file systems don’t work
— E.qQ., “most files are small”, “lots have short lifetimes”

« Component failures are the norm, not an exception
— File system = thousands of storage machines
— Some % not working at any given time

* Files are huge. Multi-TB files are the norm
— It doesn’t make sense to work with billions of nKB-sized files
— 1/0 operations and block size choices are also affected

CS 417 © 2021 Paul Krzyzanowski 6

Design Assumptions

* File access:

— Most files are appended, not overwritten
* Random writes within a file are almost never done
+ Once created, files are mostly read; often sequentially

— Workload is mostly:
* Reads: large streaming reads, small random reads - these dominate
* Large appends
* Hundreds of processes may append to a file concurrently

* GFS will store a modest number of files for its scale
— approx. a few million

 Designing the GFS API together with the design of apps
— Apps can handle a relaxed consistency model

CS 417 © 2021 Paul Krzyzanowski 7

Basic Design Principles

» Use separate servers to store metadata

— Metadata includes lists of (server, block_number) sets that identify which blocks on
which servers hold file data

— We need more bandwidth for data access than metadata access
* Metadata is small; file data can be huge

» Use large logical blocks
— Most "normal” file systems are optimized for small files
* A Dblock size is typically 4KB
— Expect huge files, so use huge blocks ... >1,000x larger
* The list of blocks that makes up a file becomes easier to manage

* Replicate data
— EXxpect some servers to be down
— Store copies of data blocks on multiple servers

CS 417 © 2021 Paul Krzyzanowski 8

File System Interface

* GFS does not have a standard OS-level API
— No POSIX system call level APl — no kernel/VFS implementation
— User-level API for accessing files
— GFS servers are implemented in user space using native Linux FS

* Files organized hierarchically in directories

* Operations

— Basic operations
» Create, delete, open, close, read, write
— Additional operations
« Snapshot: create a copy of a file or directory tree at low cost
* Append: allow multiple clients to append atomically without locking

CS 417 © 2021 Paul Krzyzanowski 9

GFS Master & Chunkservers

GFS cluster
— Multiple chunkservers
» Data storage: fixed-size chunks
« Chunks replicated on several systems

— One master
 Stores file system metadata (names, attributes) Thousands of
* Maps files to chunks chunkservers
chunkserver
chunkserver chunkserver
chunkserver chunkserver
chunkserver

CS 417 © 2021 Paul Krzyzanowski 10

GFS Master & Chunkservers

GFS cluster

“directories & inodes”

data blocks
metadata data
T4
N - e ||
\ ’ 4
\ U U4 1
\ /’ 4 1
N ’ 4
(N ’ 4 1
N 7 4 1
\ U4 ,’]
N ’ 1
W’ K 1
2\
7
™ \\ chunkserver *
chunkserver AN chunkserver
\
chunkserver chunkserver
chunkserver

CS 417 © 2021 Paul Krzyzanowski

11

GFS Files

file A file
v
% | is made of 64 MB chunks
VYV VVVVYVYVVYVYVYVYVYVYVVNVYVYY
\ _ that are replicated
NIV VI I IV VI IV VA IV y | [orfatiolerance
N y.

Chunks live on

chunkservers
chunkserver chunkserver chunkserver chunkserver
Checkpoint Operation The master manages the file system
i I
master mage o9 namespace:
In-memory FS metadata names and name—{chunk list} mappings

CS 417 © 2021 Paul Krzyzanowski 12

Chunks and Chunkservers

* Chunk size = 64 MB (default)

— Chunkserver stores a 32-bit checksum with each chunk
* In memory & logged to disk: allows it to detect data corruption

» Chunk Handle: identifies a chunk
— Globally unique 64-bit number
— Assigned by the master when the chunk is created

 Chunkservers store chunks on local disks as Linux files

« Each chunk is replicated on multiple chunkservers
— Three replicas (different levels can be specified)
— Popular files may need more replicas to avoid hotspots

CS 417 © 2021 Paul Krzyzanowski 13

Maintains all file system metadata
— Namespace

— Access control info

— Filename to chunks mappings

— Current locations of chunks

Manages
— Chunk leases (locks)

— Garbage collection (freeing unused chunks)
— Chunk migration (copying/moving chunks)

Fault tolerance

— Operation log replicated on multiple machines
— New master can be started if the master fails

