
Computer Security
06. Exam 1 Review

Paul Krzyzanowski

Rutgers University

Spring 2018

1March 5, 2018 CS 419 © 2018 Paul Krzyzanowski



Question 1a

The OS takes away execute permission from areas of 
memory that are not loaded with executable code, such as 
the stack and the heap.

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 5

Briefly explain how each of these three mechanisms helped to make buffer 
overflow attacks more difficult:

a. Data execution Protection (DEP)



Question 1b

• The OS's program loader sets a random base address for 
code (text), heap, stack, and shared library regions.

• If you are injecting code, you will not know what return 
address to inject to have it refer back to the buffer.

• If you are using Return-Oriented-Programming (ROP), you 
will not know the address of the library function you want to 
branch to.

NOT: "randomly assigns data in the stack" 

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 6

Briefly explain how each of these three mechanisms helped to make buffer 
overflow attacks more difficult:

b. Address Space Layout Randomization (ASLR)



Question 1c

• Allows the function to check if the return address on the 
stack may have been overwritten.

• Notes:
– The canary is not in place to detect off-by-one errors. That can be a 

side-effect if the buffer overflow was next to the canary.
– NOT "detect adjacent buffers". The canary is in place to ensure that 

the return address and saved frame pointers have not been modified. 
An overflow of any local buffer in the function can cause that to occur.

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 7

Briefly explain how each of these three mechanisms helped to make buffer 
overflow attacks more difficult:

c. Stack canaries



Question 2

• Setuid is used on a program when the user that runs the 
program will not have sufficient privileges

• Most often, programs run with the user ID of root (0) to 
perform certain administrative actions

• Linux capabilities enable an administrator to grant specific 
privileges to a program
– It can perform limited administrative operations rather than have 

broad access to everything that root can do

• Note: Linux capabilities are associated with a file, not a user

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 8

How to POSIX (Linux) capabilities help implement the principle of least privilege 
better than using a setuid mechanism?



Question 3

Definition of usurp
transitive verb
1 a : to seize and hold (office, place, functions, powers, etc.) in possession by force or 
without right usurp a throne

b : to take or make use of without right usurped the rights to her life story
2 : to take the place of by or as if by force : supplant must not let stock responses based on 
inherited prejudice usurp careful judgment

• Taking control when you have no right
– Disruption or data access might be side-effects
– Injection might be the means to do it

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 9

Usurpation is a great vocabulary word. It primarily refers to:
(a) Taking control of part of a system without permission.
(b) Disrupting the service that a system is providing.
(c) Injecting or modifying data in a network or file system.
(d) Accessing data without authorization.



Question 4

(a) Snooping refers to looking at data without permission

(b) It doesn't imply changing the data and usually doesn't 
disrupt service

(c) Usurpation may be used to enable snooping but not 
necessarily

(d) You're just observing – not changing anything
March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 10

Snooping is a form of:
(a) Disclosure.
(b) Disruption.
(c) Usurpation.
(d) Repudiation of origin.



Question 5

• Hardware timers are used to trigger interrupts in the future
– This allows the OS to ensure it will get invoked at a set time
– Generally used for process scheduling

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 11

An important security-relevant aspect of an operating system's use of hardware 
timers is:
(a) Waking the system up from sleep to ensure availability.
(b) Measuring the amount of time various processes use.
(c) Measuring the latency of system calls to look for evidence of tampering.
(d) Ensuring that the operating system can always regain control.



Question 6

• Protection rings are designed to provide a
hierarchical set of protection domains
– Call gates (like interrupts) transition to specific places in rings

• Envisioned design was to have unprivileged
software in Ring 3 and the OS in rings 0-2.
– Ring 0: kernel: full privileges
– Rings 1, 2: OS drivers – can access kernel memory but not run privileged instructions

• Rings 1 & 2 almost never used in real life
– VirtualBox VM runs its guest OS in ring 1

(a) No: all non-kernel processes are in ring 3
(b) No: they protect the OS but not the CPU
(c) No: it's the access control logic in the kernel that decides if you can access a resource

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 12

Protection Rings in the Intel architecture are designed to:
(a) Allow each process to occupy a unique privilege level.
(b) Protect the processor itself from malicious attacks.
(c) Provide multiple layers of checks when a process requests access to resources.
(d) Provide well-defined mechanisms for a process to switch between privilege levels.



