
CS 419: Computer Security 11/28/19

© 2019 Paul Krzyzanowski 1

Computer Security
03r. Assignment 2 & Program Hijacking Review

Paul Krzyzanowski

TAs: Fan Zhang, Shuo Zhang

Rutgers University

Fall 2019

1

Question 1(a)

We don’t necessarily care what the default permissions are but need to be sure that
the file permissions are such that only the group members have read-only access
chmod u=,g=,o=rw myfile

Clears the permissions for the user and group (u, g) and sets group to read (r) &
write (w)

We can also set it explicitly by entering the bitmask: chmod 006 myfile

006 = 000 000 110 = user:rwx, group:rwx, other=rwx

11/28/19 CS 419 © 2019 Paul Krzyzanowski 2

Create a file on an iLab Linux system: echo hello >testfile

The command ls -l testfile
will list the file and its key attributes: permissions, links, owner, group, modification time, and file name.

The command cat testfile
will show you the contents of the file.

(a) What form of the chmod command would you run to change the file to read-
writable others and not the user or group? Run man chmod if you are not familiar
with the command.

2

Question 1(b, c)

Yes. On POSIX systems (Linux, UNIX, BSD, macOS, …) deleting a file just
means removing a link to the file from the directory — the same file may be
referred to by multiple names in multiple places.

When there are no more links to a file, the OS will delete the contents.

Because of this behavior, the ability to create or delete a file is determined by
the permissions of the directory the file is in rather than the file itself.

11/28/19 CS 419 © 2019 Paul Krzyzanowski 3

(b) Can you still access the file contents since you are a member of the group?

(c) Can you delete the file without changing permissions (e.g., rm -f myfile)?

No. The most specific permissions are processed first. Since you do not have
read/write access as a user, it does not matter that you are in the group that
has access.

3

Question 2

It is not practical for an operating system to store and
manage a full access control matrix. Instead, we can store
it by columns (access control lists – one per object) or by
rows (capability list – one per subject).

11/28/19 CS 419 © 2019 Paul Krzyzanowski 4

To get access control matrices to scale better, the text states that the two main
ways are “to compress the users and to compress the rights”.

(a) What is meant by “compressing the users”?

(b) What is meant by “compressing the rights”?

Use groups or roles to manage the privileges of large sets
of users simultaneously

4

Discussion: Access Control Lists
An access control matrix is a general way of representing access control
rights
– Each row represents a domain (subject) = usually a user or a group of users
– Each column represents an object = usually a file or a device

11/28/19 CS 419 © 2019 Paul Krzyzanowski 5

OBJECTS
(usually files or devices)

SU
B

JE
C

TS
do

m
ai

ns
 o

f p
ro

te
ct

io
n

(u
se

rs
 o

r g
ro

up
s)

F0 F1 Printer

D0 read read-write print

D1 read-write-
execute

read

D2 read-
execute

D3 read print

D4 print

5

Discussion: Access Control Lists
It is not practical to manage an access control matrix in an operating
system

– Often 100,000+ objects (& shared systems may have 1,000s of users)

– Many files get created and deleted throughout the day

– You’d need to run a database to manage the matrix

– OS needs something efficient:
read as few blocks as possible from the file system

ACL = access control list = one column of an access control matrix
– Stored with a file: part of metadata that contains information about the file
– Contains a set of Access Control Entries (ACEs)
– Each ACE contains

• user or group ID
• access rights for that user or group

11/28/19 CS 419 © 2019 Paul Krzyzanowski 6

6

CS 419: Computer Security 11/28/19

© 2019 Paul Krzyzanowski 2

Discussion: Access Control Lists

11/28/19 CS 419 © 2019 Paul Krzyzanowski 7

SU
BJ

EC
TS

do
m

ai
ns

 o
f p

ro
te

ct
io

n
(u

se
rs

 o
r g

ro
up

s)

F0 F1 Printer

D0 read read-write print

D1 read-write-
execute

read

D2 read-
execute

D3 read print

D4 print

ACL for F1

OBJECTS (usually files or devices)

7

Discussion: Access Control Lists
• Unix used a simplified version of an ACL

– Three sets of access rights
• Owner of the file
• Group associated with the file
• Everyone else

– Each set includes read, write, and execute permissions
• Owner: rwx, Group: rwx, Other: rwx ⇒ rwxrwxrwx = 9 bits of data!