Periodically communicates with all chunkservers

— Via heartbeat messages to get state and send commands

CS 417 © 2021 Paul Krzyzanowski

14

Client Interaction Model

* GFS client code linked into each app
— No OS-level API — you have to use a library
— Interacts with master for metadata-related operations

— Interacts directly with chunkservers for file data
* All reads & writes go directly to chunkservers
« Master is not a point of congestion

* Neither clients nor chunkservers cache data
— Except for the caching by the OS system buffer cache

— Clients cache metadata - e.g., location of a file’s chunks

CS 417 © 2021 Paul Krzyzanowski 15

One master = simplified design

All metadata stored in master’s memory
— Super-fast access

Namespaces and name-to-chunk_list maps
— Stored in memory
— Also persist in an operation log on the disk

* Replicated onto remote machines for backup

Operation log

— Similar to a journal

— All operations are logged

— Periodic checkpoints (stored in a B-tree) to avoid playing back entire log

Master does not store chunk locations persistently
— This is queried from all the chunkservers: avoids consistency problems

CS 417 © 2021 Paul Krzyzanowski

16

Why Large Chunks?

 Default chunk size = 64MB
(compare to Linux ext4 block sizes: typically 4 KB and up to 1 MB)

* Reduces need for frequent communication with master to get chunk location
info — one query can give info on location of lots of bytes of data

* Clients can easily cache info to refer to all data of large files
— Cached data has timeouts to reduce possibility of reading stale data

» Large chunk makes it feasible to keep a TCP connection open to a chunkserver
for an extended time

» Master stores <64 bytes of metadata for each 64MB chunk

CS 417 © 2021 Paul Krzyzanowski 17

Reading Files

1. Contact the master
2. Get file’s metadata: list chunk handles

3. Get the location of each of the chunk handles
— Multiple replicated chunkservers per chunk

4. Contact any available chunkserver for chunk data

CS 417 © 2021 Paul Krzyzanowski 18

Writing to files

* Less frequent than reading

* Master grants a chunk lease to one of the replicas
— This replica will be the primary replica chunkserver
— Primary can request lease extensions, if needed
— Master increases the chunk version number and informs replicas

CS 417 © 2021 Paul Krzyzanowski 19

Writing to files: two phases

Phase 1: Send data
Deliver data but don’t write to the file
— Client asks the master for a list of chunkservers with replicas: primary & secondaries
— Client writes to the closest replica chunkserver that has not received the data
* Replica forwards the data to another replica chunkserver
* That chunkserver forwards to another replica chunkserver ...

— Chunkservers store this data in a cache —it’s not part of the file yet

Goal: Maximixe bandwidth via pipelining
Minimize latency by forwarding data while it is being received

chunkserver 5 chunkserver 5 chunkserver

client —_) 5 3

CS 417 © 2021 Paul Krzyzanowski 20

Writing to files: two phases

Phase 2: Write data
Add it to the file (commit)

— Client waits for replicas to acknowledge receiving the data

— Sends a write request to the primary, identifying the data that was sent

— The primary is responsible for serialization of writes
« Assigns consecutive serial numbers to all writes that it received

* Applies writes in serial-number order and forwards write requests in order to secondaries

— Once all acknowledgements have been received, the primary acknowledges the client

chunkserver
2

client ~——> _ Prmavy
chunkserver —— Chunkserver
3

CS 417 © 2021 Paul Krzyzanowski

21

Writing to files: separate data flow & control flow

Data Flow (phase 1) is different from Control Flow (phase 2)

» Data Flow (upload):

— Client to chunkserver to chunkserver to chunkserver...
— Order does not matter

» Control Flow (write):
— Client to primary; primary to all secondaries
— Locking used; Order maintained

Chunk version numbers are used to detect if any replica has stale data
(was not updated because it was down)

CS 417 © 2021 Paul Krzyzanowski 22

Namespace

* No per-directory data structure like most file systems
— E.g., directory file contains names of all files in the directory

* No aliases (hard or symbolic links)

 Namespace is a single lookup table
— Maps pathnames to metadata

CS 417 © 2021 Paul Krzyzanowski 23

Google Cluster Environment
— Core services: GFS + cluster scheduling system
— Typically 100s to 1000s of active jobs

— 200+ clusters, many with 1000s of machines

— Pools of 1000s of clients
— 4+ PB filesystems, 40 GB/s read/write loads

Chunk Scheduling
Server Slave

Linux

Commodity HW

Job Job Job
1 2 n

Chunk Scheduling
Server Slave

Linux

Commodity HW

Machine 1

Machine n

CS 417 © 2021 Paul Krzyzanowski

Core Part of Google Cluster Environment

Bring the
computation

GFS
Master

Scheduling
Master

Chubby
Lock Service

close to the data

File system

master

Job
scheduler

Lease
(lock)
manager
for mutex

24

HDFS: Hadoop Distributed File System

* Primary storage system for Hadoop applications

» Apache Hadoop

— Framework for distributed processing of large data sets across clusters of computers

» Hadoop includes:

MapReduce™: software framework for distributed processing of large data sets on compute clusters.
Avro™: A data serialization system.

