
Computer Security
05. Confinement

Paul Krzyzanowski

Rutgers University

Spring 2019

1February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Confinement: prepare for the worst
• We realize that an application may be compromised

– We want to run applications we may not completely trust

• Not always possible

• Limit an application to use a subset of the system’s resources

• Make sure a misbehaving application cannot harm the rest of the system

2February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

How about access control?

• Limit damage via access control
– E.g., run servers as a low-privilege user
– Proper read/write/search controls on files … or role-based policies

• ACLs don't address applications
– Cannot set permissions for a process: “don’t allow access to anything else”
– At the mercy of default (other) permissions

• We are responsible for changing protections of every file on the system
that could be accessed by other
– And hope users don’t change that
– Or use more complex mandatory access control mechanisms … if available

Not high assurance

3February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Compromised applications
• Some services run as root

• What if an attacker compromises the app and gets root access?
– Create a new account
– Install new programs
– “Patch” existing programs (e.g., add back doors)
– Modify configuration files or services
– Add new startup scripts (launch agents, cron jobs, etc.)
– Change resource limits
– Change file permissions (or ignore them!)
– Change the IP address of the system

4February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

We can regulate access to some resources
POSIX setrlimit() system call

– Maximum CPU time that can be used

– Maximum data size

– Maximum files that can be created

– Maximum memory a process can lock

– Maximum # of open files

– Maximum # of processes for a user

– Maximum amount of physical memory used

– Maximum stack size

5February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Other resources to protect
• CPU time

• Amount of memory used: physical & virtual

• Disk space

• Network identity & access

6February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Network identity

• Each system has an IP address unique to the network

• Compromised application can exploit address-based access control
– E.g., log in to remote machines that think you’re trusted

• Intrusion detection systems can get confused

7February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Application confinement goals
• Enforce security – broad access restrictions

• High assurance – know it works

• Simple setup – minimize comprehension errors

• General purpose – works with any (most) applications

We don’t get all of this …

8February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

chroot: the granddaddy of confinement
• Oldest confinement mechanism

• Make a subtree of the file system the root for a process

• Anything outside of that subtree doesn’t exist

9

bin dev etc home local

access cgi-bin html

/

httpd

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

chroot: the granddaddy of confinement
• Only root can run chroot
chroot /local/httpd change the root
su httpuser change to a non-root user

• The root directory is now /local/httpd
– Anything above it is not accessible

10

bin dev etc home local

access cgi-bin html

/

httpd

“chroot jail”

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Jailkits
• If programs within the jail need any utilities, they won’t be visible

– They’re outside the jail
– Need to be copied
– Ditto for shared libraries

• Jailkit (https://olivier.sessink.nl/jailkit/)
– Set of utilities that build a chroot jail
– Automatically assembles a collection of directories, files, & libraries
– Place the bare minimum set of supporting commands & libraries

• The fewer executables live in a jail, the less tools an attacker will have to use
– Contents

• jk_init: create a jail using a predefined configuration
• jk_cp: copy files or devices into a jail
• jk_chrootsh: places a user into a chroot jail upon login
• jk_lsh: limited shell that allows the execution only of commands in its config file
• …

11

https://olivier.sessink.nl/jailkit/

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Problems?
• Does not limit network access

• Does not protect network identity

• Applications are still vulnerable to root compromise

• chroot must be available only to root
If not…
– Create a jail directory mkdir /tmp/jail
– Create a link to the su command ln /bin/su /tmp/jail/su
– Copy or link libraries & shell …
– Create an /etc directory mkdir /tmp/jail/etc
– Create password file(s) with a known password for root
– Enter the jail chroot /tmp/jail
– su root – su will validate against the password file in the jail!

12February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Escaping a chroot jail
If you can become root in a jail, you have access to all system calls

Example: create a device file for the disk
– On Linux/Unix/BSD, all non-network devices have filenames
– Even memory has a filename (/dev/mem)

• Create a memory device (mknod system call)
– Change kernel data structures to remove your jail

• Create a disk device to access your raw disk
– Mount it within your jail and you have access to the whole file system
– Get what you want, change the admin password, …

• Send signals to kill other processes
(doesn’t escape the jail but causes harm to others)

• Reboot the system

13February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

chroot summary
• Good confinement

• Imperfect solution

• Useless against root

• Setting up a working environment takes some work (or use jailkit)

14February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

FreeBSD Jails

• Enhancement to chroot

• Run via
jail jail_path hostname ip_addr command

• Main ideas:
– Confine an application, just like chroot
– Restrict what operations a process within a jail can perform, even if root

15

https://www.freebsd.org/doc/en/books/arch-handbook/jail.html

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

FreeBSD Jails: Differences from chroot

• Network restrictions

– Jail has its own IP address

– Can only bind to sockets with a specified IP address and authorized ports

• Processes can only communicate with processes inside the jail

– No visibility into unjailed processes

• Hierarchical: create jails within jails

• Root power is limited

– Cannot load kernel modules

– Ability to disallow certain system calls

• Raw sockets

• Device creation

• Modifying network configuration

• Mounting/unmounting file systems

• set_hostname

16

https://www.freebsd.org/doc/en/books/arch-handbook/jail.html

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Problems
• Coarse policies

– All or nothing access to parts of the file system
– Does not work for apps like a web browser

• Needs access to files outside the jail (e.g., saving files, uploading attachments)

• Does not prevent malicious apps from
– Accessing the network & other machines
– Trying to crash the host OS

• BSD Jails is a BSD-only solution

• Pretty good for running things like DNS servers and web servers

• Not all that useful for user applications

17February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux Namespaces

• chroot only changed the root of the filesystem namespace

• Linux provides control over the following namespaces:

