CS 419: Computer Security 9/30/19

Compromised applications

» Some services run as root

» What if an attacker compromises the app and gets root access?
— Create a new account

Computer Secu r|ty — Install new programs

04. Confinement — “Patch” existing programs (e.g., add back doors)

— Modify configuration files or services

— Add new startup scripts (launch agents, cron jobs, etc.)

— Change resource limits

— Change file permissions (or ignore them!)

— Change the IP address of the system

Paul Krzyz
Rutgers University » Even without root, what if you run a malicious app?
Falizoto — It has access to all your files
— Can install new programs in your search path
— Communicate on your behalf
- J - J
Septomoer 30,2019 CS 419 ©2019 Paul Krzyzanowsi 1 Soptomoer 30,2019 C5 419 ©2019 Paul Kzyzanowsi 2
1 2
e 7 e N
How about access control? We can regulate access to some resources
« Limit damage via access control POSIX setrlimit () system call

— E.g., run servers as a low-privilege user
— Proper read/write/search controls on files ... or role-based policies

— Maximum CPU time that can be used

- — Maximum data size
« ACLs don't address applications

— Cannot set permissions for a process: “don’t allow access to anything else” — Maximum files that can be created
— At the mercy of default (other) permissions — Maximum memory a process can lock
« We are responsible for changing protections of every file on the system — Maximum # of open files

that could be accessed by other

— And hope users don't change that — Maximum # of processes for a user

— Or use more complex mandatory access control mechanisms ... if available — Maximum amount of physical memory used

Not h|gh assurance — Maximum stack size

- J . J
Sepember 30,2019 S 41902019 Paul Kayzanowsk 3 Seplember 30,2019 541902019 Paul Kizyzanowsia 4

3 4

() M s - - N

Confinement: prepare for the worst Not just files
« We realize that an application may be compromised Other resources to protect

— We want to run applications we may not completely trust

. CPU time
« Not always possible

. - Amount of memory used: physical & virtual
« Limit an application to use a subset of the system’s resources

. . - Disk space
« Make sure a misbehaving application cannot harm the rest of the system

Network identity & access

— Each system has an IP address unique to the network

— Compromised application can exploit address-based access control
+ E.g., log in to remote machines that think you're trusted

— Intrusion detection systems can get confused

. J . J

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski 5 ‘September 30, 2019 €S 419©2019 Paul Krzyzanowski 6

5 6

© 2019 Paul Krzyzanowski 1

CS 419: Computer Security

Application confinement goals

< Enforce security — broad access restrictions
« High assurance — know it works
« Simple setup — minimize comprehension errors

« General purpose — works with any (most) applications

We don’t get all of this ...

Soptember 30, 2019 CS 419 ©2019 Paul Krzyzanowski 7

(chroot: the granddaddy of confinement

« Only root can run chroot
chroot /local/httpd change the root
su httpuser change to a non-root user

* The root directory is now /local/httpd “chroot jail”
— Anything above it is not accessible

-

September 30, 2019 €5 419 ©2019 Paul Kizyzanowski 9

9/30/19

[chroot: the granddaddy of confinement

+ Oldest confinement mechanism
» Make a subtree of the file system the root for a process

» Anything outside of that subtree doesn’t exist

(. J

September 30, 2019 ©S419©2019 Paul Krzyzanowski 8

8

=
Jailkits

« If programs within the jail need any utilities, they won’t be visible
— They're outside the jail
— Need to be copied
— Ditto for shared libraries

« Jailkit (https://olivier.sessink.nl/jailkit/)
— Set of utilities that build a chroot jail
— Automatically assembles a collection of directories, files, & libraries
— Place the bare minimum set of supporting commands & libraries
+ The fewer executables live in a jail, the less tools an attacker will have to use

— Contents
jk_init create a jail using a predefined configuration

jk_cp copy files or devices into a jail
jk_chrootsh places a user into a chroot jail upon login

jk_Ish limited shell that allows the execution only of commands in its config file

https://olivier.sessink.nljailkit

-

9

September 30, 2019 CS419©2019 Paul Krzyzanowski 0

10

~
Problems?
Does not limit network access
Does not protect network identity
Applications are still vulnerable to root compromise
« Normal users cannot run chroot because they can get admin privileges
— Create a jail directory mkdir /tmp/jail
— Create alink to the sucommand 1n /bin/su /tmp/jail/su
— Copy or link libraries & shell .
— Create an /etc directory mkdir /tmp/jail/etc
— Create password file(s) with a ed shadow
known password for root
— Enter the jail chroot /tmp/jail
— Become root! su
+ su will validate against the password file in the jail!
-

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski 11

(. . L. N
Escaping a chroot jail

If you can become root in a jail, you have access to gllsystem calls

You can create devices within your jail
— On Linux/Unix/BSD, all non-network devices have filenames
— Even memory has a filename (/dev/mem)

» Create a memory device (mknod system call)
— Change kernel data structures to remove your jail

+ Create a disk device to access the raw disk
— Mount it within your jail and you have access to the whole file system
— Get what you want, change the admin password, ...

