
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 7: Distributed Lookup:
Part 1: Distributed Hash Tables

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Distributed Lookup
Interface:
store(key, value)
value = lookup(key)

Distributed lookup: cooperating set of nodes store & retrieve data

Ideally:
– Peer-to-peer: no central coordinator – all nodes have the same capabilities
– Efficient: route requests to the node that holds the data
– Fault-tolerant: some nodes can be down
– Scalable: Easy to add or remove nodes as capacity changes

2CS 417 © 2023 Paul Krzyzanowski

Obect storage File storage

Flat namespace Hierarchical namespace

Read/write entire content Partial read/writes

Atomic access Concurrent access (usually)

Approaches
1. Central coordinator
– Napster

2. Flooding
– Gnutella

3. Distributed hash tables
– CAN, Chord, Amazon Dynamo, Tapestry, Kademlia, …

3

1. Central Coordinator
Example: Napster
– Central directory
– Identifies content (names) and the servers that host it
– lookup(name) → {list of servers}
– Download from any of available servers
• Pick the best one by pinging and comparing response times

Another example: GFS
– Controlled environment compared to Napster
– Content for a given key is broken into chunks
– Master handles all queries … but not the data

4CS 417 © 2023 Paul Krzyzanowski

1. Central Coordinator - Napster
• Pros
– Super simple
– Search is handled by a single server
– The directory server is a single point of control
• Provides definitive answers to a query

• Cons
– Master has to maintain state of all peers
– Server gets all the queries
– The directory server is a single point of control
• No directory, no service!

5CS 417 © 2023 Paul Krzyzanowski

2. Query Flooding
Example: Gnutella distributed file sharing

• Each node joins a group – but only knows about some group members
– Well-known nodes act as anchors
– New nodes with files inform an anchor about their existence
– Nodes use other nodes they know about as peers

6CS 417 © 2023 Paul Krzyzanowski

2. Query Flooding
• Send a query to peers if a file is not present locally
– Each request contains:
• Query key
• Unique request ID
• Time to Live (TTL, maximum hop count)

• Peer either responds or routes the query to its neighbors
– Repeat until TTL = 0 or if the request ID has been processed
– If found, return a response containing the node address to the requestor
– Back propagation: response hops back to reach originator

7CS 417 © 2023 Paul Krzyzanowski

Overlay network
An overlay network is a virtual network formed by peer connections
– Any node might know about a small set of machines
– “Neighbors” may not be physically close to you

8

Underlying IP Network
CS 417 © 2023 Paul Krzyzanowski

Overlay network

9CS 417 © 2023 Paul Krzyzanowski

An overlay network is a virtual network formed by peer connections
– Any node might know about a small set of machines
– “Neighbors” may not be physically close to you

Overlay Network

Flooding Example: Overlay Network

10CS 417 © 2023 Paul Krzyzanowski

Flooding Example: Query Flood

11

TTL=3

TTL=3

TTL=3

TTL=2

TTL=2

TTL=2

TTL=2

TTL=2
TTL=1

TTL=1

TTL=1

TTL=1

TTL=1

TTL=2

TTL=1

Found!

TTL=1

Query

CS 417 © 2023 Paul Krzyzanowski

TTL = Time to Live (hop count)

Flooding Example: Query response

Found!

12

Back propagation

Result
Result

Result

CS 417 © 2023 Paul Krzyzanowski

Flooding Example: Download

13

Request download

CS 417 © 2023 Paul Krzyzanowski

What’s wrong with flooding?
• Some nodes are not always up, and some are slower than others
– Kazaa was created to deal with this: super nodes = more powerful with better uptime
– Gnutella later did the same, classifying some nodes as special (“ultrapeers”)
– Regular nodes send all content info to ultrapeers

• Poor use of network resources
– Lots of messages throughout the entire network (until TTL=0 kicks in)