Question 7

• Unix's predecessor, Multics, supported full ACLs

• An ACL can take up an arbitrary amount of space

– It's a list, possibly with lots of users and access rights

– Implementation would require a variable-size inode or a secondary variable-size 

storage list in addition to file data … that's painful!

• Unix's ability to assign access permissions for only a single user or a single 

group is limiting – usually good enough but not = a full access control matrix

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Why did Unix systems adopt a limited file access control model?

(a) The Unix OS was designed as a single user system, so detailed per-user 

controls were not needed.

(b) The model is sufficient since it fully implements an access control matrix.

(c) It made the commands to set permissions a lot simpler.

(d) The limited set of permissions fit within a fixed set of bits in the file's inode.



Question 8

• The TCB includes all lower-level software & hardware
– E.g., processor, firmware, OS

• If the TCB cannot be trusted, its ability to enforce security 
policies cannot be trusted

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 14

Why is a compromise of the trusted computing base (TCB) particularly 
dangerous?
(a) It makes it easy to perform code injection attacks on applications.
(b) You can no longer trust that the system is enforcing security policies correctly.
(c) Malware can easily spread to other less-trusted systems.
(d) One process can freely read another process's memory.



Question 9

• An ACL is associated with a single file

• It comprises a set of Access Control Entries
– Each ACE identifies a set of rights for a single subject (e.g., user)

• ACLs manage subject-object mapping
– They don't allow one to limit what a specific program can do
– Programs assume the rights granted to a user

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 15

Each access control list (ACL) allows one to specify which:
(a) Programs can access a specific file.
(b) Files can be accessed by a specific user.
(c) Users can access a specific file.
(d) Users have administrative privileges.



Question 10

• A setuid executable file runs with the permissions of the file 
owner rather than the user who runs the program

• They are often owned by root, in which case they run with 
admin privileges … but that is not a requirement

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 16

A program with the setuid bit set:
(a) Runs with permissions of the logged-in user instead of the file owner.
(b) Runs with permissions of the file owner instead of the logged-in user.
(c) Runs with administrative privileges.
(d) Runs the process in kernel mode instead of user mode.



Question 11

• Break a program into parts, giving each part only the 
privileges it requires
– This can be an application of the principle of least privilege
– Minimizes potential for harm if one of the parts is compromised

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 17

Privilege separation is the principle where:
(a) Different users are granted different access rights.
(b) The system has different classes of administrators (e.g., network, storage, 

users).
(c) A process is split into multiple parts, each running at different privilege levels.
(d) A process may request special privileges to do specific operations.



Question 12

(a) Kernels enforce both MAC and DAC
The user can define DAC; the admin defines MAC

(b) Yes – MAC is set by the admin, not resource owners

(c) MAC is a mechanism, not a policy

(d) The OS checks access permissions for MAC and DAC

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 18

Mandatory Access Control (MAC):
(a) Is a set of access rights that the kernel enforces while Discretionary Access 

Control defines only advisory permissions.
(b) Defines access rights that the object owner cannot change.
(c) Is a policy that states all objects must have a set of access rights associated 

with them.
(d) Is an operating system mode that forces the checking of access permissions 

to each object.



Question 13

(a) – Possibly, but …
there are other problems then, such as how the user became an imposter
Do we care? The goal of the user is to create a private file

(b) Yes. There's a window of time between creating the file and its setting 
permissions 

(c) Not clear if anyone would need to read the file. Admins can step in.

(d) That's not the main problem

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 19

The main problem with a program that creates a file and then sets access 
permissions so that the file is not readable by anyone other than the user is:
(a) The user might be an imposter.
(b) There is a race condition in the logic.
(c) The user account might be deleted, making the file unreadable by anyone.
(d) Either of the operations may fail.