» Send signals to kill other processes
(doesn’t escape the jail but causes harm to others)

* Reboot the system

September 30, 2018 €S 419©2019 Paul Krzyzanowski 2

11

© 2019 Paul Krzyzanowski

12

CS 419: Computer Security 9/30/19

(A (N
chroot summary FreeBSD Jails
» Good confinement + Enhancement to chroot
« Imperfect solution * Run via
i jail jail_path hostname ip_addr command
« Useless against root
Setti ki i t tak k (jailkit) * Main ideas:
« Setting up a working environment takes some work (or use jailki e
9 up 9) — Confine an application, just like chroot
— Restrict what operations a process within a jail can perform, even if root
https://www.freebsd.org/doc/en/books/arch-handbook/jail.html
- J - J
Seplember 30, 2019 €S 41902019 Paul Kzyzanowskd [September 30, 2019 541902019 Paul Kzyzanowsid 14
(. . N I N
FreeBSD Jails: Differences from chroot Problems
« Network restrictions « Coarse policies
— Jail has its own IP address — All or nothing access to parts of the file system
— Can only bind to sockets with a specified IP address and authorized ports — Does not work for apps like a web browser
. . L 3 + Needs access to files outside the jail (e.g., saving files, uploading attachments)
« Processes can only communicate with processes inside the jail
— No visibility into unjailed processes + Does not prevent malicious apps from
— Accessing the network & other machines
< Hierarchical: create jails within jails — Trying to crash the host OS
* Root power is limited - BSD Jails is a BSD-only solution
— Cannot load kernel modules
— Ability to disallow certain system calls « Pretty good for running things like DNS servers and web servers
* Raw sockets L
. . * Not all that useful for user applications
« Device creation
+ Modifying network configuration
+ Mounting/unmounting file systems
« set_hostname https://www.freebsd.org/doc/en/books/arch-handbook/jail.ntm
- J . J
Seplember 30, 2019 €S 41902019 Paut Kizyzanowsid 15 Septomber 30, 2019 541902019 Paul Kzyzanowsid ©
(s) (. N
Linux Namespaces Linux Namespaces
« chroot only changed the root of the filesystem namespace Unlike chroot, unprivileged users can create namespaces
« Linux provides control over the following namespaces: * unshare()
— System call that dissociates parts of the process execution context
1PC System V IPC, POSIX Objects created in an IPC namespace are Visible to all — Examples
th ly in that
IEEEEE S CUELES SR D E I I + Unshare IPC namespace, so it's separate from other processes
Network devices, stacks, Isolates IP protocol stacks, IP routing tables, firewalls, « Unshare PID namespace, so the thread gets its own PID namespace for its children
Network RS socket port #s
" Mount points can be different in different processes + clone() — system call to create a child process
t point . . .
Mount oLt points — Like fork() but allows you to control what is shared with the parent
Different PID namespaces can have the same PID — + Open files, root of the file system, current working directory, IPC namespace,
PID Process IDs child cannot see parent processes or other namespaces network namespace, memory, etc.
Per-namespace user/group IDs. You can be root in a X 3
User User & group IDs TR0 i GRS o] I « setns() — system call to associate a thread with a namespace
- — Athread can associate itself with an existing namespace in /proc/[pid]/ns
Hostname and NIS domain | Sethostname and setdomainname affect only the
uTs D namespace
g See namespaces(7)) g)
Seplomber 30, 2019 5 41902019 Paut Kizyzanowskd 7 Septorber 30, 2019 541962019 Paul Kzyzanowskd)

17 18

© 2019 Paul Krzyzanowski 3

CS 419: Computer Security

9/30/19

Linux Capabilities

How do we restrict what root can do in a namespace?