• Potentially high latency
– Requests get forwarded from one machine to another
– If back propagation is used:

replies go through the same sequence of systems used in the query, increasing latency
even more – useful in preserving anonymity

CS 417 © 2023 Paul Krzyzanowski 14

3. Distributed Hash Tables

CS 417 © 2023 Paul Krzyzanowski 15

Hash tables
Remember hash functions & hash tables?
– Linear search: O(N)
– Tree or binary search: O(log2N)
– Hash table: O(1)

17CS 417 © 2023 Paul Krzyzanowski

What’s a hash function? (refresher)
Hash function
• A function that takes a variable length

input (e.g., a string or any object) and
generates a (usually smaller) fixed length
result (i.e., an integer)

• Example: hash strings to a range 0-7:
hash(“Newark”) → 1
hash(“Jersey City”) → 6
hash(“Paterson”) → 2

Hash table
• Table of (key, value) tuples

• Look up a key:
Hash function maps keys to a range 0 … N-1

Index into a table of N elements
i = hash(key)
item = table[i]

• No need to search through the table!

CS 417 © 2023 Paul Krzyzanowski 18

Considerations with hash tables (refresher)
• Picking a good hash function
– We want uniform distribution of all values of key over the space 0 … N-1

• Collisions
– Multiple keys may hash to the same value

hash("Paterson") → 2
hash("Edison") → 2

– table[i] is a bucket (slot) for all such (key, value) sets
– Within table[i], use a linked list or another layer of hashing

• Think about a hash table that grows or shrinks
– If we add or remove buckets → need to rehash keys and move items

19CS 417 © 2023 Paul Krzyzanowski

Distributed Hash Tables (DHT): Goal
Create a peer-to-peer version of a (key, value) data store

How we want it to work
1. A client (X) queries any peer (A) in the data store with a key
2. The data store finds the peer (D) that has the value
3. That peer (D) returns the value for the key to the client

Make it efficient!
A query should not generate a flood
or go be forwarded through too many nodes

20

X
A B

C D

query(key)

value

CS 417 © 2023 Paul Krzyzanowski

Distributed Hash Table
Object Storage

Consistent hashing
• Conventional hashing
– Practically all keys must be remapped if the table size changes

• Consistent hashing
– Most keys will hash to the same value as before
– On average, K/n keys will need to be remapped

K = # keys, n = # of buckets

Example: splitting a bucket

CS 417 © 2023 Paul Krzyzanowski 21

slot a slot b slot c slot d slot e

slot a slot b slot c1 slot d slot eslot c2

Only the keys in slot c get remapped

Designing a distributed hash table
• Spread the hash table across multiple nodes (peers)

• Each node stores a portion of the key space – it's a bucket
lookup(key) → node ID that holds (key, value)

lookup(node_ID, key) → value

Questions
How do we partition the data & do the lookup?
& keep the system decentralized?

& make the system scalable (lots of nodes with dynamic changes)?
& fault tolerant (replicated data)?

22CS 417 © 2023 Paul Krzyzanowski

Distributed Hashing

CAN: Content Addressable Network

23CS 417 © 2023 Paul Krzyzanowski

CAN design
• Create a logical grid
– x-y in 2-D (but not limited to two dimensions)

• Separate hash function per dimension
– hx(key), hy(key)

• A node
– Is responsible for a range of values in each dimension
– Knows its neighboring nodes

24CS 417 © 2023 Paul Krzyzanowski

CAN key→node mapping: 2 nodes

y=0

y=ymax

x=xmaxx=0

n1 n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2)
n1 has (key, value)

if x ≥ (xmax/2)
n2 has (key, value)

xmax/2

n2 is responsible for a zone
x=(xmax/2 .. xmax),
y=(0 .. ymax)

