
Computer Security
08r. Exam 1 Review

Paul Krzyzanowski

Rutgers University

Fall 2019

1December 10, 2019 CS 419 © 2019 Paul Krzyzanowski

Part 1: Introduction

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 4

Question 1

CIA = Confidentiality, Integrity, Availability

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 5

The CIA Triad is:
(a) A set of security guidelines established by the U.S. Central Intelligence

Agency.
(b) A collection of techniques hackers use to break into systems.
(c) Three sets of leaked documents and published on WikiLeaks detailing the

CIA's hacking tools.
(d) A model for classifying topics that need to be addressed in computer security.

(B: 6)

Question 2

(a) Not always necessary

(b, c) These relate to privacy

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 6

Data confidentiality means that the data:
(a) Is encrypted.
(b) Has personally identifiable information removed.
(c) Cannot be shared without the permission of the owner if it contains personally

identifiable information.
(d) Cannot be accessed by unauthorized parties.

(B: 1)

Question 3

Attack surface ≠ number of vulnerabilities

It’s a measure of the potential for attack

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 7

A system with a large attack surface:
(a) Offers many ways in which an attacker could try to enter the environment.
(b) Has a large number of vulnerabilities.
(c) Is just as likely to be attacked by trusted insiders as well as external attackers.
(d) Uses multiple forms of defenses to detect and prevent attacks.

(B: 2)

Question 4

APTs refer to well-funded, highly determined attackers

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 8

Advanced Persistent Threats (APT) are most likely to be:
(a) Small groups of individuals working alone to avoid detection.
(b) Malicious insiders.
(c) Intelligence agencies.
(d) White hat hackers.

(B: 3)

Question 5

• Opportunistic attacks are the opposite of targeted attacks

• The attacker picks you because you are convenient
– Burglarize a house because the front door is open vs. because the

house contains an original Picasso painting

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 9

An opportunistic attack targets your systems because:
(a) You are a high-value target.
(b) Your organization has a malicious insider.
(c) Attacks from a distance are difficult to trace.
(d) Your systems may have a vulnerability they are prepared to exploit.

(B: 3)

Question 6

TCB = collection of all the hardware, firmware, networks,
libraries, programs needed to run an application

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 10

A trusted computing base (TCB) refers to:
(a) All the components of a system that are critical to its security.
(b) A computer system that is only available to trusted users.
(c) Carefully-audited application software that does not interact with non-trusted

applications.
(d) Tamper-resistant computing hardware that the software can trust to run

correctly..

(B: 5)

Part 2: Access control

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 11

Question 7

• Access control list (ACL): associated with objects
– Defines access rights for various subjects

• Capability list: associated with subjects
– Defines access rights for various objects

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 12

A capability list defines:
(a) The operations that various subjects are allowed to perform on an object.
(b) The system calls that a process can call when it is running with root privileges.
(c) The operations that a subject is allowed to perform on various objects.
(d) The full set of system calls that a process is allowed to invoke.

(B: 12)

Question 8

• POSIX file permissions are a restricted form of an access control list

• Each object (file) contains only a set of three subjects: user, group, other

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 13

Unlike access control lists, POSIX (e.g., UNIX, Linux, FreeBSD) permissions:
(a) Enumerate a list of users who can access an object.
(b) Identify a list of objects along with access permissions for those objects.
(c) Use a fixed amount of space per file to store access permissions.
(d) Allow an administrator to manage group access to objects.

(B: 7)

Question 9

MAC = mandatory access control

Users cannot override policies set by administrators

(a) This is done for every form of access control

(c) This is role-based access control

(d) This is the Bell-LaPadula model, one form of MAC

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 14

Unlike discretionary access control (DAC), mandatory access control (MAC):
(a) Requires the kernel to check access rights for an object before opening it.
(b) Is configured by administrators, not users.
(c) Organizes users into roles.
(d) Assigns a confidentiality level to each object.

(B: 8)

Question 10

Type Enforcement is an access control matrix defining access
policies of domains (groups of users) and types (objects)

BLP & Lattice models: read/write access defined based on
confidentiality (& compartment) levels

Biba: read/write access defined based on integrity levels

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 15

Which access model is most directly implemented with an access matrix
to manage read/write access rights?
(a) Bell LaPadula.
(b) Lattice.
(c) Biba.
(d) Type Enforcement.

(B: 9)

Question 11

The Chinese wall model introduces conflict classes

If you accessed an object that belongs to Group A, you can
no longer access objects that belong to Group B if A and B
are in a conflict class

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 16

To which access model would the description, "because you accessed file
A, you now cannot access file B" apply?
(a) Lattice.
(b) Bell LaPadula.
(c) Chinese wall model.
(d) Role-based access control (RBAC).

(B: 10)

Question 12

MAC model with confidentiality hierarchy like Bell-LaPadula

BUT … compartmentalizes each level to include labels

You need to have a matching label in addition to the allowed level to
access data

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 17

The lattice model:
(a) Creates permissions that may change dynamically based on what objects you

previously accessed.
(b) Protects data integrity with a no write up rule.
(c) Is a form of discretionary access control (DAC).
(d) Enhances multilevel security.

(B: 11)

Part 3: Injection/hijacking

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 18

Question 13

• NOP slide = bunch of NOP instructions before the actual attack
code

• CPU can branch anywhere into the slide and skip through these
instructions until it reaches the useful code

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 19

A NOP slide is useful if you:
(a) Are trying to get stack data to overflow onto the heap.
(b) Are using return-to-libc techniques instead of code injection.
(c) Want to pad a region of data to prevent the possibility of off-by-one overflows.
(d) Don't know the precise address of your injected code.

