CS 417 - DISTRIBUTED SYSTEMS |

Week 14: Infrastructure - |
[Original] Google Cluster Architecture

&4 ©,2021 Paul Krzyzanowski. No part of this
/ : content, may be reproduced or reposted in

PaUI Krzyzan OWS kl b4 : whole or in part in any manner without the

permission of the copyright owner.

A note about relevancy

This describes the Google search
cluster architecture in the mid 2000s.
The search infrastructure was
overhauled in 2010.

Nevertheless, the lessons are still
valid, and this demonstrates how
incredible scalability has been
achieved using commodity computers
by exploiting parallelism.

CS 417 © 2021 Paul Krzyzanowski

WEB SEARCH FOR A PLANET:
THE GOOGLE CLUSTER
ARCHITECTURE

Luiz André Barroso
Jeffrey Dean

Urs Hilzle

Google

AMENABLE TO EXTENSIVE PARALLELIZATION, GOOGLE'S WEB SEARCH

APPLICATION LETS DIFFERENT QUERIES RUN ON DIFFERENT PROCESSORS AND,

BY PARTITIONING THE OVERALL INDEX, ALSO LETS A SINGLE QUERY USE

MULTIPLE PROCESSORS. TO HANDLE THIS WORKLOAD, GOOGLE'S

ARCHITECTURE FEATURES CLUSTERS OF MORE THAN 15,000 COMMODITY-

CLASS PCS WITH FAULT-TOLERANT SOFTWARE. THIS ARCHITECTURE ACHIEVES

SUPERIOR PERFORMANCE AT A FRACTION OF THE COST OF A SYSTEM BUILT

FROM FEWER, BUT MORE EXPENSIVE, HIGH-END SERVERS.

o Few Web services require as much
computation per request as scarch engines.
On average, a single query on Google reads
hundreds of megabytes of dara and consumes
tens of billions of CPU cycles. Supporting a
peak request stream of thousands of queries
per second requircs an infrastructure compa-
rable in size to that of the largest supercom-
puter installations. Combining more than
15,000 commodity-class PCs with faule-tol-
crant software creates a solution that is more

ive o b buile

its of available data center power densities
Our application affords casy paralllizasion:
Different queries can run on different proces-
sors, and the overall index is partitioned so
thac a single query can use multiple proces-
sors. Consequently, peak processor perfor-
mance is less important than its pricc/
performance. As such, Google is an example
of a throughput-oriented workload, and
should benefit from processor architectures
that offer more on-chip parallelism, such as

a
our of a smaller number of high-cnd servers.
Here we present the architeeture of the

on-chip mul-
tiprocessors

} !

imporaan
factors that influcnce its design: encrgy cffi
ciency and price-p: ratio. Energy

Google

Google's software architecture arises from

effciency is key at our scale of operation, as

First, we provide reliabilicy
in software rather than in server-class hard-

er
significant operational factors, taxing the lim-

Published

ware, so we can dity PCs to build
a high-end compuring cluster at a low-cnd

Search flow

What needs to happen when you do a search?

DNS Submit Receive Parse Search
lookup query request query the web

Return

response

Rank
results

CS 417 © 2021 Paul Krzyzanowski 3

Some statistics

- 3.5 billion searches/day — trillions per year

Volume grows ~10% per year — ability to scale is crucial

16-20% of searches have never been issued before

— Caching won’t help much

Average user session < 1 minute A‘h
Hundreds of billions of

web pages indexed

— Index > 100 million gigabytes (107 bytes)

60% of searches are done via a
mobile device

Query sizes

CS 417 © 2021 Paul Krzyzanowski 4

What is needed?

* A single Google search query
— Reads 10s-100s of terabytes of data
— Uses tens of billions of CPU cycles

* Environment needs to support tens of thousands of queries per second

* Environment must be
— Fault tolerant
— Economical (price-performance ratio matters)
— Energy efficient (this affects price; watts per unit of performance matters)

« Parallelize the workload
— CPU performance matters less than price/performance ratio

CS 417 © 2021 Paul Krzyzanowski 5

est Practices?

IT Infrastructure ~ Servers v Storage v Software ™ Solutions Vv G Chat Now

Engineered Storage Products

Zero Data Loss Recovery Appliance Oracle ZFS Storage Appliance StorageTek Tape Automation

Secure your IT infrastructure
with large enterprise servers

Unlock the full potential of your data'with the servers
designed to meet mission-critical workloads while
maintaining privacy across your entire hybrid cloud
environment,

Zero Data Loss Recovery Appliance

Purpose-built by the Oracle Database team as a data-protection
extension to the database

Oracle's Zero Data Loss Reco
protection solution d

Hear from a customer (01:59)

Explore Zero Data Loss Recovery Appliance

Meet the IBM large enterprise servers

Ensure that your infrastructure is ready to unlock new business opportunities with high-performance servers that
ensure data privacy and security across your hybrid cloud.

