CS 419: Computer Security

10/28/19

Computer Security
02. Access Control

Paul Krzyzanowski
Rutgers University

Fall 2019

-

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

Protection is essential to security

Protection

— The mechanism that provides and enforces controlled access of
resources to processes (=users=subjects)

— A protection mechanism enforces security policies

Includes:
— User accounts & user authentication
— User privileges: access rights

* File protection
— Resource scheduling & allocation

« Thread priorities, memory pages
— Quotas (sometimes)

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

Co-located resources

« Earliest computers
— Single-user batch processing — no shared resources
— No need for access control — access control was physical

« Later ... shared storage & timesharing systems
— Multiple users share the same computer
— User accounts & access control important

 Evenlater ... PCs
— Back to single-user systems
— ... but software is less trusted

 Now: networked PCs + mobile devices + loT devices + ...
— Shared access: cloud computing, file servers, university systems
— Program isolation on servers
— Need to enforce access control

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski

Access control

« Ensure that authorized users can do what they are
permitted to do ... and no more

* Real world
— Keys, badges, guards, policies

» Computer world
— Hardware
— Operating systems
— Web servers, databases & other multi-access software
— Policies

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski

OS controls access to resources

- CPU

* Memory

* Files & devices
* Network

.

October 28, 2018 CS 419 ©2018-2019 Paul Krzyzanowski

Fundamental Mechanisms

-

* Protect the operating system from applications
* Protect applications from each other

* Allow the OS to stay in control

The OS and hardware are the
fundamental parts of the Trusted Computing Base (TCB)

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski

5

© 2019 Paul Krzyzanowski

6

CS 419: Computer Security 10/28/19

s - A e N
Hardware timer Processes
* OS kernel requests timer interrupts Timer interrupts ensure OS can examine processes while
— One of several timer devices: they are running

« Programmable Interval Timer (PIT) 0S Process Scheduler

« HPET (High Precision Event Timer) - . S
) — Decides whether a process had enough CPU time and it is time for
« or APIC timer (one per CPU) another process to run

— Most current Intel Linux systems use APIC — Avoid starvation: ensure all processes will get a chance to run
 This would be an availability attack
— Prioritize threads

Ensures that the OS can always regain control + Based on user, user-defined priorities, interactivity, deadlines, “fairess”
+ One process should not adversely affect others

* Applications cannot disable this

- J - J
Octover 26,2019 CS 419 020162018 P Kayzanowsi 7 Gctober 28, 2019 5 419 02016201 Paul Keayzanowsia s
7 8
(i h (. N
Memory Management Unit Page translation
All modern CPUs have a Memory Management Unit (MMU) CLLT LT DT T T T T T T T e
+ OS provides each process with virtual memory \ ;) ; J
— Gives each process the illusion that it has the entire address space Page number, p Displacement (offset), d
— One process cannot see another process’ address space £ = page_table [pl
— Enforce access rights
« Read-only
+ Read-write f = page_table[p]
« Execute
Logical f Physical
address f address
f
One per process f
sits in the kernel f
f n
L) L Page table f Physical memory)
Octover 28,2019 €S 419 020162018 Paul Kzyzanowsd 0 Gcober 28, 2019 5419 020182019 Paul Kezyzanowsia 10
9 10
(. . . 1 e 1
Logical vs. physical views of memory User & kernel mode
Kernel mode = privileged, system, or supervisor mode
Frame # — Access restricted regions of memory
7 — Modify the memory management unit (page tables)
Page # 6 — Set timers
page 3 — Define interrupt vectors
Page 3 Thotmapped O - Halt the processor
page 2 4 - Etc.
page 1 3 . .
J / « Getting into kernel mode
page 0 2 — Trap: explicit instruction
. 1 « Intel architecture: /NT instruction (interrupt)
Logical Memory Page Table 0 + ARM architecture: SW/ instruction (software interrupt)
) — Violation
Physical Memory — Hardware interrupt (e.g., receipt of network data or timer)
- J N J
Getober 28,2018 5419 ©2016.2016 P Kizyzanowsid T ciober 28, 2019 541902018 2018 Paul Kezyzanowsid =
11 12

© 2019 Paul Krzyzanowski 2

CS 419: Computer Security

s

Protection Rings

-

« All modern operating systems support two modes of operation:
user & kernel

« Multics defined a ring structure with 6 different privilege levels
— Each ring is protected from higher numbered rings
— Special call (call gates) to cross rings: jump to predefined locations
— Most of OS did not run in ring 0

« Intel x86, IA-32, and I1A-64 support 4 rings

« Today’s OSes only use
— Ring 0: kernel
— Ring 3: user

Note: hypervisors (virtual machine
monitors) run at a 3 privilege level
— In many systems, this is ring -1 for the
hypervisor, 0 for the kernel and 3 for user programs

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski 13

13

User authentication

.