« UNIX systems distinguished privileged vs. unprivileged processes
— Privileged = UID 0 = root = kernel bypasses all permission checks

« If we can provide limited elevation of privileges to a process:
— If a process becomes root, it would still be limited in what it could do
— E.g., no ability to set UID to root, no ability to mount filesystems

N.B.: These capabilities have nothing to do with capability lists

1

-

J

Saptember 30, 2019 ©S 419 ©2019 Paul Kizyzanowski 19

[Linux Capabilities

We can explicitly grant subsets of privileges that root users get

« Linux divides privileges into 38 distinct controls, including:
CAP_CHOWN: make arbitrary changes to file owner and group IDs
CAP_DAC_OVERRIDE: bypass read/write/execute checks
CAP_KILL: bypass permission checks for sending signals
CAP_NET_ADMIN: network management operations
CAP_NET_RAW: allow RAW sockets
CAP_SETUID: arbitrary manipulation of process UIDs
CAP_SYS_CHROQOT: enable chroot

These are per-thread attributes
— Can be set via the prct/ system call

September 30, 2019 ©S419©2019 Paul Kzyzanowski 20

(. J

19

20

Linux Control Groups (cgroups)

Limit the amount of resources a process tree can use

« CPU, memory, block device I/O, network
— E.g., a process tree can use at most 25% of the CPU
— Limit # of processes within a group

« Interface = cgroup file system: /sys/fs/cgroup

Namespaces + cgroups + capabilities = lightweight process virtualization
— Process gets the iflysion that it is running on its own Linux system, isolated
from other processes

-

September 30, 2019 €5 419 ©2019 Paul Kizyzanowski 2

~
Vulnerabilities

« Bugs have been found
— User namespace: unprivileged user was able to get full privileges

« But comprehension is a bigger problem

— Namespaces do not prohibit a process from making privileged system calls
« They control resources that those calls can manage
« The system will see only the resources that belong to that namespace

— User namespaces grant non-root users increased access to system capabilities
« Design concept: instead of dropping privileges from root, provide limited elevation to

non-root users
— Areal root process with its admin capability removed can restore it

« If it creates a user namespace, the capability is restored to the root user in that
namespace — although limited in function

21

Summary

* chroot
* FreeBSD Jails

* Linux namespaces, capabilities, and control groups
— Control groups
« Allow processes to be grouped together — control resources for the group
— Capabilities
« Limit what root can do for a process & its children

— Namespaces
+ Restrict what a process can see & who it can interact with:
PIDs, User IDs, mount points, IPC, network

-

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski 2

23

© 2019 Paul Krzyzanowski

_ v

e Y
Containers

\ v

24

CS 419: Computer Security 9/30/19

s A (N
Motivation for containers How did we address these problems?
« Installing software packages can be a pain » Sysadmin effort
— Dependencies — Service downtime, frustration, redeployment
» Running multiple packages on one system can be a pain * Run every service on a separate system
— Updating a package can update a library or utility another uses — Mail server, database, web server, app server, ...
« Causing something else to break — Expensive! ... and overkill

— No isolation among packages

« Something goes awry in one service impacts another ° Deploy virtual machines

— Kind of like running services on separate systems

* Migrating services to another system is a pain — Each service gets its own instance of the OS and all supporting
— Re-deploy & reconfigure software

— Heavyweight approach
« Time share between operating systems

- J (. J

Saptember 30, 2019 ©S 419 ©2019 Paul Kizyzanowski 2 September 30, 2019 ©S419©2019 Paul Kzyzanowski 2

25 26

(I (N
What are containers? A container feels like a virtual machine
Containers: created to package & distribute software « It gives you the illusion of separate

— Focus on services, not end-user apps — Set of apps
— Software systems usually require a bunch of stuff: — Process space
« Libraries, multiple applications, configuration tools, ... — Network interface
— Container = image containing the application environment — Network configuration
« Can be installed and run on any system _ Libraries, ...
o « But limited root powers
Key insight:
Encapsulate software, configuration, & dependencies into * And ...
one package All containers on a system share the same OS & kernel
modules

- J N J

Sepember 30,2019 5419 ©2019 Paul Krzyzanowsk 2z Seplember 30,2019 5419 ©2019 Paul Kizyzanowsia 2
27 28

e . K 1 (. . N
How are containers built? Initially ... Docker
« Control groups « First super-popular container

— Meters & limits on resource use

+ Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority) + Designed to provide Platform-as-a-Service capabilities
— Combined Linux cgroups & namespaces into a single easy-to-use

+ Namespaces package

— Isolates what processes can see & access - Eg;?;ei applications to be deployed consistently anywhere as one

— Process IDs, host name, mounted file systems, users, IPC p 9

— Network interface, routing tables, sockets » Docker Image
. — — Package containing applications & supporting libraries & files

Capabllitles o — Can be deployed on many environments

— Keep root ID but enumerate what it is allowed to do

o * Make deployment easy

* Copy on write file syster.n i)) — Git-like commands: docker push, docker commit, ...