Cassandra™: A scalable multi-master database with no single points of failure.

Chukwa™: A data collection system for managing large distributed systems.

HBase™: A scalable, distributed database that supports structured data storage for large tables.
Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.
Mahout™: A Scalable machine learning and data mining library.

Pig™: A high-level data-flow language and execution framework for parallel computation.
ZooKeeper™: A high-performance coordination service for distributed applications

and more ...

CS 417 © 2021 Paul Krzyzanowski 25

HDFS Design Goals & Assumptions

« HDFS is an open source (Apache) implementation inspired by GFS design

 Similar goals and same basic design as GFS
— Run on commodity hardware
— Highly fault tolerant
— High throughput — Designed for large data sets
— OK to relax some POSIX requirements

— Large scale deployments
* Instance of HDFS may comprise 1000s of servers
* Each server stores part of the file system’s data

* But
— No support for concurrent appends

CS 417 © 2021 Paul Krzyzanowski 26

HDFS Design Goals & Assumptions

* Write-once, read-many-times file access model

A file’s contents will not change
— Simplifies data coherency
— Suitable for web crawlers and MapReduce analytics applications

CS 417 © 2021 Paul Krzyzanowski 27

HDFS Architecture

* Written in Java

+ Single NameNode
— Master server responsible for the namespace & access control

* Multiple DataNodes
— Responsible for managing storage attached to its node

« A file is split into one or more blocks

— Typical block size = 128 MB (vs. 64 MB for GFS)
— Blocks are stored in a set of DataNodes

CS 417 © 2021 Paul Krzyzanowski 28

GFS Files

file A file
v
% | is made of 64 MB chunks
VYV VVVVYVYVVYVYVYVYVYVYVVNVYVYY
\ _ that are replicated
NIV VI I IV VI IV VA IV y | [orfatiolerance
N y.

Chunks live on

chunkservers
chunkserver chunkserver chunkserver chunkserver
Checkpoint Operation The master manages the file system
i I
master mage o9 namespace:
In-memory FS metadata names and name—{chunk list} mappings

CS 417 © 2021 Paul Krzyzanowski 29

HDFS: same stuff ... different names

file A file

is made of 128 MB blocks

_ that are replicated
4 for fault tolerance

Blocks live on
DataNodes

DataNode DataNode DataNode DataNode

Fsimage EditLog The NameNode manages the file system

NameNode namespace:. , _
In-memory FS metadata names and name—{block list} mappings

s
6
< |
e
é
e
e
e
e
e
e
e
e
e
e
e
e
e

CS 417 © 2021 Paul Krzyzanowski 30

NameNode (= GFS master)

* Executes metadata operations
— open, C/OSG, rename
— Maps file blocks to DataNodes
— Maintains HDFS namespace

» Transaction log (EditLog) records every change that occurs to file system metadata
— Entire file system namespace + file-block mappings is stored in memory
— ... and stored in a file (FsImage) for persistence

« NameNode receives a periodic Heartbeat and Blockreport from each DataNode
— Heartbeat = “l am alive” message
— Blockreport = list of all blocks managed by a DataNode
» Keep track of which DataNodes own which blocks & their replication count

CS 417 © 2021 Paul Krzyzanowski 31

DataNode (= GFS chunkserver)

* Responsible for serving read/write requests

* Blocks are replicated for fault tolerance
— App can specify # replicas at creation time
— Can be changed later

* Blocks are stored in the local file system at the DataNode

CS 417 © 2021 Paul Krzyzanowski 32

Rack-Aware Reads & Replica Selection

* Client sends request to NameNode
— Receives list of blocks and replica DataNodes per block

* Client tries to read from the closest replica
— Prefer same rack
— Else same data center
— Location awareness is configured by the admin

CS 417 © 2021 Paul Krzyzanowski 33

Writes

Client caches file data into a temp file

When temp file = one HDFS block size

— Client contacts NameNode

— NameNode inserts file name into file system hierarchy & allocates a data block
— Responds to client with the destination data block

— Client writes to the block at the corresponding DataNode

When a file is closed, remaining data is transferred to a DataNode
— NameNode is informed that the file is closed
— NameNode commits file creation operation into a persistent store (log)

Data writes are chained: pipelined

— Client writes to the first (closest) DataNode

— That DataNode writes the data stream to the second DataNode
— Andsoon...