Must be done before we can do access control

« Establish user identity — determine the subject
— Operating system privileges are granted based on user identity

Steps
1. Get user credentials (e.g., name, password)
2. Authenticate user by validating the credentials
3. Access control: grant further access based on user ID

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 18

18

Domains of protection

» Subjects (users, processes) interact with objects

— Objects include:
hardware (CPU, memory, I/O devices)
software: files, processes, semaphores, messages, signals

« Aprocess should be allowed to access only objects that it
is authorized to access
— A process operates in a protection domain

— Protection domain defines the objects the process may access and
how it may access them

October 28, 2018 CS 419 ©2018-2019 Paul Krzyzanowski 20

10/28/19

20

© 2019 Paul Krzyzanowski

(7
Subjects and Objects
« Subject: the thing that needs to access resources
— Typically the user, also called the principal
» Object: the resource the subject may access
— Typically the file
» Access control
— Define what operations subjects can perform on objects
- J
Gctober 28, 2019 5 419 020162019 Paul Kezyzanowsia ks
17
e N
Domains of Protection
. J
Gctober 28, 2019 5419020182019 Paul Kezyzanowsia 10
19
r . . 0
Modeling Protection: Access Control Matrix
Rows: domains (subjects or groups of subjects)
Columns: objects
Each entry represents an access right of a domain on an object
Objects
Fo F1 Printer
<
ES) Do read read-write print
3
‘t'; § D1 | read-write- read
O i<} execute
S 5[ol e
“ 2 execute
g Ds read print
© Ds print
An Access Control Matrix is the primary abstraction for protection in computer security
cober 28, 2019 541902018 201 Paul Kezyzanowsid 2
21

CS 419: Computer Security

We may need some more controls

» Domain transfers
— Allow a process to run under another domain’s permissions
— Why?
« Log a user in — how would you run the first user’s process?
» Copy rights
— Allow a user to grant certain access rights for an object
» Owner rights

— Identify a subject as the owner of an object
— Can change access rights on that object for any domain

» Domain control
— A process running in one domain can change any access rights for
another domain

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski 2

(A\

- J

22

10/28/19

Access Control Matrix: Domain Transfers

Switching from one domain to another is a configurable policy

A process in Do can switch to
running in domain D1

objects
Fo F1 Printer | Do D1 2 Ds Das
< - -
S | Do| read read- print — | switch | switch
i) write
o2 d d
23 D;| rea rea -
3 S write-
.§-"5 execute
@ 2 | po| read- switch -
'E execute
S | Ds read print
bS]
Da print
- J
October 25, 2019 65419 ©2018-2019 Paul Krzyzanowski)
(R

Access Matrix: Object Owner

Owner: allow new rights to be added or removed
— An object may be identified as being owned by the domain
— Owner can add and remove any right in any column of the object

~
Access Control Matrix: Delegation of Access
Copy: allow delegation of rights
— Copy a specific access right on an object from one domain to
another
« Rights may specify either a copy or a transfer of rights
objects
Fo Fi | Printer [Do | Ds Dz Ds D«
I~
S
3 2 e :::fe (Il R A process executing in D1
28 e e can give a read right on
ol g — F1 to another domain
S write-
(/Z) 1%} execute
£
S | Dz2| read- swtich =
5 execute
S | ps read print
Da print
- J
Octover 28,2019 €S 419 020162018 Paul Kzyzanowsd 2
24
(. .
Access Control Matrix: Domain Control
Control: change entries in a row
— process executing in Domain i can change access rights for any
object in Domain j
objects
Fo F1 Printer | Do D1 D2 D: Da
<
kel
S | Do| read read- print — | switch | switch
P %‘ owner | write
S & | Di| read- | read = control
Q; ‘s write-
%) g execute
3 | D2| read-
E SXecute] A process executing in D1
© | Ds read | print can modify any rights in
Da Bt domain D4
- J
Getober 28,2019 5419 ©2016.2018 P Kezyzanowshd %
26

© 2019 Paul Krzyzanowski

objects
Fo F1 | Printer | Do | D1 D:

S

S | Do| read print — | switch 4 L
w2 SET A process executing in
= O 5
S 5 [Dy| read Do owns Fo, so it can
.; 5 i give a read right on Fo to
24 execute domain D3 and remove