Question 14

Bell-LaPadula is all about confidentiality
– No read up: you cannot read from a higher secrecy level
– No write down: you cannot create anything less secret than your level

(a) No.

(c) Yes, but that's expected.

(d) No.

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 20

A drawback of the Bell-LaPadula model when strictly implemented is:
(a) A user at a low classification level can read files from higher classification levels.
(b) A user at a low classification level may overwrite a file at a higher classification level.
(c) A user at a high classification level can freely read files from lower classification levels.
(d) A user at a high classification level may overwrite files at lower classification levels.



Question 15

RBAC is about assigning users to roles and managing roles
– Roles are functional operations (e.g., modify payroll data), not 

confidential or integrity levels

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 21

One way that role-based access control differs from the Bell-LaPadula model in that:
(a) It focuses on preserving integrity rather than confidentiality.
(b) It manages permissions on a functional basis rather than controlling object access.
(c) It is mandatory rather than discretionary.
(d) Users can be assigned to different classification levels.



Question 16

Biba is an integrity model
– Instead of levels of secrecy, we have levels of integrity
– No read down: you cannot read from lower integrity levels
– No write up: you cannot create objects that are a higher integrity

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 22

The Biba model differs from Bell-LaPadula in that:
(a) Users are not classified into levels.
(b) It implements a no write up policy instead of no read up.
(c) It allows reading across any levels but restricts writing since it is concerned 

only with controlling data corruption.
(d) It is a discretionary model rather than a mandatory model.



Question 17

• Multilateral security adds compartment labels within a 
classification level

• Labels must match for you to have access to the objects

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 23

Multilateral security enhances the Bell-LaPadula model in that it:
(a) Restricts what information users can access even at the same classification 

level.
(b) Applies the same policy uniformly to all users of the system.
(c) Supports discretionary access control within a security level.
(d) Manages integrity as well as confidentiality.



Question 18

• The Chinese Wall model is about conflict classes
– If you access an object A

and object B is in the same conflict class, you can no longer access B

• It requires tracking state.

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 24

The key idea in the Chinese Wall model is:
(a) Groups of users may be partitioned so they cannot communicate.
(b) Access may be disallowed based on what objects were previously accessed by the user.
(c) Groups of users may be defined so that information can flow only in one direction from 

one group to the other.
(d) It preserves integrity by disallowing a user in one group from modifying data in another.



Question 19

• Java is strongly typed and enforces bounds checking for all arrays

• You cannot write to a pointer or fill an array of an unknown size
– Each array has a public final length field that identifies the # of elements

int a[];
a.length

– Strings have a public length method
String s;
s.length()

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 25

How come buffer overflow vulnerabilities practically don't exist in Java?
(a) Java is not a stack-based language.
(b) The Java runtime environment employs stack canaries.
(c) Java implements bounds checking for all array operations.
(d) Java objects use memory protection to isolate themselves.



Question 20

In buffer overflow attacks, if you're not sure of the precise 
starting address of your buffer, you can pad it with NOPs and 
jump into this list of NOP instructions

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 26

A landing zone is:
(a) The address of the start of injected code that is written to the stack.
(b) An indirect jump in a buffer overflow exploit to enable the injection of larger 

chunks of code.
(c) A region of memory that is vulnerable to heap overflow attacks.
(d) A sequence of no-op instructions to account for the fact that we might not 

know the exact address of a buffer..



Question 21

(a) What data is the attacker providing to do this?
A string can cause a lot of output but isn't really an attack

(b) That's a bug but highly unlikely to be an attack vector

(c) This allows an attacker to do things such as examine the 
stack and modify data

(d) There is no output buffer

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 27

The printf function is a potential attack vector if:
(a) The attacker provides data that exceed the sizes specified in the format string.
(b) The program uses the wrong number of arguments to printf.
(c) The attacker can specify the format string.
(d) The size of the output buffer is not specified.



Question 22

• Fuzzing is used to test if a program is resilient against bad 

input data and – if not – identify where the culprit is

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 28

Fuzzing is a technique that:

(a) Obfuscates compiled code to make it difficult to disassemble.

(b) Provides barriers between buffers to ensure that buffer overflow cannot occur.

