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Distributed Lookup
Interface:
store(key, value)
value = lookup(key)

Distributed lookup: cooperating set of nodes store & retrieve data

Ideally:
– Peer-to-peer: no central coordinator – all nodes have the same capabilities
– Efficient: route requests to the node that holds the data
– Fault-tolerant: some nodes can be down
– Scalable: Easy to add or remove nodes as capacity changes
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Obect storage File storage

Flat namespace Hierarchical namespace

Read/write entire content Partial read/writes

Atomic access Concurrent access (usually)



Approaches
1. Central coordinator
– Napster

2. Flooding
– Gnutella

3. Distributed hash tables
– CAN, Chord, Amazon Dynamo, Tapestry, Kademlia, …
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1. Central Coordinator
Example: Napster
– Central directory
– Identifies content (names) and the servers that host it 
– lookup(name) → {list of servers}
– Download from any of available servers
• Pick the best one by pinging and comparing response times

Another example: GFS
– Controlled environment compared to Napster
– Content for a given key is broken into chunks
– Master handles all queries … but not the data
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1. Central Coordinator - Napster
• Pros
– Super simple
– Search is handled by a single server
– The directory server is a single point of control
• Provides definitive answers to a query

• Cons
– Master has to maintain state of all peers
– Server gets all the queries
– The directory server is a single point of control
• No directory, no service!
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2. Query Flooding
Example: Gnutella distributed file sharing

• Each node joins a group – but only knows about some group members
– Well-known nodes act as anchors
– New nodes with files inform an anchor about their existence
– Nodes use other nodes they know about as peers
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2. Query Flooding
• Send a query to peers if a file is not present locally
– Each request contains:
• Query key
• Unique request ID
• Time to Live (TTL, maximum hop count)

• Peer either responds or routes the query to its neighbors
– Repeat until TTL = 0 or if the request ID has been processed
– If found, return a response containing the node address to the requestor
– Back propagation: response hops back to reach originator
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Overlay network
An overlay network is a virtual network formed by peer connections
– Any node might know about a small set of machines
– “Neighbors” may not be physically close to you
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Underlying IP Network
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Overlay network
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An overlay network is a virtual network formed by peer connections
– Any node might know about a small set of machines
– “Neighbors” may not be physically close to you

Overlay Network



Flooding Example: Overlay Network
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Flooding Example: Query Flood
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TTL = Time to Live (hop count)



Flooding Example: Query response

Found!
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Flooding Example: Download
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Request download
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What’s wrong with flooding?
• Some nodes are not always up, and some are slower than others
– Kazaa was created to deal with this: super nodes = more powerful with better uptime
– Gnutella later did the same, classifying some nodes as special (“ultrapeers”)
– Regular nodes send all content info to ultrapeers

• Poor use of network resources
– Lots of messages throughout the entire network (until TTL=0 kicks in)

• Potentially high latency
– Requests get forwarded from one machine to another
– If back propagation is used: 

replies go through the same sequence of systems used in the query, increasing latency 
even more – useful in preserving anonymity
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3. Distributed Hash Tables
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Hash tables
Remember hash functions & hash tables?
– Linear search: O(N)
– Tree or binary search: O(log2N)
– Hash table: O(1)
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What’s a hash function? (refresher)
Hash function
• A function that takes a variable length 

input (e.g., a string or any object) and 
generates a (usually smaller) fixed length 
result (i.e., an integer)

• Example: hash strings to a range 0-7:
hash(“Newark”) → 1
hash(“Jersey City”) → 6
hash(“Paterson”) → 2

Hash table
• Table of (key, value) tuples

• Look up a key:
Hash function maps keys to a range 0 … N-1

Index into a table of N elements
i = hash(key)
item = table[i]

• No need to search through the table!
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Considerations with hash tables (refresher)
• Picking a good hash function
– We want uniform distribution of all values of key over the space 0 … N-1

• Collisions
– Multiple keys may hash to the same value

hash("Paterson") → 2
hash("Edison") → 2

– table[i] is a bucket (slot) for all such (key, value) sets
– Within table[i], use a linked list or another layer of hashing

• Think about a hash table that grows or shrinks
– If we add or remove buckets → need to rehash keys and move items
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Distributed Hash Tables (DHT): Goal
Create a peer-to-peer version of a (key, value) data store