‘T | Dz| read- swtich the execute right from D1

S execute

S| ps read print

Ds print ‘ ‘ ‘

. J
October 28,2019 5419020182019 Paul Kzyzanowsid 2
(K N

This gets messy!
« An access control matrix does not address everything we may want
» Processes execute with the rights of the user (domain)
— But sometimes they need extra privileges
+ Read configuration files
* Read/write from/to a restricted device
« Append to a queue
» We don’t want the user do be able to access these objects
— So we need a 3-D access control matrix: (subjects, objects, processes)
* This gets messy!
— One solution is to give an executable file a temporary domain transfer
+ Assumption is this is a trusted application that can access these resources
— When run, it assumes the privileges of another domain
& J
ctober 26,2019 5419620182019 Paut Kzyzanowsk 27

CS 419: Computer Security

Implementing an access matrix

A single table to store an access matrix is impractical
* Big size: # domains (users) x # objects (files)
+ Objects may come and go frequently

* Lookup needs to be efficient

-

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski 2

28

f Example: Limited ACLs in POSIX systems

~

Problem: an ACL takes up a varying amount of space
— Won't fit in a fixed-size inode

UNIX Compromise:
— Afile defines access rights for three domains:
« the owner, the group, and everyone else
— Permissions
« Read, write, execute, directory search
« Set user ID on execution
« Set group ID on execution
— Default permissions set by the umask system call
— chown system call changes the object’'s owner
— chgrp system call changes the object’s owner
— chmod system call changes the object’s permissions

-

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 20

30

Implementing an access matrix

Capability List

— Associate a row of the table with each domain

objects
Fo F1 F2 Fs Fs Printer

<

ES) Do read read- read- read print

8 owner write___execute
2 Q[D: read-write- read read- read write]
< S| execute execute
3 o [Ds read- <ad-

£ execute execute”

©

s I'Ds read read- print

< execute

Ds read-

Capability list for domain D1

execute

October 28, 2018 CS 419 ©2018-2019 Paul Krzyzanowski 2

10/28/19

e 7
Implementing an access matrix
Access Control List
— Associate a column of the table with each object
)\ objects
Fo F1 F2 Fs Fs Printer
-§ Do read read- read- read print
o
o 2 owner T - ACL for file Fo
g 9 D; |read-write-| read read- read writ]
o S execute execute
Q'a N
3 o D2 read- read- write
» 2 execute execute
(EB Ds read read- print
L execute
Da read- write print
execute
N\ — J
Gctober 28, 2019 5 419 020162019 Paul Kezyzanowsia »
(i R
Example: Full ACLs in POSIX systems
What if we really want a full ACL?
« Extended attributes: stored outside of the inode
— Hold an ACL
— And other name:value attributes
» Enumerated list of permissions on users and groups
— Operations on all objects:
« delete, readattr, writeattr, readextattr, writeextattr, readsecurity,
writesecurity, chown
— Operations on directories
« list, search, add_file, add_subdirectory, delete_child
— Operations on files
* read, write, append, execute
— Inheritance controls
N J
Gcober 28, 2019 5419 020182019 Paul Kezyzanowsia &
31

[Capability Lists

« List of objects together with the operations allowed on the
objects

Each item in the list is a capability: the operations allowed
on a specific object

— Also called a ticket called or access token

A process presents the capability along with a request
— Possessing the capability means that access is allowed

The capability is a protected object
— A process cannot modify its capability list

- J

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski 33

32

© 2019 Paul Krzyzanowski

33

CS 419: Computer Security

10/28/19

Capability Lists

« Advantages
— Run-time checking is more efficient
— Delegating rights is easy

« Disadvantages

— Changing a file’s permissions is hard
— Hard to find all users that have access to a resource

« Not used in mainstream systems in place of ACLs
— Limited implementations: Cambridge CAP, IBM AS/400

« BUT

Qauth and Kerberos (sort of)
— Access Tokens — used in Microsoft systems, including Azure

— Used for single sign-on services and other authorization services such as

« Identifies user’s identity & rights associated with user’s accounts (not objects!)

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

POSIX file permissions

-

October 28, 2019 CS 419 ©2018-2019 Paul Kizyzanowski 36

34

File permissions

* Access isn't all or nothing
+ Objects can have different access permissions

UNIX permission model
— Access permissions: read (r), write (w), execute (x)
« All independently set
— Each file has an owner

E File A E File D
w w
E File B E File E
r r
' File C File F
wee =R =

-

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski

37

~
Permission checking

if you are the owner of the file
Qnly owner permissions apply

if you are part of a group the file belongs to
Qnly group permissions apply

else “other” permissions apply

| cannot read this file even if I'm in the /ocalaccounts group:

$ 1ls -1 testfile

.

----rw---- 1 paul localaccounts 6 Jan 30 10:37 testfile

October 28, 2018 CS 419 ©2018-2019 Paul Krzyzanowski

39

© 2019 Paul Krzyzanowski

36

f How do you share files?