(B: 19)

Question 14

Fuzzing: debugging technique

Supply long chosen data as inputs to cause a buffer overflow

If the program crashes, search for that data in the crash dump

This tells will tell you which input does not check for buffer overflow

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 20

Fuzzing enables:
(a) Discovery of which input caused a buffer overflow.
(b) Encryption of pointers to protect them from overflows in the heap.
(c) Relocation of the starting addresses of the stack, heap, and text (code).
(d) Run-time buffer overflow checks.

(B: 13)

Question 15

ROP does not inject code but stack frames.

The stack frames contain return addresses to code that is
already in the executable (usually a library)

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 21

Return Oriented Programming (ROP):
(a) Redirects execution to existing code in the program.
(b) Forces functions to return prematurely.
(c) Disables buffer overflow checks.
(d) Injects executable code onto the stack.

(B: 14)

Question 16

The compiler generates code to:

1. Push a random number (a canary) onto the stack

2. Check that the canary has not been altered before returning

(a, b, d) They cannot check what happens to data on the stack until the
function is ready to return

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 22

Stack canaries:
(a) Detect if a program tries to execute code on the stack.
(b) Ensure that stack data cannot be written outside the stack frame.
(c) Prevent a function from returning if data on the stack has been corrupted.
(d) Prevent buffer overflow in stack-allocated variables.

(B: 15)

Question 17

• ROP was designed to bypass no-execute stacks
– It does not matter if the stack is non-executable because no code is

injected into the stack

• Stack canaries – detect corruption of stack data

• ASLR – make it difficult to inject a valid return address

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 23

What technique is ineffective in preventing Return Oriented
Programming (ROP) attacks?
(a) Stack canaries.
(b) Data execution prevention.
(c) Address space layout randomization.
(d) All of the above.

(B: 16)

Question 18

• When users are given the ability to specify the format string,
they can insert directives to dump an arbitrary amount of
data from the stack or change a value (%n)

• (b, c): parameters are under control of the programmer, not
the user

• Possible with sprintf, but output is usually to an output
stream

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 24

Format string vulnerabilities arise primarily because:
(a) User input is used as the format specifier.
(b) Invalid parameter values are specified.
(c) More parameters are supplied than the format expects.
(d) Assumptions are made on the size of the output buffer.

(B: 17)

Question 19

The problem is user-supplied query data rather than whether
it fits into the buffer

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 25

SQL injection attacks cannot be avoided by:
(a) Not using user input as part of a query or command.
(b) Escaping all special characters in the input.
(c) Ensuring the input buffer is sufficiently large to hold the entire query.
(d) Validating the syntax of the input.

(B: 18)

Part 4: Containment

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 26

Question 20

(a, b) apply to chroot as well.

(d) They do not support resource limits

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 27

FreeBSD Jails enhance chroot by::
(a) Allowing multiple applications to share the same jail.
(b) Limiting a jailed application's visible file system to a subtree.
(c) Restricting the operations allowable to root (admin) within the jail.
(d) Controlling the system resources (memory, disk) that a jailed process can use.

(B: 25)

Question 21

Control groups restrict system resources

Capabilities restrict what a user can do as root

Namespaces provide isolated name spaces

Chroot jails are a limited form of namespace that limit what
part of the file system you see

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 28

Linux namespaces do not provide the ability to:
(a) Isolate user IDs.
(b) Restrict access to system calls.
(c) Create per-process network stacks.
(d) Use per-process file system mount points..

(B: 20)

Question 22

Seccomp-BPF (Berkeley Packet Filter) is a sandboxing kernel extension
that allows filtering of system calls and their parameters

– Allow/disallow calls
– Allow/disallow access to specific files, network connections, signals

• (a) They are not containers (which generally provide full isolation)

• (b) This is possible via filtering but is a specific example

• (c) They filter calls regardless of whether a process runs as root or not

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 29

Linux Seccomp-BPF relies on:
(a) Using containers to isolate processes.
(b) Restricting a process' access to only a subtree of the file system space.
(c) Restrictions on what a process can do when it runs as root.
(d) Kernel-based restrictions on system calls and file access.

(B: 21)

Question 23

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 30

The Janus sandbox:
(a) Uses Linux namespaces for process isolation.
(b) Provides two levels of sandboxing for greater security: user-level and kernel-

level.
(c) Uses a user-level process to determine if specific system calls should be

allowed.
(d) Validates the operations of a program before it is run to eliminate run-time

checks.

(B: 22)

Kernel hooks at the system call interface provide callbacks to
a user-level process that approves/rejects the call

Question 24

Control groups restrict system resources

Capabilities restrict what a user can do as root

Namespaces provide isolated name spaces

Chroot jails are a limited form of namespace that limit what
part of the file system you see

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 31

Linux capabilities:
(a) Restrict what a program can do even if it runs with root privileges.
(b) Restrict the system calls a program can call even if it is not running with root

privileges.
(c) Allow parts of the file system to be hidden from an application.
(d) Place limits on the amount of system resources (disk space, network) that a

process can consume..

(B: 23)

Question 25

December 10, 2019 CS 419 © 2019 Paul Krzyzanowski 32

Unlike containers, virtual machines (VMs) can offer applications:
(a) Separate operating systems.
(b) Isolated namespaces.
(c) Simplified packaging of an application and all its dependencies.
(d) Shared network interfaces.

(B: 24)

A VM provides the abstraction of the system hardware (virtual
machine) and requires an operating system per VM.

The end

33December 10, 2019 CS 419 © 2019 Paul Krzyzanowski