CS 417 © 2021 Paul Krzyzanowski 34

Internet-based file sync & sharing:
Droplox

CS 417 © 2021 Paul Krzyzanowski

35

File synchronization

* Client runs on desktop
» Uploads any changes made within a dropbox folder

» Huge scale
— 100+ million users syncing 1 billion files per day

* Design
— Small client that doesn’t take a lot of resources
— Expect possibility of low bandwidth to user
— Scalable back-end architecture

— 99%+ of code written in Python

=infrastructure (storage, monitoring) software migrated to Go in 2013
=a few components running on storage boxes migrated to Rust for memory
efficiency

CS 417 © 2021 Paul Krzyzanowski 36

What's different about dropbox?

* Most web-based apps have high read to write ratios
— E.g., twitter, facebook, reddit, ... 100:1, 1000:1, or higher

« But with Dropbox...
— Everyone’s computer has a complete copy of their Dropbox
— Traffic happens only when changes occur

— File upload : file download ratio roughly 1:1
* Huge number of uploads compared to traditional services

* Must abide by most ACID requirements ... sort of
— Atomic: don’t share partially-modified files
— Consistent:
» Operations have to be in order and reliable
+ Cannot delete a file in a shared folder but have others see
— Durable: Files cannot disappear
— (OKto punt on “Isolated”)

CS 417 © 2021 Paul Krzyzanowski 37

Dropbox: architecture evolution: version

— One server: web server, app server, mySQL database, sync server

=3

\
mid 2007 QL(MECTI Clients }
0 users 7J

CS 417 © 2021 Paul Krzyzanowski 38

See http://youtu.be/PE4gwstWhmc

Dropbox: architecture evolution: version 2

— Server ran out of disk space:
moved data to Amazon S3 service (key-value store)

— Servers became overloaded: moved mySQL DB to another machine
— Clients periodically polled server for changes

[database H Server
* Metadata:

* Information about files

Amazon S3]

* Files broken into 4 MB chunks
» Hashes stored per file

* Name, attributes, chunks

e e

- - < Deduplication:
« Store only one copy among multiple
clients

late 2007 al Clients }
~0 users >

See http://youtu.be/PE4gwstWhmc

CS 417 © 2021 Paul Krzyzanowski 39

Dropbox: architecture evolution: version 3

— Move from polling to notifications: add notification server

— Split web server into two:
* Amazon-hosted server hosts file content and accepts uploads (stored as blocks)
* Locally-hosted server manages metadata

N
[database J\'\[Amazon S3
/

’\ 7

Block)

1
1
Notification HEEsEET] : Server)
server N !
:
1
1
1
1
- e -
\
early 2008 T e]
50k users Cli
J See http://youtu.be/PE4gwstWhmc

CS 417 © 2021 Paul Krzyzanowski 40

Dropbox: architecture evolution: version 4

— Add more metaservers and blockservers
— Blockservers do not access DB directly; they send RPCs to metaservers
— Add a memory cache (memcache) in front of the database to avoid scaling

_
[database }6{ memcache Amazon 83]

’\ . : — A Y
Notification ! i[[glock]
server | erver
}

w
late 2008 : :
Client
~100k users m e]
J See http://youtu.be/PE4gwstWhmc

CS 417 © 2021 Paul Krzyzanowski 41

Dropbox: architecture evolution: version 5

— 10s of millions of clients — Clients have to connect before getting notifications
— Add 2-level hierarchy to notification servers: ~1 million connections/server

Y N (
[[[database]i& memcache] Amazon 83]
i[[ook]
Server

[L[Notification Meta Server

-

r----v---

server

\
early 2012 T Gione }
>50M users Cli

J See http://youtu.be/PE4gwstWhmc

CS 417 © 2021 Paul Krzyzanowski 42

The End

CS 417 © 2021 Paul Krzyzanowski

43