* Groups & everyone else (other)

* Auser has one user ID but may belong to multiple groups
— One current default group ID for new objects
— Multiple groups

« Other = all others (users who are not the owner or group members)

« File access permissions are expressed as:
IWXIWXIwX

R

er
group
th
$ 1s -1 /bin/ls other

-rwxr-xr-x 1 root wheel 38624 Dec 10 04:04 /bin/ls

-

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 38

38

~
Execute permission

« Distinct from read

* You may have execute-only access
— This takes away your right to copy the file
... orinspect it
— But the OS can load it & run it

-

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski 40

40

CS 419: Computer Security

10/28/19

=
Windows

* Windows has users & groups but more permissions
— Read, write, execute
— Also: delete, change permission, change ownership

« Users & resources can be partitioned into groups & domains
— Each domain can have its own administrator
* HR can manage users
« Individual departments can manage printers

« Trust can be inherited in one or both directions
— Department resources domains may trust the user domain
— User domain may not trust department resources domains

-

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

What about directories?

« Directories are just files that map names to inode numbers

» Permissions have special meaning
— Write = permission to create a file in the directory
— Read = permission to list the contents of a directory
— Execute = permission to search through the directory

« If you have write access to the directory of a file, you can delete the file
— Even if you don’t have write access to the file itself

« If you don’t have write access to the directory
— You cannot create or delete afile ... even if you have write access to it

October 28, 2019 CS 419 ©2018-2019 Paul Kizyzanowski 42

41

—~
Where are user IDs and group IDs stored?

On Linux, user ID information in the password file, /etc/passwd
— (which does not contain passwords anymore!)

root:x:0:0:System Administrator:/root:/bin/sh

— User name

— (password)

— User ID

— Default group ID
— User’s full name
— Home directory
— Login shell

« Group IDs are stored /etc/group
— wheel:x:0:root
— certusers:x:29:root,_jabber,_postfix,_cyrus,_calendar,_dovecot

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski

43

f Changing permissions

Or the old-fashioned way — specify an octal bitmask

« Set permissions
S chmod 754 testfile
$ 1s -1 testfile

7 5 4
111 101 100
rwx r-x r--
user group other

-

-rwxr-xr-- 1 paul localaccounts 6 Jan 30 10:37 testfile

October 28, 2018 ©S 418 ©2018-2019 Paul Krzyzanowski

45

© 2019 Paul Krzyzanowski

42

(R
Changing permissions
The chmod command user = read, write, execute
group = read, execute
other = -none-
* Set permissions 7
$ chmod u=rwx,g=rx,o= testfile
$ 1ls -1 testfile
-rwxr-x--- 1 paul localaccounts 6 Jan 30 10:37 testfile
« Add permissions
$ chmod go+w testfile
$ 1ls -1 testfile
-rwxrwx-w- 1 paul localaccounts 6 Jan 30 10:37 testfile
* Remove permissions
$ chmod o-w testfile
$ 1ls -1 testfile
-r-xrwx--- 1 paul localaccounts 6 Jan 30 10:37 testfile
. J
October 28, 2019 5419 ©2018-2019 Paul Krzyzanowski 4

44

~
File permissions are stored in the file's inode

Owner id, group id, permissions,
access/creation/modification times

Data block Data block
Direct block

Direct block

=

File info

12 Direct flock pointers

Single Indirect blogk

Indirect block f Data block
Double indirect block

Triple indirect block # entries =
L inode block size/(4 bytes per block pointer)

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski 48

46

CS 419: Computer Security

10/28/19

Sometimes groups aren’t enough

Access Control Lists (ACL)
* Explicit list of permissions for users

+ Supported by most operating systems
— Windows = XP
— macOS 2 10.4
— Linux 2 ext3 file system + acl package

[ACLs and ACEs

Access Control List (ACL) = list of Access Control Entries (ACE)

» ACE identifies a user or group & permissions
— Files: read, write, execute, append
— Directories:
list, search, read attributes, add file, add sub-directory, delete contents

* “Inheritance” permission
— directory's file contents can inherit one set of ACLs
— Directories inherit another set of ACLs

» Wildcards are often supported

» See chmod on macOS or setfac/ on Linux

-

-
Oclober 28,2019 S 419.©2018-2019 Paut Kizyzanowski a7
-~
Example ACL
pxk.* rwx
419-ta.* rwx
*.faculty rx
* . * X
¢ Users pxk and 419-ta have read-write-execute access
« Users in the faculty group have read-execute access
« Others only have execute access
-
Oclober 28,2019 €5 419 ©2018-2019 Paul Krzyzanowski a9
(. .
Search order: ACLs + permissions
In systems like Linux that integrate ACLs with 9-bit permissions:
1. If you are the owner of the file, Qaly owner permissions apply
2. If you are part of a group the file belongs to, only group permissions
apply
3. Else search through the ACL entries to find an applicable entry
4. Else other permissions apply
-
Gclober 28,2018 €5 419.©2018.2019 Paul Kizyzanowskd 51