— Instantly create new containers without copying the entire package — Make it easy to reuse image and track changes

— Storage system tracks changes — Download updates instead of entire images
* AppArmor » Keep Docker images immutable (read-only)

— Pathname-based mandatory access controls — Run containers by creating a writable layer to temporarily store runtime
____— Confines programs to a set of listed files & capabilities) g changes Y,
Septomoer 30,2019 5419 02019 Paul Krzyzanowsi » Soptomoer 30,2019 541902019 Paul Kizyzanowse ©

29 30

© 2019 Paul Krzyzanowski 5

CS 419: Computer Security

9/30/19

(Later Docker additions

+» Docker Swarm: deploy multiple containers as one
abstraction

-

» Docker Hub: cloud based repository for docker images

Saptember 30, 2019 ©S 419 ©2019 Paul Kizyzanowski

(Not Just Linux

* Microsoft introduced Containers in Windows Server 2016
and support for Docker

» Windows Server Containers
— Assumes trusted applications
— Misconfiguration or design flaws may permit an app to escape its
container

* Hyper-V Containers
— Each has its own copy of the Windows kernel & dedicated memory
— Same level of isolation as in virtual machines
— Essentially a VM that can be coordinated via Docker
— Less efficient in startup time & more resource intensive
— Designed for hostile applications to run on the same host

-

September 30, 2019

©S419©2019 Paul Krzyzanowski 2

31

~
Container Orchestration

* We wanted to manage containers across systems

» Multiple efforts

Swarm, ...

— Google invented Linux control groups
— Standard deployment interface

— Scale rapidly (e.g., Pokemon Go)

— Open source (unlike Docker Swarm)

-

» Google designed Kubernetes for container orchestration

— Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker

September 30, 2019 €S 419 ©2019 Paul Krzyzanowski

33

=
Containers & Security

Primary goal was software distribution, not security

— Makes moving & running a collection of software simple
« E.g., Docker Container Format

— Everything at Google is deployed & runs in a container
« Over 2 billion containers started per week (2014)
« Imctfy (“Let Me Contain That For You”)

.

— Google’s old container tool — similar to Docker and LXC (Linux Containers)
« Then Kubernetes to manage multiple containers & their storage

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski

35

© 2019 Paul Krzyzanowski

32

P
Container Orchestration

Kubernetes orchestration
— Handle multiple containers and start each one at the right time
— Handle storage
— Deal with hardware and container failure
« Automatic restart & migration
— Add or remove containers in response to demand
— Integrates with the Docker engine, which runs the actual container

-

©S419©2019 Paul Krzyzanowski

September 30, 2019

34

~
Containers & Security

But there are security benefits

— Containers use namespaces, control groups, & capabilities
+ Restricted capabilities by default
«+ Isolation among containers

— Containers are usually minimal and application-specific
+ Just a few processes
+ Minimal software & libraries
+ Fewer things to attack

— They separate policy from enforcement

— Execution environments are reproducible
+ Easy to inspect how a container is defined
+ Can be tested in multiple environments

— Watchdog-based restarting: helps with availability

+ Containers help with comprehension errors
— Decent default security without learning much
— Also ability to enable other security modules