(c) Scrambles addresses on the stack to make it difficult for attackers to inject 

valid addresses.

(d) Overflows a buffer to crash a program and then searches for the location of 

the data that was input.



Question 23

(a) ROP relies on buffer overflows

(b) It's an attack, not a defense

(d) A stack canary will detect the overflow and refuse to return 
to the injected address

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 29

Return-oriented programming (ROP) was created to:
(a) Enable code injection without buffer overflows.
(b) Make buffer overflows impossible.
(c) Enable code injection with data execute protection in place.
(d) Bypass the protections of stack canaries.



Question 24

(a) This can lead to the the wrong library function being called

(b) This can invoke a different program if the user doesn't specify the full 
path

(c) Only in the rare case that the program being run happens to execute a 
script

(d) Worst answer. Possible if the user was expected to run the file from a 
specific directory

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 30

What would be most likely to cause a compiled program to behave differently from 
the way it was designed?
(a) A change to the shared library path (LD_LIBRARY_PATH).
(b) A change to the shell's search path (PATH).
(c) A change to the environment variable that redefines the shell's field separator 

characters (IFS).
(d) A change to the current directory before the command is run (cd).



Question 25

(a) Not likely to be a security problem.

(b) Nope. Failed writes don't result in a crash.

(c) A new open file will get the same file descriptor as the 
closed stream.

(d) Nope.

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 31

A possible security problem with closing the standard output or standard error 
stream when running a command is:
(a) The program will not be able to write messages to the user.
(b) The program will crash as soon as it writes to the console, resulting in an 

availability attack.
(c) If the program opens another file, any attempts to write to the standard output 

may corrupt that file.
(d) The program will be blocked indefinitely waiting for the output stream to open..



Question 26

• Unicode expansion could have resulted in "/" characters, 
which altered the search path.

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 32

The Unicode bug that Microsoft had in their IIS (Internet Information Services) 
server manifested itself because:
(a) Many Unicode characters looks the same.
(b) They processed Unicode characters after validating the pathname.
(c) There was no reliable way of checking whether a URL specifies a path above 

a base directory.
(d) A buffer overflow attack enabled Unicode characters to be treated as 

executable code..



Question 27

A homograph attack is a deception attack
– Different characters may look identical in different scripts

(b, c): This was the problem in IIS in question 26

(d) Yes, it may, but the attack is that the characters look as if 
they belong to another script

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 33

Homograph (homoglyph) attacks work because:
(a) Some different characters look the same across multiple international scripts.
(b) Different multi-byte Unicode encodings may ultimately map to the same 

character.
(c) Systems sometimes validate input before parsing multi-byte characters.
(d) Text may contain a mixture of scripts from different languages.



Question 28

(a) Anything outside of the new root is invisible

(b) Yes – and then mount it and see all contents

(c) Yes – there's no ability to restrict operations

(d) Yes – the process namespace is visible and operations
are not restricted 

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 34

Which is not a problem with the chroot mechanism?
A process running with administrative privileges can:
(a) Reset the root back to its original value.
(b) Create a device file to access the root file system.
(c) Invoke privileged system calls.
(d) View and kill other processes.



Question 29

• They reduce the power of root in a jail
– Main goal: disallow the process from creating device files so they can 

access the full file system

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 35

FreeBSD Jails improved the chroot concept by:
(a) Restricting the operations that a process can perform in a jail.
(b) Managing the amount of resources that a process can consume.
(c) Disallowing processes from resetting the root of the file system.
(d) Logging all activity to an audit file.



Question 30

• Control groups: control resources

• Namespaces: control visibility of files, processes, …

• Capabilities: restrict administrative capabilities

March 5, 2018 CS 419 © 2018 Paul Krzyzanowski 36

Linux control groups (cgroups):
(a) Monitor and restrict the use of various computing resources for processes.
(b) Allow an administrator to start and stop a collection of processes as one 

group.
(c) Restrict the administrative functions that processes can perform.
(d) Restrict the part of the file system that is visible to a process.



The end

38March 5, 2018 CS 419 © 2018 Paul Krzyzanowski