© 2019 Paul Krzyzanowski

October 28, 2019 CS 419 ©2018-2019 Paul Kizyzanowski a8

48

=
Search order

ACEs are evaluated in the order they are entered into the ACL

In this case, | don’t have write access to the file:
419-ta.* rwx
*.faculty rx <+ This is me +— This appears first & has priority
pxk.* rwx <+ Sois this

* % X «— Sois this

N

October 28,2019 CS 419 ©2018-2019 Paul Krzyzanowski

50

~
Initial file permissions

On Unix-derived systems (Linux, macOS, Android, *BSD):

« umask = set of permissions applications cannot set on files
— Bitmask (octal) of bits that will be turned off

« To disallow read-write-execute for everyone but the owner

— umask = 000 111 111 =077

+ Default umask on macOS & Ubuntu is 022
— 022=000010010 = -— -w- -w-
— This takes away write access from group & other
— By default new files are readable by all and writable only by the owner

See the umask command and umask system call man pages

-

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski 52

52

CS 419: Computer Security 10/28/19

(A\ (7
Watch out for race conditions! Giving files away
« Suppose we create a file readable by all: rwxr--r-- * You can change the owner of a file
IwX, r, r chown alice testfile
+ But then we change the permissions to rwx-—----— — Changes the file’s owner to alice
TWR, =y = + You can change the group of a file too
GOOD BAD chgrp accounting testfile
Create a file: rwx-r--r- Create a file: rwx-r--r- ~ Changes the file's group to accounting
Change permissions to rwx------ [Attacker opens the file for reading]
[Attacker opens the file for reading] Change permissions to rwx------ .
Do your work Do your work ... but you have to be the owner to do either
« We don’t know when the attacker will hit
« Once the attacker has the file open, changing permissions does not
take access away
— Access rights are only checked when the file is opened!
- J - J
October 28,2019 S 419.©2018-2019 Paul Kzyzanowski 5 October 26,2019 5419020182019 Paul Kzyzanowskd s
53 54
(i R (. ; N
Changing user & group IDs Changing user ID temporarily
* root = uid 0 = super user * What if some files need special access?
— Access to everything — Aprint program needs to access the printer queue
— Adatabase needs to access its underlying files
* How do you log in?
i y 9 . « An executable file normally runs under the user’s ID
— login program runs as uid=0
— Gets your credentials « A special permission bit, the “setuid bit” changes this
— Authenticates you — Executable files with the setuid bit
_ Then: will run with the effective UID set to the owner of the file
: — Directories with the setuid bit set
chdir (home directory) . will force all files and sub-directories created in them to be owned by the
. — ! directory owner
setgid(group_id);
setuid(user id); » Same thing with groups — the setgid permission bit
execve(user shell, ..); — Executable files with this bit set will run with effective gid set to the gid of
- the file.
- J . J
Oclober 28,2019 €S 419©2018-2019 Paut Kizyzanowsid 5 October 28,2019 5419020182019 Paul Kzyzanowsid s
(. . . . \ r . . . \
Principle of Least Privilege Privilege Separation
At each abstraction layer, every element (user, process, function) should Divide a program into multiple parts: high & low privilege components
be able to access only the resources necessary to perform its task
Example on POSIX systems
« Even if an element is compromised, the scope of damage is limited - Eéclh process has a real and effective user I_D
— Privileges are evaluated based on the effective user ID
. + Normally, uid == euid
. der:
Consider . § — An executable file may be tagged with a setuid bit
— Good: You cannot kill another user’s process . chmod +sx filename
— Good: You cannot open the /etc/hosts file for writing . When run: uid = user's ID
— Good: Private member functions & local variables in functions limit scope euid = file owner’s ID (without setuid, runs with user’s ID)
— Separating a program
— Violation: a compromised print daemon allows someone to add users 1. Run a setuid program
— Violation: a process can write a file even though there is no need to 2. Create a communication link to self (pipe, socket, shared memory)
— Violation: admin privileges set by default for any user account 3. fork i o
4. One of the processes will call seteuid(getuid()) to lower its privilege
Least privilege is often difficult to define & enforce P . Low High
P 9 User interaction privilege part privilege part
- J & J
Gclober 28,2018 €5 419.©2018.2019 Paul Kizyzanowskd 57 ctober 26,2019 5419620182019 Paut Kzyzanowsk 8

57 58

© 2019 Paul Krzyzanowski 9

CS 419: Computer Security

=
Setuid can get you into trouble!

* Most setuid programs ran as root

* If they were compromised, the whole system was
compromised

* This was one of the best attack vectors for
Unix/Solaris/Linux systems

- J

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

59

What's wrong with ACLs?