-

September 30, 2018 €S 419©2019 Paul Krzyzanowski

36

CS 419: Computer Security 9/30/19

(A (N
Some things to watch out for Security Concerns
« Privileges & escaping the container + Kernel exploits
— Privileged containers map uid 0 to the host's uid 0 _ All containers share the same kernel
Prevention of escape is based on MAC (apparmor), capabilities & namespace
configuration) . » . « Denial of service attacks
- ggrﬁg\i/rl]lsrged containers map uid 0 to an unprivileged user outside the _ If one container can monopolize a resource, others suffer
No possibility of root escalation - Privilege escalation
« DoS attacks possible — Shouldn't happen with capabilities ... But there might be bugs
— Untrusted users may launch attacks within containers L.)
— Cgroup limits are often not configured + Origin integrity
— Where is the container from and has it been tampered?
« Users in multiple containers may share the same real ID
— If users map to the same parent ID, they share all the limits of that ID
— Auser in one container can perform a DoS attack on another user
« Network spoofing
— Acontainer can transmit raw ethernet packets and spoof any service
- J - J
Sepomoer 30,2019 CS 419 ©2019 Paul Krzyzanowsi a7 Soptomoer 30,2019 C5 419 ©2019 Paul Kzyzanowsia ®
37 38
e 7 e . N
Virtual CPUs (sort of)
What time-sharing operating systems give us
» Each process feels like it has its own CPU & memory
) i)) — But cannot execute privileged CPU instructions
Machine Virtualization (e.g., modify the MMU or the interval timer, halt the processor, access I/0)
« lllusion created by OS preemption, scheduler, and MMU
« User software has to “ask the OS” to do system-related functions
« Containers, BSD Jails, namespaces give us operating system-level
virtualization
- J . J
Seplember 30, 2019 €S 41902019 Paut Kizyzanowsid 3 Seplember 30,2010 541902019 Paul Kzyzanowsid 2
39 40
e i . 1 (. . i . . N
Process Virtual Machines Machine Virtualization
CPU interpreter running as a process Normally all hardware and /O managed by one operating system
+ Pseudo-machine with interpreted instructions Machine virtualization
— 1966: O-code for BCPL — Abstract (virtualize) control of hardware and 1/O from the OS
— 1973: P-code for Pascal — Partition a physical computer to act like several real machines
— 1995: Java Virtual Machine (JIT compilation added) * Manipulate memory mappings
— 2002: Microsoft .NET CLR (pre-compilation) * Set system timers
— 2003: QEMU (dynamic binary translation) * Access devices
— 2008: Dalvik VM for Android — Migrate an entire OS & its applications from one machine to another
— 2014: Android Runtime (ART) — ahead of time compilation
* Advantage: run anywhere, sandboxing capability
1972: IBM System 370
* No ability to even pretend to access the system hardware — Allow kernel developers to share a computer
— Just function calls to access system functions
- Or “generic” hardware) L)
Seplomber 30, 2019 5 41902019 Paul Kizyzanowskd p Septorber 30, 2019 541962019 Paul Kzyzanowskd 2
41 42

© 2019 Paul Krzyzanowski 7

CS 419: Computer Security

(7
Why are VMs popular?
» Wasteful to dedicate a computer to each service
— Mail, print server, web server, file server, database
* If these services run on a separate computer
— Configure the OS just for that service
— Attacks and privilege escalation won’t hurt other services
- J
September 30,2019 G5 41902019 Paul Kayzanowsn @
43
~

—~
Machine Virtualization

An OS is just a bunch of code!

« Privileged vs. unprivileged instructions

— Trap & Emulate

< With machine virtualization
— We deprivilege the operating system
— The VMM runs at a higher privilege level than the OS

* The VMM catches the trap
— If it turns out that the attempt to execute the privileged instruction occurred in
the kernel code, the hypervisor (VMM) emulates the instruction

— If regular applications execute privileged instructions, they trap
— Operating systems are allowed to execute privileged instructions

September 30, 2019 €5 419 ©2019 Paul Krzyzanowski 45

Hardware support for virtualization

-

Root mode (Intel example)
— Layer of execution more privileged than the kernel

=

privilege levels
3
>
Guest0s |{ RGO Guest mode Guest0s N Rulco
privilege level 08 traps (o VMM
raps to
Without virtualization VMX Root M perorms
privilege level

emulation of request

September 30, 2019

€S 418 ©2019 Paul Krzyzanowski

48

© 2019 Paul Krzyzanowski

9/30/19

s

Hypervisor

-

Hypervisor: Program in charge of virtualization

— Aka Virtual Machine Monitor

— Provides the illusion that the OS has full access to the hardware

— Arbitrates access to physical resources

— Presents a set of virtual device interfaces to each host

September 30, 2019 CS 419 ©2019 Paul Kizyzanowski

44

s

Hypervisor

-

Application or Guest OS runs until:
— Privileged instruction traps
— System interrupts
— Exceptions (page faults)

— Explicit call: VMCALL (Intel) or VMMCALL (AMD)

Operating System & Applications

Instruction
Fault

CPU instruction
or device
emulation

MMU emulation

Hypervisor (Virtual Machine Monitor)