25CS 417 © 2023 Paul Krzyzanowski

CAN partitioning

y=0

y=ymax

x=xmaxx=0

n1

n2

Any node can be
split in two – either
horizontally or
vertically

n0

ymax/2

xmax/2

26CS 417 © 2023 Paul Krzyzanowski

CAN key→node mapping

y=0

y=ymax

x=xmaxx=0

n1

n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2) {
if y < (ymax/2)

n0 has (key, value)
else

n1 has (key, value)
}

if x ≥ (xmax/2)
n2 has (key, value)

n0

ymax/2

xmax/2

27CS 417 © 2023 Paul Krzyzanowski

CAN partitioning

y=0

y=ymax

x=xmaxx=0

Any node can be split in two:
either horizontally or vertically

Some data must be moved to
the new node based on
hash(key)

Neighbors need to be made
aware of the new node

A node needs to know only
one neighbor in each
direction

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9
n7

n3

n5 n6

n2
n11

28CS 417 © 2023 Paul Krzyzanowski

CAN neighbors

y=0

y=ymax

x=xmaxx=0

Neighbors refer to nodes
that share adjacent zones in
the overlay network

n4 only needs to keep track
of n5, n7, or n8 as its right
neighbor.

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9
n7

n3

n5 n6

n2
n11

29CS 417 © 2023 Paul Krzyzanowski

CAN routing

y=0

y=ymax

x=xmaxx=0

lookup(key):

Compute
hashx(key), hashy(key)

If the node is responsible for
the (x, y) value then look up
the key locally

Otherwise route the query to a
neighboring node

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9
n7

n3

n5 n6

n2

n11

30CS 417 © 2023 Paul Krzyzanowski

CAN
• Performance
– For n nodes in d dimensions
– # neighbors = 2d
– Average route for 2 dimensions = O(√n) hops

• To handle failures
– Share knowledge of neighbor’s neighbors
– One of the node’s neighbors takes over the failed zone

31CS 417 © 2023 Paul Krzyzanowski

Distributed Hashing
Case Study

Chord

32CS 417 © 2023 Paul Krzyzanowski

Chord & consistent hashing
• A key is hashed to an m-bit value: 0 … (2m-1)

• A logical ring is constructed for the values 0 ... (2m-1)

• Nodes are placed on the ring at hash(IP address)

Node
hash(IP address) = 3

33CS 417 © 2023 Paul Krzyzanowski

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15

Key assignment
• Example: n=16; system with 4 nodes (so far)
• (key, value) data is stored at a successor
– a node whose value is ≥ hash(key)

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for
keys 4, 5, 6, 7, 8

Node 10 is responsible for
keys 9, 10

Node 14 is responsible for
keys 11, 12, 13, 14

34

No nodes at these empty
positions

CS 417 © 2023 Paul Krzyzanowski

Node Hash range

3 0-3, 15

8 4-8

10 9-10

14 11-14

Handling insert or query requests
• Any peer can get a request (insert or query).
• If the hash(key) is not for its ranges of keys, it forwards the request to the successor.
• The process continues until the responsible node is found
– Worst case: with p nodes, traverse p-1 nodes; that’s O(p) (yuck!)
– Average case: traverse p/2 nodes (still yuck!)

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for
keys 4, 5, 6, 7, 8

Node 10 is responsible
for keys 9, 10

Node 14 is responsible
for keys 11, 12, 13, 14

35

for
ward

 re
qu

es
t

to
 su

cc
es

so
r

Node #10 can
process the request

CS 417 © 2023 Paul Krzyzanowski

Suppose node 3 gets a query for a
key where hash(key) = 9
This is outside of the range 15…3 for
node 3
Forward to successor (node 8)

Node 8 got the query but hash(key) =
9 is outside of its range of 4…8
Forward to successor (node 10)

Let’s figure out three more things

1. Adding/removing nodes

2. Improving lookup time

3. Providing fault tolerance

36CS 417 © 2023 Paul Krzyzanowski

Adding a node
• Some keys that were assigned to a node’s successor now get assigned to the new node