« Users are in control

chmod o+rw secret.docx
— Now everyone can read and modify secret .docx

« Doesn’t work well in environments where management needs to
define access permissions

« No ability to give time-based or location-based permissions

« Access is associated with objects
— Hard to turn off access for a subject - except by locking the user
— Otherwise have to go through each object and remove user from the ACL

« ... but you're still stuck with default access permissions and wondering how other
users will set access rights in the future

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 61

10/28/19

Other Access Control Models

-

October 28,2019 CS 419 ©2018-2019 Paul Kizyzanowski

60

(Access Control Models: MAC vs. DAC

DAC: Discretionary Access Control
— A subject (domain) can pass information onto any other subject
— In some cases, access rights may be transferred
e.g., chown
— Users are in charge of access permissions
— Most systems use this

MAC: Mandatory Access Control
— Policy is centrally controlled
— Users cannot override the policy
— Administrators are in charge of access permissions

N

October 28, 2019 ©S419©2018-2019 Paul Krzyzanowski

61

[MLS: Multi-Level Security Systems

Handle multiple levels of classified data in one system

Bell-LaPadula Model
— Designed for the military
— Based on U.S. military classification levels

Motivation:
Preserve confidentiality. If
one program gets hacked,

it will not be able to access
data at higher levels of
classification

Top Secret

S=ciet If you have confidential clearance:
— You can access confidential &
<] unclassified data
— You can create confidential, secret, and
top-secret data

October 28, 2018 ©S 418 ©2018-2019 Paul Krzyzanowski 63

62

Bell-LaPadula Base OS Model

Designed to address security concerns in the Air Force

» Reference Monitor
— Component of the OS that would manage access control decisions

+ Trusted Computing Base (TCB)
— Set of components whose correct functioning is sufficient to ensure the
security policy is being enforced
— If the TCB fails, the security policy could be breached

-

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski

63

© 2019 Paul Krzyzanowski

64

10

CS 419: Computer Security

10/28/19

Bell-LaPadula (BLP) Access Model

« Objects are classified into a hierarchy of sensitivity levels
— Unclassified, Confidential, Secret, Top Secret

« Each user is assigned a clearance

« “No read up; no write down”
— Cannot read from a higher clearance level

Top Secret

— Cannot write to a lower clearance level S
: :
aneas " k=]
« Assumes vulnerabilities exist g L
e s
and staff may be careless) §
2
« Need a “trusted subject” to declassify files
Confidential
Confider

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

[Bell-LaPadula (BLP) Model Properties

Every subject & object gets a security label (e.g., confidential, secret)

1. The Simple Security Property — mandatory rules for reading

— No Read Up (NRU)
A subject cannot read from a higher security level

2. *-Property (star-property) — mandatory rules for writing

— No Write Down (NWD)
A subject cannot write to a lower security level

3. The Discretionary Security Property
— Access control matrix can be used for DAC after MAC is enforced

-

October 28, 2019 CS 419 ©2018-2019 Paul Kizyzanowski 66

65

BLP Tranquility Principle

< Tranquility principle: security labels never change during operation

« Weak tranquility principle: labels may change but in a way that
does not violate security policy
— Implements the principle of least privilege
— If owner has Top Secret clearance, a program will run at the lowest
clearance level and get upgraded only when it needs to access data at a
higher level

« BLP gets complicated
— Changes in security policy in real time can result in access being revoked
— even in the middle of an operation

« Difficult to use BLP in practice
— Networking, servers, collaborative work

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 67

67

Type Enforcement Model (TE)

-

Secondary Access Control Matrix that gives MAC priority over DAC

« Domains and Types
— Assigns subjects to domains
— Assigns objects to types
— Matrix defines permitted domain-domain and domain-type interactions

« SE Linux = Security-Enhanced Linux
— Both subjects and objects are types
— Matrix defines allowed type pairs
— Each process has a security ID, user ID, and group ID
— Security modules may be added with rules that operate on SIDs

October 28, 2018 CS 419 ©2018-2019 Paul Krzyzanowski 69

69

© 2019 Paul Krzyzanowski

66

-
No Write Down?
If you can write up, can a Confidential user overwrite
Secret data?
—That’s an attack on availability
« Usually: allow overwriting files when the process’ security
labels match exactly
N

68

-
Role-Based Access Control (RBAC)
* More general than Bell-LaPadula
« Designed to allow enforcement of both MAC & DAC properties
« Access decisions do not depend on user IDs but on roles
— Administrators define roles for various job functions
— Each role contains permissions to perform certain operations
— Users are assigned one or more roles
* Roles are job functions, not permissions
— “update customer information” is a role
— “write to the database” is not a role
« Enables fine-grained access
— Roles may be defined in application specific ways (e.g., “move funds”)
&
ctober 26,2019 5 419620182019 Paut Kzyzanowskd o

70

11

CS 419: Computer Security 10/28/19

(RBAC Rules Aren’t roles == groups?