1/0 emulation

Unprivileged

Privileged

September 30, 2019 ©S419©2019 Paul Krzyzanowski

46

Architectural Support

-

* Intel Virtual Technology
* AMD Opteron

Guest mode execution: can run privileged instructions directly

— E.g., a system call does not need to go to the VM

— Certain privileged instructions are intercepted as VM exits to the VMM

— Exceptions, faults, and external interrupts are intercepted as VM exits

— Virtualized exceptions/faults are injected as VM entries

‘September 30, 2018 €S 419©2019 Paul Krzyzanowski

49

CS 419: Computer Security

9/30/19

s

CPU Architectural Support

-

« Setup
— Turn VM support on/off
— Configure what controls VM exits
— Processor state
+ Saved & restored in guest & host areas

* VM Entry: go from hypervisor to VM
— Load state from guest area

« VM Exit
— VM-exit information contains cause of exit
— Processor state saved in guest area
— Processor state loaded from host area

Saptember 30, 2019 ©S 419 ©2019 Paul Kizyzanowski

s

Two Approaches to Running VMs

-

1. Native VM (hypervisor model)
2. Hosted VM

September 30, 2019 ©S419©2019 Paul Kzyzanowski

50

51

Ve

Native Virtual Machine

-

Native VM (or Type 1 or Bare Metal)
— No primary OS
— Hypervisor is in charge of access to the devices and scheduling
— OS runs in “kernel mode” but does not run with full privileges

~
Example:
VMware ES;

September 30, 2019 €5 419 ©2019 Paul Kizyzanowski

s

Hosted Virtual Machine

Example:

N

VMware
Worksta

Hosted VM
— VMM runs without special privileges
— Primary OS responsible for access to the raw machine
+ Lets you use all the drivers available for that primary OS
— Guest operating systems run under a VMM
— VMM invoked by host OS
+ Serves as a proxy to the host OS for access to devices

Applications

Guest OS

Host OS VM

Physical Machine

September 30, 2019 CS419©2019 Paul Krzyzanowski

52

53

Ve

Security Benefits

-

« Virtual machines provide isolation of operating systems
* Attacks & malware can target the guest OS & apps

» Malware cannot escape from the infected VM

— If a guest OS is compromised or fails
« the host and other OSes are unaffected
« The ability of other OSes to access resources is unaffected
« The performance of other OSes is unaffected

— Cannot infect the host OS

— Cannot infect the VMM

— Cannot infect other VMs on the same computer

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski

s

Security Benefits

-

* Recovery from snapshots
— Easy to revert to a previous version of the system

« Easy to replicate virtual machines
— Treat the system as a virtual “appliance”
— If it gets infected with malware, just start another appliance

* Operate as a test environment
— Great for testing suspicious software
— See what files have been modified
— Compare before/after states
— Restore to pre-installed state

54

© 2019 Paul Krzyzanowski

September 30, 2018 €S 419©2019 Paul Krzyzanowski

55

CS 419: Computer Security 9/30/19

(A\ (7
Covert Channels
Covert channel Side channel attack
— Secret communication channel — Communication using some aspect
between components that are not of a system's behavior
allowed to communicate
Sandboxes
Classified VM Public VM
Classified Malware
Data A Listener
VMM

1. Malware can perform CPU-intensive task at specific times
2. Listener can do CPU-intensive tasks and measure completion times
This allows malware to send a bit pattern:

malware working = 1 = slowdown on listener

Depends on scheduler but there are other mechanisms too... like memory access) L
J
56 57
s - - ; N s N
Running untrusted applications The sandbox
« Jail / container / VM solutions sand-box, san(d)-"biks, noun. Date: 1688

: a box or receptacle containing loose sand: as
a: a shaker for sprinkling sand on wet ink b: a_

* Not really useful for applications box that contains sand for children to play in
— These need to be launched by users & interact with their environment

— Great for running services

« Arestricted area where code can play in

« Allow users to download and execute untrusted applications with limited risk
* Restrictions can be placed on what an application is allowed to do in its sandbox
« Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
... but we want to focus on giving users the ability to run apps

. J - J

September 30, 2019 €S419©2019 Paul Krzyzanowski 59

September 30, 2019 €5 419 ©2019 Paul Kizyzanowski 8

58 59

=
System Call Interposition

System calls interface with system resources

An application must use system calls to access any resources, initiate
attacks ... and cause any damage