How we want it to work
1. A client (X) queries any peer (A) in the data store with a key
2. The data store finds the peer (D) that has the value
3. That peer (D) returns the value for the key to the client

Make it efficient!
A query should not generate a flood
or go be forwarded through too many nodes
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Distributed Hash Table
Object Storage



Consistent hashing
• Conventional hashing
– Practically all keys must be remapped if the table size changes

• Consistent hashing
– Most keys will hash to the same value as before
– On average, K/n keys will need to be remapped

K = # keys,  n = # of buckets

Example: splitting a bucket
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slot a slot b slot c slot d slot e

slot a slot b slot c1 slot d slot eslot c2

Only the keys in slot c get remapped



Designing a distributed hash table
• Spread the hash table across multiple nodes (peers)

• Each node stores a portion of the key space – it's a bucket
lookup(key) → node ID that holds (key, value)

lookup(node_ID, key) → value

Questions
How do we partition the data & do the lookup?
& keep the system decentralized?

& make the system scalable (lots of nodes with dynamic changes)?
& fault tolerant (replicated data)?
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Distributed Hashing

CAN: Content Addressable Network
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CAN design
• Create a logical grid
– x-y in 2-D (but not limited to two dimensions)

• Separate hash function per dimension
– hx(key), hy(key)

• A node
– Is responsible for a range of values in each dimension
– Knows its neighboring nodes
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CAN key→node mapping: 2 nodes

y=0

y=ymax

x=xmaxx=0

n1 n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2)
n1 has (key, value)

if x ≥ (xmax/2)
n2 has (key, value)

xmax/2

n2 is responsible for a zone
x=(xmax/2 .. xmax),
y=(0 .. ymax)

25CS 417 © 2023 Paul Krzyzanowski



CAN partitioning

y=0

y=ymax

x=xmaxx=0

n1

n2

Any node can be 
split in two – either 
horizontally or 
vertically

n0

ymax/2

xmax/2
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CAN key→node mapping

y=0

y=ymax

x=xmaxx=0

n1

n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2) {
if y < (ymax/2) 

n0 has (key, value)
else

n1 has (key, value)
}

if x ≥ (xmax/2)
n2 has (key, value)

n0

ymax/2

xmax/2
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CAN partitioning

y=0

y=ymax

x=xmaxx=0

Any node can be split in two: 
either horizontally or vertically

Some data must be moved to 
the new node based on 
hash(key)

Neighbors need to be made 
aware of the new node

A node needs to know only 
one neighbor in each 
direction

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9
n7

n3

n5 n6

n2
n11
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CAN neighbors

y=0

y=ymax

x=xmaxx=0

Neighbors refer to nodes 
that share adjacent zones in 
the overlay network

n4 only needs to keep track 
of n5, n7, or n8 as its right 
neighbor.

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9
n7

n3

n5 n6

n2
n11

29CS 417 © 2023 Paul Krzyzanowski



CAN routing

y=0

y=ymax

x=xmaxx=0

lookup(key):

Compute
hashx(key), hashy(key) 

If the node is responsible for 
the (x, y) value then look up 
the key locally

Otherwise route the query to a 
neighboring node

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9
n7

n3

n5 n6

n2

n11
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CAN
• Performance
– For n nodes in d dimensions
– # neighbors = 2d
– Average route for 2 dimensions = O(√n) hops

• To handle failures
– Share knowledge of neighbor’s neighbors
– One of the node’s neighbors takes over the failed zone
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Distributed Hashing
Case Study

Chord
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Chord & consistent hashing
• A key is hashed to an m-bit value: 0 … (2m-1)

• A logical ring is constructed for the values  0 ... (2m-1)

• Nodes are placed on the ring at hash(IP address)

Node
hash(IP address) = 3
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Key assignment
• Example: n=16; system with 4 nodes (so far)
• (key, value) data is stored at a successor
– a node whose value is ≥ hash(key)

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Node 3 is responsible for 

keys 15, 0, 1, 2, 3

Node 8 is responsible for 
keys 4, 5, 6, 7, 8

Node 10 is responsible for 
keys 9, 10

Node 14 is responsible for 
keys 11, 12, 13, 14
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No nodes at these empty 
positions
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Node Hash range

