
CS 419 3/21/19

© 2017 Paul Krzyzanowski 1

Computer Security
05. Confinement – Application Sandboxes

Paul Krzyzanowski

Rutgers University

Spring 2019

1March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

The sandbox

• A restricted area where code can play in

• Allow users to download and execute untrusted applications with limited risk

• Restrictions can be placed on what an application is allowed to do in its sandbox

• Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
… but we want to focus on giving users the ability to run apps

sand•box, ’san(d)-"bäks, noun. Date: 1688
: a box or receptacle containing loose sand: as 
a: a shaker for sprinkling sand on wet ink b: a 
box that contains sand for children to play in

6March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Application sandboxing

via system call hooking &
user-level validation

7March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

System Call Interposition
System calls interface with system resources

• An application must use system calls to access any resources, initiate 
attacks … and cause any damage
– Modify/access files/devices:

creat, open, read, write, unlink, chown, chgrp, chmod, …
– Access the network:

socket, bind, connect, send, recv

• System call interposition (hooking)
– Intercept, inspect, and approve an app’s system calls

8March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Example: Janus

• Policy file defines allowable files and network operations

• Dedicated policy per process
– Policy engine reads policy file
– Forks
– Child process execs application
– All accesses to resources are screened by Janus

• OS system call entry point contains a hooks
– Redirects control to mod_Janus
– Module tells the user-level Janus process that a system call has been 

requested
• Process is blocked

• Janus process queries the module for details about the call
• Makes a policy decision

9March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Example: Janus
App sandboxing tool implemented as a loadable kernel module

10

User space

Kernel space

Application Environment

Process

Process
Process

System call entry
mod_janus

Janus

Policy 
Engine

open(“file.txt”) result

Kernel

result
Deny 

open(“file.txt”)

Allow

open(“file.txt”)

op
en

(“
fil

e.
tx

t”)

A
llo

w
 / 

D
en

y

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski



CS 419 3/21/19

© 2017 Paul Krzyzanowski 2

Implementation Challenge

Janus has to mirror the state of the operating system!
• If process forks, the Janus monitor must fork

• Keep track of the network protocol
– socket, bind, connect, read/write, shutdown

• Does not know if certain operations failed

• Gets tricky if file descriptors are duplicated

• Remember filename parsing?
– We have to figure out the whole dot-dot (..) thing!

– Have to keep track of changes to the current directory too

• App namespace can change if the process does a chroot

• What if file descriptors are passed via Unix domain sockets?
– sendmsg, recvmsg

• Race conditions: TOCTTOU
11March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Application sandboxing

via integrated OS support

12March 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux seccomp-BPF
• Linux capabilities

– Dealt with things a root user could do
– No ability to restrict access to regular files

• Linux namespaces
– Chroot functionality – no ability to be selective about files

Seccomp-BPF =
SECure COMPuting with Berkeley Packet Filters

• Allows the user to attach a system call filter to a process and all its 
descendants
– Enumerate allowable system calls
– Allow/disallow access to specific files & network protocols

• Used extensively in Android

13March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux seccomp-BPF
• Uses the Berkeley Packet Filter (BPF) interpreter

– seccomp sends “packets” that represent system calls to BPF

• BPF allows us to define rules to inspect each request and take an action
– Kill the task
– Disallow & send SIGSYS
– Return an error
– Allow

• Turned on via the prctl() – process control – system call

Seccomp is not a complete sandbox but is a tool for building sandboxes
– Needs to work with other components

• Namespaces, capabilities, control groups
– Potential for comprehension problems – BPF is very low level

14March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Apple Sandbox

• Create a list of rules that is consulted to see if an operation is permitted

• Components:

– Set of libraries for initializing/configuring policies per process

– Server for kernel logging

– Kernel extension using the TrustedBSD API for enforcing individual policies

– Kernel support extension providing regular expression matching for policy 

enforcement

• sandbox-exec command & sandbox_init function

– sandbox-exec: calls sandbox_init() before fork() and exec()
– sandbox_init(kSBXProfileNoWrite, SANDBOX_NAMED, errbuf);

15March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Apple sandbox setup & operation

sandbox_init:
– Convert human-readable policies into a binary format for the kernel

– Policies passed to the kernel to the TrustedBSD subsystem

– TrustedBSD subsystem passes rules to the kernel extension

– Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls

– System calls hooked by the TrustedBSD layer will pass through 

Sandbox.kext for policy enforcement

– The extension will consult the list of rules for the current process

– Some rules require pattern matching (e.g., filename pattern)

16March 20, 2019 CS 419 © 2019 Paul Krzyzanowski



CS 419 3/21/19

© 2017 Paul Krzyzanowski 3

Apple sandbox policies

Some pre-written profiles:
– Prohibit TCP/IP networking

– Prohibit all networking

– Prohibit file system writes

– Restrict writes to specific locations (e.g., /var/tmp)

– Perform only computation: minimal OS services

17March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Browser-based application sandboxing

18March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Web plug-ins
• External binaries that add capabilities to a browser

• Loaded when content for them is embedded in a page

• Examples: Adobe Flash, Adobe Reader, Java

Challenge:
How do you keep plugins from doing bad things?

19March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Chromium Native Client (NaCl)
• Browser plug-in designed for

– Safe execution of platform-independent untrusted native code in a browser
– Compute-intensive applications
– Interactive applications that use resources of a client

• Two types of code: trusted & untrusted
– Trusted code does not run in a sandbox
– Untrusted code has to run in a sandbox

• Untrusted native code 
– Built using NaCl SDK or any compiler that follows alignment rules and 

instruction restrictions
• GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
• Support for ARM 32-bit, x86-32, x86-64, MIPS32
• Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio

– NaCl statically verifies the code to check for use of privileged instructions

20March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Chromium Native Client (NaCl)
Two sandboxes

– Outer sandbox: restricts capabilities using system call interposition
– Inner sandbox: uses x86 segmentation to isolate memory among apps

• Uses static analysis to detect security defects in code; disallow self-modifying code

21

Browser

Untrusted 
program

Untrusted 
program

NaCl runtime

IPC NaCl sandbox syscall

Operating System

Native syscall Chrome sandbox syscall

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Portability
• Portable Native Client (PNaCl)

– Architecture independent
– Developers compile code once to run on any website & architecture
– Compiled to a portable executable (pexe) file
– Chrome translates pexe into native code prior to exectution

22March 20, 2019 CS 419 © 2019 Paul Krzyzanowski



CS 419 3/21/19

© 2017 Paul Krzyzanowski 4

Java sandbox

23March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Java Language

• Type-safe & easy to use
– Memory management and range checking

• Designed for an interpreted environment: JVM

• No direct access to system calls

24March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

Java Sandbox
1. Bytecode verifier: verifies Java bytecode before it is run

• Disallow pointer arithmetic
• Automatic garbage collection
• Array bounds checking
• Null reference checking

2. Class loader: determines if an object is allowed to add classes
• Ensures key parts of the runtime environment are not overwritten
• Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
• Defines the boundaries of the sandbox (file, net, native, etc. access)
• Consulted before any access to a resource is allowed

25March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

JVM Security
• Complex process

• 20+ years of bugs … hope the big ones have been found!

• Buffer overflows found in the C support library
– C support library buggy in general

• Generally, the JVM is considered insecure
– But Java in general is pretty secure

• Array bounds checking, memory management
• Security manager with access controls

– Use of native methods allows you to bypass security checks

26March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

The end

27March 20, 2019 CS 419 © 2019 Paul Krzyzanowski