Application sand boxing — Modify/access files/devices:

via System caII hooking & creat, open, read, write, unlink, chown, chgrp, chmod, ...
. . — Access the network:

user-level valldatlon socket, bind, connect, send, recv

» Sandboxing via system call interposition
— Intercept, inspect, and approve an app’s system calls

. J - J

i 60 September 30, 2019 €S 419©2019 Paul Krzyzanowski

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski

60 61

© 2019 Paul Krzyzanowski 10

CS 419: Computer Security

9/30/19

=
Example: Janus

) (

Example: Janus

« Policy file defines allowable files and network operations

« Dedicated policy per process
— Policy engine reads policy file
— Forks
— Child process execs application
— All accesses to resources are screened by Janus

« System call entry points contain hooks
— Redirect control to mod_Janus
— Module tells the user-level Janus process that a system call has been
requested
* Process is blocked
« Janus process queries the module for details about the call
+ Makes a policy decision

App sandboxing tool implemented as a loadable kernel module

Application Environment Janus Policy
] ' File
| Policy
| R S B
ﬁ 3 User space
E 3 Kernel space
open(file.txt”) [| resut H s
open(file.txt’) & <
System call entry —)
mod_janus

Deny

I result

Kernel

- J & J
Seplomber 30, 2019 S 41902019 Paul Kizyzanowsk o Septomber 30, 2019 5 41902019 Paul Kzyzanowskd E)
(i N (I
Implementation Challenge
Janus has to mirror the state of the operating system!
« If process forks, the Janus monitor must fork
« Keep track of the network protocol . . n
~ sockel, bind, connect, readirite, shutdown Application sandboxing
« Does not know if certain operations failed via |nteg rated OS SUppOrt
« Gets tricky if file descriptors are duplicated
+ Remember filename parsing?
— We have to figure out the whole dot-dot (..) thing!
— Have to keep track of changes to the current directory too
« App namespace can change if the process does a chroot
« What if file descriptors are passed via Unix domain sockets?
— sendmsg, recvmsg
g * Race conditions: TOCTTOU) L)
Seplember 30, 2019 €S 41902019 Paut Kizyzanowsid o September 30, 2019 541902019 Paul Kzyzanowsid o
(. N . N
Linux seccomp-BPF Linux seccomp-BPF
« Linux capabilities + Uses the Berkeley Packet Filter (BPF) interpreter
— Dealt with things a root user could do — seccomp sends “packets” that represent system calls to BPF
— No ability to restrict access to regular files X X .
+ BPF allows us to define rules to inspect each request and take an action
« Linux namespaces — Kill the task
— chroot functionality — no ability to be selective about files — Disallow & send SIGSYS
— Return an error
Seccomp-BPF = _ Allow
SECure COMPuting with Berkeley Packet Filters
) . * Turned on via the prctl() — process control — system call
« Allows the user to attach a system call filter to a process and its
descendants Seccomp is not a complete sandbox but is a tool for building sandboxes
— Enumerate allowable system calls — Needs to work with other components
— Allow/disallow access to specific files & network protocols + Namespaces, cgroups, control groups
. . . — Potential for comprehension problems — BPF is very low level
« Used extensively in Android
- J & J
Seplomber 30, 2019 5 41902019 Paut Kizyzanowsd) Septorber 30, 2019 C5 41962019 Paul Kzyzanowskd o

66

© 2019 Paul Krzyzanowski

67

11

CS 419: Computer Security

9/30/19

-

Apple Sandbox

-

Create a list of rules that is consulted to see if an operation is permitted

« Components:
— Set of libraries for initializing/configuring policies per process
— Server for kernel logging
— Kernel extension using the TrustedBSD AP for enforcing individual policies

— Kernel support extension providing regular expression matching for policy
enforcement

« sandbox-exec command & sandbox_init function
— sandbox-exec: calls sandbox_init() before fork() and exec()
— sandbox_init (kSBXProfileNoWrite, SANDBOX NAMED, errbuf);

Saptember 30, 2019 ©S 419 ©2019 Paul Kizyzanowski 68

=
Apple sandbox setup & operation

sandbox_init.
— Convert human-readable policies into a binary format for the kernel
— Policies passed to the kernel to the TrustedBSD subsystem
— TrustedBSD subsystem passes rules to the kernel extension
— Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls

— System calls hooked by the TrustedBSD layer will pass through
Sandbox.kext for policy enforcement

— The extension will consult the list of rules for the current process
— Some rules require pattern matching (e.g., filename pattern)

-

September 30, 2019 ©S419©2019 Paul Kzyzanowski 69

68

69

Vs

Apple sandbox policies

-

Some pre-written profiles:
— Prohibit TCP/IP networking
— Prohibit all networking
— Prohibit file system writes
— Restrict writes to specific locations (e.g., /var/tmp)

— Perform only computation: minimal OS services

September 30, 2019 €S 419 ©2019 Paul Krzyzanowski 70

Browser-based application sandboxing

-

September 30, 2019 €S419©2019 Paul Krzyzanowski 7

70

71

Web plug-ins

.