“Enterprise-grade” components

. i i X
1BM z15™ IBM LinuxONE III™ IBM Power Syster Consideri nga
E950
The newest IBM Z® multi- Gain the ultimate in uptime pU rc haSe?
frame system extends next- and economics, extend data Designed for private clc
level data privacy, resiliency privacy across hybrid cloud, and cognitive workload ~Chatnow with an IBM Sales

Representative who can assist
you in finding the right
products and services to meet
your needs.

and agility to hybrid cloud and deliver cloud-native E950 offers a unique bl
infrastructures. applications faster. enterprise-class capab
ina 4-socket 4U form f

CS 417 © 2021 Paul Krzyzanowski 6

Key design principles

» Have reliability reside in software, not hardware
— Use low-cost (unreliable) commodity PCs to build a high-end cluster
— Replicate services across machines & detect failures

» Design for best total throughput, not peak server response time
— Response time can be controlled by parallelizing requests
— Rely on replication: this helps with availability too

 Price/performance ratio more important than peak performance

CS 417 © 2021 Paul Krzyzanowski 7

Life of a query — step 1: DNS

« User’s browser must map google.com to an /P address

» “google.com” comprises multiple clusters distributed worldwide
— Each cluster contains thousands of machines

« DNS-based load balancing
— Select cluster by taking user’s geographic & network proximity into account

— Load balance across clusters
Google’s Load-
balanced DNS

1. Contact DNS server(s) to find
the DNS server responsible for
google.com

2. Google’s DNS server returns
addresses based on location of
request

3. Contact the appropriate cluster

CS 417 © 2021 Paul Krzyzanowski 8

Life of a query — step 2: Send HT TP request

 |P address corresponds to a load balancer within a cluster

* Load balancer
— Monitors the set of Google Web Servers (GWS)

— Performs local load balancing of requests among available servers

* GWS machine receives the query
— Coordinates the execution of the query

— Formats results into an HTML response to the user

Query

Google Web Server Coordination

Hardware Load
Balancer

Google Web Server

Google Web Server

Google Web Server

Data center

CS 417 © 2021 Paul Krzyzanowski 9

Step 3. Find documents via inverted index

Index Servers

« Map each query word — {list of document IDs} (this is the hit list)
— Inverted index generated from web crawlers — MapReduce

* Intersect the hit lists of each per-word query
— Compute relevance score for each document
— Determine set of documents

— Sort by relevance score Query word 1

Query word 2 Query word 3

Document ID
list

Document ID
list

Document ID
list

|
Intersect

CS 417 © 2021 Paul Krzyzanowski 10

Parallel search through an inverted index

* Inverted index is 10s of terabytes

« Search is parallelized
— Index is divided into index shards
* Each index shard is built from a randomly chosen subset of documents
* Pool of machines serves requests for each shard
* Pools are load balanced
— Query goes to one machine per pool responsible for a shard

Index server: shard 0

* Final result is ordered list of
document identifiers (docids)

Index server: shard 0

Load
Balancer

shard 1
shard 1

Index server: shard 0
o I
Index server: shard 1 erver: shard N
Google Web Server }
m server: shard N
1

Load
Balanc

Index server: shard N

CS 417 © 2021 Paul Krzyzanowski 11

Sharded & Replicated Index Servers

Shard 0 Shard 1 Shard 2

Load Balancer
Load Balancer
Load Balancer

Shard 3 Shard N

Load Balancer
Load Balancer

CS 417 © 2021 Paul Krzyzanowski 12

Step 4. Get title & URL for each docid

For each docid, the GWS looks up the docid to get
» Page title
« URL

» Relevant text: document summary specific to the query

This is handled by document servers (docservers)

CS 417 © 2021 Paul Krzyzanowski 13

Parallelizing document lookup

* Like index lookup, document lookup is partitioned & parallelized

 Documents distributed into smaller shards
— Each shard = subset of documents

» Pool of load-balanced servers responsible for processing each shard

Together, document servers access a cached copy of the entire web!

Google Web Server

Docserver: shard 0

Docserver : shard 0

Docserver : shard 0
3] § & oo°
o ®©
—1 ©
m

Load
Balancer

: shard 1

CS 417 © 2021 Paul Krzyzanowski

refr : shard 1

o
-

Balal

I

erver : shard N

erver : shard N

Docserver : shard N

14

Additional operations

* In parallel with search:
— Send query to a spell-checking system
— Send query to an ad-serving system to generate ads

* When all the results are in, GWS generates HTML output:
— Sorted query results with

+ Page titles, summaries, and URLs
* Ads

+ Spelling correction suggestions ”)
ol]
o |
Index server]
Hardware ~)
leee Google Web Server | == =]
Balancer a]
Docserver]

Spell
checker

Ad server

CS 417 © 2021 Paul Krzyzanowski 15

Lesson: exploit parallelism

* Instead of looking up matching documents in a large index
— Do many lookups for documents in smaller indices
— Merge results together: merging is simple & inexpensive

* Divide the stream of incoming queries
— Among geographically-distributed clusters
— Load balance among query servers within a cluster

* Linear performance improvement with more machines
— Shards don’t need to communicate with each other
— Increase # of shards across more machines to improve performance

CS 417 © 2021 Paul Krzyzanowski 16

Updating & scaling are easy

Updates
» Updates infrequent compared to reads

» Load balancers make updating easy
— Take the system out of the load balancer during the update
— No need to worry about data integrity and locks

« Shards don’t need to communicate with each other

Scaling
» Add more shards as # of documents grows

» Add more replicas if throughput increase is needed

CS 417 © 2021 Paul Krzyzanowski 17

» Use software to achieve reliability
» Use replication for high throughput
* Price-performance is more important than peak CPU

* Use commodity hardware

CS 417 © 2021 Paul Krzyzanowski 18

The End

CS 417 © 2021 Paul Krzyzanowski

19

The End

CS 417 © 2021 Paul Krzyzanowski

23