• These simplified access rights use a fixed amount of data

• Fits into an i-node
i-node = fixed-length data structure that stores file metadata (size of file,
creation time, last modification time, last access time, owner ID, group ID)

• Full ACLs are also supported in Linux
– But accessing them requires the kernel to read extended attributes: extra

blocks from the file system

11/28/19 CS 419 © 2019 Paul Krzyzanowski 8

8

Question 3

1. Root can do anything – the administrator has access to all data

2. There is no straightforward way to implement access triples (user,
program, file)

– You cannot say that one program is allowed to access a certain file but other
programs cannot – programs run with the privileges of the user

3. Cannot express mutable state
– For example, ACLs cannot handle the case where a manager needs to be present

to authorize an operation

4. The UNIX ACL names only one user per file
– You need to resort to full ACLs to specify rights for multiple people
– Older versions of Linux/Unix allowed a process to be a member of only one group.

Later versions put a process into all the groups that the user is in but this
mechanism is still limiting.

11/28/19 CS 419 © 2019 Paul Krzyzanowski 9

What four deficiencies does the author point out with Unix ACLs?

9

Question 4a

• No process may read data from a higher level of classification:
No read up.

• If your classification level is Secret,
you can only read Secret, Confidential,
or Unclassified files – but not Top Secret

11/28/19 CS 419 © 2019 Paul Krzyzanowski 10

What is the simple security property of the Bell-LaPadula model?

Top Secret

Secret

Confidential

Unclassified

N
o

re
ad

 u
p

N
o

w
rit

e
do

w
n

Confidential cannot read Secret
Confidential cannot write Unclassified

10

Question 4b

• No process may write data to a lower level of classification:
No write down

• If your classification level is Secret,
you can only write Secret & Top Secret files

11/28/19 CS 419 © 2019 Paul Krzyzanowski 11

What is the *-property (star property) of the Bell-LaPadula model?

Top Secret

Secret

Confidential

Unclassified

N
o

re
ad

 u
p

N
o

w
rit

e
do

w
n

Confidential cannot read Secret
Confidential cannot write Unclassified

11

Question 4 Discussion

• The Bell-LaPadula model is all about confidentiality
– You cannot read data from higher clearance levels than you are
– You cannot create data that is a lower clearance level than you are

• It’s difficult for only the operating system to enforce this
For example:
– A mail application should have defined policies on whether you are

allowed to mail a file … or even send a message (a person at a top
secret level should not be able to send a message to someone with
secret clearance)

– Databases can be challenging if they hold a mix of data levels

11/28/19 CS 419 © 2019 Paul Krzyzanowski 12

12

CS 419: Computer Security 11/28/19

© 2019 Paul Krzyzanowski 3

Question 4 Discussion

• The Bell-LaPadula model is all about confidentiality
– Simple security property:

• You cannot read data from higher clearance levels than you are
– Star *-property:

• You cannot create data that is a lower clearance level than you are

• The Biba model is similar but is all about integrity
– Simple integrity property:

• You cannot read an object from a lower integrity level than you are
• Example: A process will not read a system configuration file created by

a lower-integrity-level process
– Star *-property:

• You cannot write to an object of a higher integrity level than you are
• Example: A web browser may not write a system configuration file

11/28/19 CS 419 © 2019 Paul Krzyzanowski 13

13

Assignment 3 Comments

11/28/19 CS 419 © 2019 Paul Krzyzanowski 14

14

Languages & Libraries
Languages

– You may write your assignment in Java, Python, C, or C++
– The version must already be installed on the Rutgers iLab systems

• Right now, the systems have:
– Python 2.7.5
– Java 11.0.3

– Gcc 4.8.5

• We will not download or install a different version just to compile & run your
program

Libraries
– You should not have to rely on any third-party libraries – the assignment is

nothing more than managing simple tables, lists, or collections
– If the library is already on the iLab systems, you are welcome to use it
– We will not download supporting software from github or other places

11/28/19 CS 419 © 2019 Paul Krzyzanowski 15

15

One command or six?
You need to implement six operations

1. AddUser(“user”, “password”)
2. Authenticate(“user”, “password”)
3. AddUserToGroup(“user”, “groupname”)
4. AddObjectToGroup(“objectname”, “groupname”)
5. AddAccess(“operation”, “usergroupname”, “objectgroupname”)
6. CanAccess(“operation”, “user”, “object”)

You can provide six test programs or one test program where the first
argument is the operation
Example:

java hw3 adduser paul letmein123

java adduser paul letmein123

The program process command-line arguments and must exit after
each operation

You cannot submit a program that loops, prompting the user for an operation

11/28/19 CS 419 © 2019 Paul Krzyzanowski 16

16

Documentation – Instructions

• Do not submit compiled code – just the source

• Provide CLEAR instructions on how to compile & run the
programs
– MUST be from the command line – no reliance on Eclipse or other

IDEs

• Your documentation should contain examples on how to
use each of the six operations. Example:
./addUser.py paul letmein123

./addUser.py ravi password!