• Data for those (key, value) pairs must be moved to the new node

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Node 3 is responsible

for keys 15, 0, 1, 2, 3

Node 8 was responsible for
keys 4, 5, 6, 7, 8
Now it’s responsible for keys 7, 8

Node 10 is responsible
for keys 9, 10

Node 14 is responsible
for keys 11, 12, 13, 14

37

New node added: ID = 6
Node 6 is responsible for
keys 4, 5, 6

CS 417 © 2023 Paul Krzyzanowski

move data

for keys 4,5,6

Removing a node
• Keys are reassigned to the node’s successor

• Data for those (key, value) pairs must be moved to the successor

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Node 3 is responsible for

keys 15, 0, 1, 2, 3

Node 8 is responsible for
keys 7, 8

Node 10 was responsible
for keys 9, 10

Node 14 was responsible for
keys 11, 12, 13, 14

38

Node 6 is responsible
for keys 4, 5, 6

Node 14 is now responsible for
keys 9, 10, 11, 12, 13, 14

CS 417 © 2023 Paul Krzyzanowski

Node 10 removed

Move (key, value)
data to node 14

Fault tolerance
• Nodes might die
– (key, value) data should be replicated
– Create R replicas, storing each one at R-1 successor nodes in the ring

• Need to know multiple successors
– A node needs to know how to find its successor’s successor (or more)
• Easy if it knows all nodes!

– When a node is back up, it needs to:
• Check with successors for updates of data it owns
• Check with predecessors for updates of data it stores as backups

39CS 417 © 2023 Paul Krzyzanowski

0 1

7
8

9

10

11

12

13

14
15

Backup #1

Backup #2

Original data

Kademlia DHT
• Similar in concept to Chord

• Uses a logical tree structure instead of a ring
• Distance = peer_1 ⊕ peer_2

CS 417 © 2023 Paul Krzyzanowski 40

Performance
• We’re not thrilled about O(N) lookup

• Simple approach for great performance
– Have all nodes know about each other
– When a peer gets a query, it searches its table of nodes for the node that owns those

values
– Gives us O(1) performance
– Add/remove node operations must inform everyone
– Maybe not a good solution if we have lots of peers (large tables)

CS 417 © 2023 Paul Krzyzanowski 41

Finger tables
• Compromise to avoid large tables at each node
– Use finger tables to place an upper bound on the table size

• Finger table = partial list of nodes, progressively more distant

• At each node, ith entry in finger table identifies node that succeeds it by at least 2i-1 in the
circle
– finger_table[0]: immediate (1st) successor
– finger_table[1]: successor after that (2nd)
– finger_table[2]: 4th successor
– finger_table[3]: 8th successor
– …

• O(log N) nodes need to be contacted to find the node that owns a key
… not as good as O(1) but way better than O(N)

42CS 417 © 2023 Paul Krzyzanowski

In the kademlia DHT
finger table ≡ skip list

Improving performance even more
• Let’s revisit O(1) lookup

• Each node keeps track of all current nodes in the group
– Is that really so bad?
– We might have thousands of nodes … so what?

• Any node will now know which node holds a (key, value)

• Add or remove a node: send updates to all other nodes

43CS 417 © 2023 Paul Krzyzanowski

Some uses of DHTs
• General purpose distributed object store: names, passwords, user profiles, …

• Coral content delivery network, Tox instant messaging, Freenet anonymous content
sharing, Scribe event notification

• Amazon – shopping carts, best seller lists, customer preferences, sales rank, session info,
product catalog

• BitTorrent – distributed tracker
– key = infohash infohash =hash(file_contents)
– value = IP addresses of peers willing to serve the file

• InterPlanetary File System (IPFS) – 3 DHTs
1. Find peers that have the desired file data (look up by hash of the file)
2. Find the pathname given the file's content (hash)
3. Get a set of addresses for a peer given its ID

CS 417 © 2023 Paul Krzyzanowski 44

The End

45CS 417 © 2023 Paul Krzyzanowski