« Role assignment » Group = collection of users
— A subject can execute an operation only if the subject has been assigned a — Does not enable management of user-permission relationships
role

» Role = collection of permissions
Role authorization — Permissions can be associated with users and groups
— Asubject’s active role must be authorized for that subject

— Ensures that users can only take on roles for which they have been * Roles have a session
authorized — Users can activate a role

Transaction authorization

— Asubject can execute a transaction only if the transaction is authorized + In SE Linux, RBAC is built on top of TE (type enforcement)
through the subject’s role membership — Users mapped to roles at login time

— Roles are authorized for domains

— Domains are given permissions to types
RBAC is essential to database security

- J (. J

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski 7 October 28, 2019 CS 419 ©2018-2019 Paul Kizyzanowski 72

71 72

e 7 e N

RBAC Benefits Biba Integrity Model
« RBAC is hugely popular in large companies « Bell-LaPadula was designed to address confidentiality

— Driven by regulations such as HIPAA and Sarbanes-Oxley o . . .

« Biba is designed to ensure data inteqrity Motivation:
« Makes it easy to manage movement of employees) o N Preserve data integrity.
Confidentiality = constraints on who can If one program gets
« Makes it easy to manage “separation of duty” requirements read data hacked, it will not be able
to modify data at higher

+ Can manage complex relationships Integrity = constraints on who can levels of integrity

— Doctor X wants to view records of Patient Y write data

— Doctor needs roles of “Doctor” and “attending doctor with respect to Y”

- R . . . Biba model properties
— Roles allow specification of only if, not if or if and only if relations

— Simple Security Property = A subject cannot read an object from a lower integrity level
+« RBAC can simulate MAC and DAC Subjects may not be corrupted by objects from a lower level

(no read down)
— Star property = A subject cannot write to an object at a higher integrity level

Subjects may not corrupt objects at a higher level than the subject

(no write up)

See http://csrc.nist.gov/groups/SNS/rbac/faq.html — Aprocess cannot request higher access

. J - J

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 73 October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski 74

73 74

e 7 (1
An example of where Biba is useful Biba Problems
The Biba model fits many real-world applications « Like Bell-LaPadula, it doesn’t always fit the real world
« ECG device * Microsoft offers Mandatory Integrity Control (Biba model)
— Runs a calibration process, which stores a calibration file — User’s access token gets assigned an integrity level
— Runs user processes, that run ECG tests — File objects are marked with an integrity level:
- System: Critical files
« Normal users cannot write the calibration file but can read it ~ Medium: Regular users and objects
— Can read data at higher levels (calibration = higher data level) - High: Elevated users
o o - Low: Internet Explorer, Adobe Reader, etc
« User process can read calibration data — but cannot modify it) .) . B
» New process gets the minimum of the user integrity level and the file integrity level
« Calibration process can write data to lower levels — Default policy = NoWriteUp
« Calibration process can write to the user process — but cannot read user data » Goal: Anything downloaded with IE can read files but cannot write them — limit damage
done by malware
« Works well when you need to get data from a trusted device « Trusted subjects would have to overwrite the security model
— Users get used to the pop-up dialog boxes asking for permission!
— Microsoft dropped the NoReadDown restriction
« Did not end up protecting the system from users
- J - J
October 26, 2019 €S 419.© 2018-2019 Paul Krzyzanowski 7 October 26,2019 ©S 419.©2018-2019 Paul Krzyzanowski 7

75 76

© 2019 Paul Krzyzanowski 12

CS 419: Computer Security 10/28/19

(A\ (7
Access Models: Summary Security Risks
< Discretionary Access Control » Even if the mechanisms work perfectly, policies may fail
— Works great when it's ok to put the user is in charge — DAC: you're trusting the users or a sysadmin to set everything up correctly
- MAC
+ Mandatory Access Control + User or role assignment may be incorrect
— Needed when an organization needs to define policies + Collaboration needs to be considered
— Bell-LaPadula (BLP) + Models like Bell-LaPadula and Biba require overrides to function well
+ Oldest & most widely studied model — synonymous with MLS .
- Designed to protect confidentiality + Corruption
« Doesn't work well outside of the DoD ... and is clunky within the DoD — Attacks may change the definition of roles or the mapping of users to roles
— Type Enforcement (TE) — This is an attack on the Trusted Computing Base
+ Simple MAC model to override DAC
— Role-Based Access Control (RBAC) * Users o »
« Identifies roles and assigns users to roles — Most malware is installed willingly
« Made popular by business needs — Users thus give it privileges of — at least — normal applications
« Most actively used MAC model — As far as the operating system is concerned, it is enforcing defined policy
— Biba Model
« Opposite of Bell-LaPadula: concerned with integrity, not confidentiality
- J - J
Octover 26, 2019 CS 419 020162018 P Keyzanowsd 7 Gctober 28, 2019 5 419 020162019 Paul Kezyzanowsia 7
(. . M e N
Security Risks Program-Based Control
« Even administrators should not be able to read all files « Alot of access decisions must be handled by programs, not the OS
— Many security systems enforce this — Database users and the access each user has within the database
— Edward Snowden should not have been able to copy sensitive documents — Microsoft Exchange & Active Directory administrators
onto a thumb drive ... even if NSA policy banned thumb drives — Mail readers