« External binaries that add capabilities to a browser
* Loaded when content for them is embedded in a page

« Examples: Adobe Flash, Adobe Reader, Java

Challenge:
How do you keep plugins from doing bad things?

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski

f Chromium Native Client (NaCl)

« Browser plug-in designed for
— Safe execution of platform-independent untrusted native code in a browser
— Compute-intensive applications
— Interactive applications that use resources of a client

« Two types of code: trusted & untrusted

— Trusted code does not run in a sandbox
— Untrusted code has to run in a sandbox

+ Untrusted native code
— Built using NaCl SDK or any compiler that follows alignment rules and
instruction restrictions
+ GNU-based toolchain, custom versions of gce/binutils/gdb, libraries
+ Support for ARM 32-bit, x86-32, x86-64, MIPS32
« Pepper Plugin APl (PPAPI): portability for 2D/3D graphics & audio
— NaCl statically verifies the code to check for use of privileged instructions

-

‘September 30, 2018 €S 419©2019 Paul Krzyzanowski 7

72

© 2019 Paul Krzyzanowski

73

12

CS 419: Computer Security

9/30/19

(Chromium Native Client (NaCl)

Two sandboxes
— Outer sandbox: restricts capabilities using system call interposition

— Inner sandbox: uses x86 segmentation to isolate memory among apps
« Uses static analysis to detect security defects in code; disallow self-modifying code

[Chromium Native Client (NaCl)

Two sandboxes
— Outer sandbox: restricts capabilities using system call interposition

— Inner sandbox: uses x86 segmentation to isolate memory among apps
« Uses static analysis to detect security defects in code; disallow self-modifying code

Untrusted program

ﬁ NaCl sandbox syscall
NaCl runtime

Browser

Chrome sandbox syscall

I Native syscall

Browser
IPC ﬁ NaCl sandbox syscall
NaCl runtime
I Native syscall Chrome sandbox syscall
[Operating System J
-
Sepomoer 30,2019 CS 419 ©2019 Paul Krzyzanowsi 7
(e
Portability
« Portable Native Client (PNaCl)
— Architecture independent
— Developers compile code once to run on any website & architecture
— Compiled to a portable executable (pexe) file
— Chrome translates pexe into native code prior to exectution
N\
Seplember 30, 2019 5419 ©2019 Paul Krzyzanowsk 7

(Java Language

* Type-safe & easy to use
— Memory management and range checking

+ Designed for an interpreted environment: JVM

* No direct access to system calls

-

September 30, 2019 €S 418 ©2019 Paul Krzyzanowski

78

© 2019 Paul Krzyzanowski

[Operating System }
- J
September 30, 2019 541902019 Paul Kzyzanowsd 75
e 7
Java sandbox
. J
Septomber 30, 2019 5419 ©2019 Paul Krzyzanowski 7
(. 7

Java Sandbox

1. Bytecode verifier: verifies Java bytecode before it is run
« Disallow pointer arithmetic
+ Automatic garbage collection
« Array bounds checking
* Null reference checking

2. Class loader: determines if an object is allowed to add classes
« Ensures key parts of the runtime environment are not overwritten
» Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
« Defines the boundaries of the sandbox (file, net, native, etc. access)
« Consulted before any access to a resource is allowed

& J
Septorber 30, 2019 541962019 Paul Kzyzanowskd 7

79

13

CS 419: Computer Security 9/30/19

(JVM Security

» Complex process
* 20+ years of bugs ... hope the big ones have been found!

« Buffer overflows found in the C support library The end
— C support library buggy in general

* Generally, the JVM is considered insecure
— But Java in general is pretty secure
« Array bounds checking, memory management
« Security manager with access controls
— Use of native methods allows you to bypass security checks

- J (. J

Saptember 30, 2019 ©S 419 ©2019 Paul Kizyzanowski 8 September 30, 2019 ©S419©2019 Paul Kzyzanowski 8

80 81

© 2019 Paul Krzyzanowski 14