3 0-3, 15

8 4-8

10 9-10

14 11-14



Handling insert or query requests
• Any peer can get a request (insert or query).
• If the hash(key) is not for its ranges of keys, it forwards the request to the successor.
• The process continues until the responsible node is found
– Worst case: with p nodes, traverse p-1 nodes; that’s O(p) (yuck!)
– Average case: traverse p/2 nodes (still yuck!)
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15 Node 3 is responsible for 

keys 15, 0, 1, 2, 3

Node 8 is responsible for 
keys 4, 5, 6, 7, 8

Node 10 is responsible 
for keys 9, 10

Node 14 is responsible 
for keys 11, 12, 13, 14
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Suppose node 3 gets a query for a 
key where hash(key) = 9
This is outside of the range 15…3 for
node 3
Forward to successor (node 8)

Node 8 got the query but hash(key) = 
9 is outside of its range of 4…8
Forward to successor (node 10)



Let’s figure out three more things

1. Adding/removing nodes

2. Improving lookup time

3. Providing fault tolerance
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Adding a node
• Some keys that were assigned to a node’s successor now get assigned to the new node

• Data for those (key, value) pairs must be moved to the new node
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15 Node 3 is responsible 

for keys 15, 0, 1, 2, 3

Node 8 was responsible for 
keys 4, 5, 6, 7, 8
Now it’s responsible for keys 7, 8

Node 10 is responsible 
for keys 9, 10

Node 14 is responsible 
for keys 11, 12, 13, 14
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New node added: ID = 6
Node 6 is responsible for 
keys 4, 5, 6
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move data

for keys 4,5,6



Removing a node
• Keys are reassigned to the node’s successor

• Data for those (key, value) pairs must be moved to the successor
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15 Node 3 is responsible for 

keys 15, 0, 1, 2, 3

Node 8 is responsible for 
keys 7, 8

Node 10 was responsible 
for keys 9, 10

Node 14 was responsible for 
keys 11, 12, 13, 14
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Node 6 is responsible 
for keys 4, 5, 6

Node 14 is now responsible for 
keys 9, 10, 11, 12, 13, 14
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Node 10 removed

Move (key, value) 
data to node 14



Fault tolerance
• Nodes might die
– (key, value) data should be replicated
– Create R replicas, storing each one at R-1 successor nodes in the ring

• Need to know multiple successors
– A node needs to know how to find its successor’s successor (or more)
• Easy if it knows all nodes!

– When a node is back up, it needs to:
• Check with successors for updates of data it owns
• Check with predecessors for updates of data it stores as backups
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Kademlia DHT
• Similar in concept to Chord

• Uses a logical tree structure instead of a ring
• Distance = peer_1 ⊕ peer_2

CS 417 © 2023 Paul Krzyzanowski 40



Performance
• We’re not thrilled about O(N) lookup

• Simple approach for great performance
– Have all nodes know about each other
– When a peer gets a query, it searches its table of nodes for the node that owns those 

values
– Gives us O(1) performance
– Add/remove node operations must inform everyone
– Maybe not a good solution if we have lots of peers (large tables)
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Finger tables
• Compromise to avoid large tables at each node
– Use finger tables to place an upper bound on the table size

• Finger table = partial list of nodes, progressively more distant

• At each node, ith entry in finger table identifies node that succeeds it by at least 2i-1 in the 
circle
– finger_table[0]: immediate (1st) successor
– finger_table[1]: successor after that (2nd)
– finger_table[2]: 4th successor
– finger_table[3]: 8th successor
– …

• O(log N) nodes need to be contacted to find the node that owns a key
… not as good as O(1) but way better than O(N)
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In the kademlia DHT
finger table ≡ skip list



Improving performance even more
• Let’s revisit O(1) lookup

• Each node keeps track of all current nodes in the group
– Is that really so bad?
– We might have thousands of nodes … so what?

• Any node will now know which node holds a (key, value)

• Add or remove a node: send updates to all other nodes
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Some uses of DHTs
• General purpose distributed object store: names, passwords, user profiles, …

• Coral content delivery network, Tox instant messaging, Freenet anonymous content 
sharing, Scribe event notification

• Amazon – shopping carts, best seller lists, customer preferences, sales rank, session info, 
product catalog

• BitTorrent – distributed tracker
– key = infohash infohash =hash(file_contents) 
– value = IP addresses of peers willing to serve the file

• InterPlanetary File System (IPFS) – 3 DHTs
1. Find peers that have the desired file data (look up by hash of the file)
2. Find the pathname given the file's content (hash)
3. Get a set of addresses for a peer given its ID
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The End
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