— Web services: users are unlikely to have accounts on the system

— Movement of data over a network
+ How do you send access permissions to another system?

General assumption has been that programs are trusted and run with
the user’s privileges

« Digital rights management = requires trusted players

Worked well for system programs

Do you trust the game you installed on your phone?
* Programs may implement RBAC (e.g., Exchange) or other mechanisms

Need to consider better application isolation — But the OS does not help
— Android turned Linux into a single-user system
— User IDs are used on a per-application bases

N J \ J
79 80
e N e ; - ~
Multi-Level Security
« Subjects and objects have assigned
classification labels To,, Secret
ol §
: , + Rules control what you can read or write 2 3
Multi-Lateral Security § H
:
Bell-LaPadula
N J \ J

81 82

© 2019 Paul Krzyzanowski 13

CS 419: Computer Security

10/28/19

=
Multilateral Security

— Usually applied to the top-secret level

— You will be granted access to specific compartments
« Formalized description of “need to know”

Confidential

-

Each security level may be divided into compartments

— TS/SCI = Top-Secret / Special Compartmentalized Intelligence

Top Secret |::> TSIWILEY TSIPEPE TSITWEETY

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski

=
Compartmentalization

» Subjects & objects get security labels (compartments) in addition to
security classification labels

« If you do not have clearance for the label, you cannot access the data
— {TOP SECRET, UFO} cannot be read by someone with {TOP SECRET}
clearance
— Neither can {SECRET, UFO}

- J

October 28,2019 CS 419 ©2018-2019 Paul Krzyzanowski

83

(Lattice Model

Graph representing access rights of different labels & levels

{TOP SECRET, UFO, ELVIS}

{TOP SECRET, UFO}

{CLASSIFIED}

g {UNCLASSIFIED}

{TOP SECRET, ELVIS}

October 28, 2019 €S 419 ©2018-2019 Paul Krzyzanowski

85

[Multi-level & Lattice models

.

Do not help downgrading data
— Need special roles to re-label or declassify data

.

Handing searches across compartments is difficult
— No single entity will likely have rights to everything

-

October 28, 2018 ©S 418 ©2018-2019 Paul Krzyzanowski

87

© 2019 Paul Krzyzanowski

84

(Lattice model

« Data from two compartments = third compartment
— Creates more isolation
— Does not help with sharing

* One option
— Allow multiple compartments at a lower level to be readable by a higher level

{TOP SECRET}

N

October 28,2019 ©S419©2018-2019 Paul Krzyzanowski Ed

86

(Chinese Wall model

Chinese wall = rules designed to prevent conflicts of interest
— Common in financial industry
« E.g., separate corporate advisory & brokerage groups
— Also in law firms and advertising agencies

+ Separation of duty
— Auser can perform transaction A or B but not both

« Three layers of abstraction
— Objects: files that contain resources about one company
— Company groups = set of files relating to one company
— Conflict classes: groups of competing company groups:
{ Coca-cola, Pepsi }
{ American Airlines, United, Delta, Alaska Air }

-

October 28,2019 €S 419 ©2018-2019 Paul Krzyzanowski 88

88

14

CS 419: Computer Security

10/28/19

s

Chinese Wall model

-

Basic rule
A subject can access objects from a company as long as it never accessed
objects from competing companies.

Simple Security property
— Asubject s can be granted access to an object o only if the object
« Isin the same company aroup as objects already accessed by s
or

* o belongs to a different conflict class

*-property
— Write access is allowed only if
« Access is permitted by the simple security property
and
+ No object was read which is in a different company dataset than the one for which
write access is requested and contains unsanitized information

~ Sanitization = disguising a company's identify
~ This means that you could read data across the wall ONLY if it's anonymized

October 28, 2019 CS 419 ©2018-2019 Paul Krzyzanowski 89

-

The end

October 28, 2019

CS 419 ©2018-2019 Paul Kizyzanowski

89

© 2019 Paul Krzyzanowski

90

15