./addUserToGroup.py paul admins

./addObjectToGroup this_thing objects

./addObjectToGroup another_thing objects

./addAccess delete admins objects

11/28/19 CS 419 © 2019 Paul Krzyzanowski 17

17

Testing

• Test your program – scripts help a lot

• Example
for ((i=1; i<=1000; i++)); do

./addUser user-$i password-$i

done

• Test error conditions. Your program should print
descriptive messages and exit gracefully

• Test that your instructions are correct. Start with an empty
directory and validate that you can follow your own
directions
– If possible, ask a friend to test

11/28/19 CS 419 © 2019 Paul Krzyzanowski 18

18

CS 419: Computer Security 11/28/19

© 2019 Paul Krzyzanowski 4

Code Injection Summary

11/28/19 CS 419 © 2019 Paul Krzyzanowski 19

19

Stack-based buffer overflows

• Main idea
– Put more data in a buffer than the buffer than the program expects
– The extra data will overwrite the return address on the stack
– When the function returns, it will jump to that new return address
– The attacker made the new return address be the memory location

that was written by the buffer data
– The buffer data supplied by the attacker contained machine

instructions to do whatever the attacker wants

• Why is this possible?
– The programmer made an assumption that data read into the buffer

would never be bigger than a certain size

11/28/19 CS 419 © 2019 Paul Krzyzanowski 20

20

Heap-based buffer overflows
• The heap portion of memory is memory that is allocated

to the program with operations such as malloc or new

• You cannot overwrite the return address of a function with
an overflow of a buffer that’s in the heap

• But
– A lot of important data might be in the heap … and can be changed
– Function pointers (e.g., in lookup tables) may sit in the heap and

the attacker can change those, making them point to the attacker’s
code

– Run-time systems often use the heap: object methods in C++ are
implemented with function pointers on the heap

– In the most basic case, the attacker may overwrite data, causing
the program to crash à denial of service attack

11/28/19 CS 419 © 2019 Paul Krzyzanowski 21

21

Format string attacks
• The printf family of functions is commonly used in C & C++

– The first argument is a format string. Example:
printf(“my name is %s and my lucky number is %d\n”, name, number);

• But programmers may be sloppy and use a format string that contains
user input:
printf(yourname);

• This gives the attacker the ability to read and write arbitrary data
– printf does NOT check that the number of parameters in the format string

matches the number of parameters passed to the call
• Attacker can read the stack contents

– printf has a %n format that writes data to an address – this can be used to
change the return address when printf returns

– The user may specify lots of format strings to reach an illegal memory
address and crash the program

11/28/19 CS 419 © 2019 Paul Krzyzanowski 22

22

Input validation attacks

• General problem:
User input used as part of a command

• SQL injection
– User input becomes part of a query
– An attacker can change what the SQL statement does

• Common vulnerability because so many web sites use
databases on the back end

• Attackers can use SQL injection to:
– Bypass authentication
– Get more data from the database
– Change data
– Destroy tables

11/28/19 CS 419 © 2019 Paul Krzyzanowski 23

23

Preventing SQL Injection

• Input validation
– Input needs to be sanitized:

the programmer needs to check that the user input does not
contain potentially malicious characters such as single quotes

– But this is difficult, and the programmer may not know all the
special character sequences that may cause problems

• Parameterized queries
– Don’t make user input part of the query
– Use parametrized queries, prepared statements, or stored

procedures
– These techniques allow a query to identify parameters, which are

passed separately
– User input will never be treated as part of the query

11/28/19 CS 419 © 2019 Paul Krzyzanowski 24

24

CS 419: Computer Security 11/28/19

© 2019 Paul Krzyzanowski 5

The end

2511/28/19 CS 419 © 2019 Paul Krzyzanowski

25