18

See namespaces(7)

IPC System V IPC, POSIX

message queues

Objects created in an IPC namespace are visible to all

other processes only in that namespace

Network Network devices, stacks,

ports

Isolates IP protocol stacks, IP routing tables, firewalls,

socket port #s

Mount Mount points
Mount points can be different in different processes

PID Process IDs
Different PID namespaces can have the same PID –

child cannot see parent processes or other namespaces

User User & group IDs
Per-namespace user/group IDs. You can be root in a

namespace with restricted privileges

UTS Hostname and NIS domain

name

sethostname and setdomainname affect only the

namespace

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux Namespaces
Unlike chroot, unprivileged users can create namespaces

• unshare()
– System call that dissociates parts of the process execution context
– Examples

• Unshare IPC namespace, so it’s separate from other processes
• Unshare PID namespace, so the thread gets its own PID namespace for its children

• clone() – system call to create a child process
– Like fork() but allows you to control what is shared with the parent

• Open files, root of the file system, current working directory, IPC namespace,
network namespace, memory, etc.

• setns() – system call to associate a thread with a namespace
– A thread can associate itself with an existing namespace in /proc/[pid]/ns

19February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux Capabilities

How do we restrict what root can do in a namespace?

• UNIX systems distinguished privileged vs. unprivileged processes

– Privileged = UID 0 = root ⇒ kernel bypasses all permission checks

• If we can provide limited elevation of privileges to a process:

– If a process becomes root, it would still be limited in what it could do

– E.g., no ability to set UID to root, no ability to mount filesystems

20

N.B.: These capabilities have nothing to do with capability lists

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux Capabilities
We can explicitly grant subsets of privileges that root users get

• Linux divides privileges into 38 distinct controls, including:
CAP_CHOWN: make arbitrary changes to file owner and group IDs
CAP_DAC_OVERRIDE: bypass read/write/execute checks
CAP_KILL: bypass permission checks for sending signals
CAP_NET_ADMIN: network management operations
CAP_NET_RAW: allow RAW sockets
CAP_SETUID: arbitrary manipulation of process UIDs
CAP_SYS_CHROOT: enable chroot

• These are per-thread attributes
– Can be set via the prctl system call

21February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Linux Control Groups (cgroups)

Limit the amount of resources a process tree can use

• CPU, memory, block device I/O, network
– E.g., a process tree can use at most 25% of the CPU
– Limit # of processes within a group

• Interface = cgroup file system: /sys/fs/cgroup

Namespaces + cgroups + capabilities = lightweight process virtualization
– Process gets the illusion that it is running on its own Linux system, isolated

from other processes

Vulnerabilities
• Bugs have been found

– User namespace: unprivileged user was able to get full privileges

• But comprehension is a bigger problem
– Namespaces do not prohibit a process from making privileged system calls

• They control resources that those calls can manage
• The system will see only the resources that belong to that namespace

– User namespaces grant non-root users increased access to system capabilities
• Design concept: instead of dropping privileges from root, provide limited elevation to

non-root users

– A real root process with its admin capability removed can restore it
• If it creates a user namespace, the capability is restored to the root user in that

namespace – although limited in function

23February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Summary

• chroot

• FreeBSD Jails

• Linux namespaces, capabilities, and control groups
– Control groups

• Allow processes to be grouped together – control resources for the group
– Capabilities

• Limit what root can do for a process & its children
– Namespaces

• Restrict what a process can see & who it can interact with:
PIDs, User IDs, mount points, IPC, network

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 24

Containers

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 25

Motivation for containers

• Installing software packages can be a pain
– Dependencies

• Running multiple packages on one system can be a pain
– Updating a package can update a library or utility another uses

• Causing something else to break
– No isolation among packages

• Something goes awry in one service impacts another

• Migrating services to another system is a pain
– Re-deploy & reconfigure

26February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

How did we address these problems?

• Sysadmin effort
– Service downtime, frustration, redeployment

• Run every service on a separate system
– Mail server, database, web server, app server, …
– Expensive! … and overkill

• Deploy virtual machines
– Kind of like running services on separate systems
– Each service gets its own instance of the OS and all supporting

software
– Heavyweight approach

• Time share between operating systems

27February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

What are containers?

Containers: created to package & distribute software
– Focus on services, not end-user apps
– Software systems usually require a bunch of stuff:

• Libraries, multiple applications, configuration tools, …
– Container = image containing the application environment

• Can be installed and run on any system

Key insight:
Encapsulate software, configuration, & dependencies into
one package

28February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

A container feels like a virtual machine

• Separate
– Set of apps
– Process space
– Network interface
– Network configuration
– Libraries, …

• But limited root powers

• And …
All containers on a system share the same OS & kernel
modules

29February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

How are containers built?
• Control groups

– Meters & limits on resource use
• Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority)

• Namespaces
– Isolates what processes can see & access
– Process IDs, host name, mounted file systems, users, IPC
– Network interface, routing tables, sockets

• Capabilities
– Keep root ID but enumerate what it is allowed to do

• Copy on write file system
– Instantly create new containers without copying the entire package
– Storage system tracks changes

• AppArmor
– Pathname-based mandatory access controls
– Confines programs to a set of listed files & capabilities

30February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Initially … Docker
• First super-popular container

• Designed to provide Platform-as-a-Service capabilities
– Combined Linux cgroups & namespaces into a single easy-to-use

package
– Enabled applications to be deployed consistently anywhere as one

package

• Docker Image
– Package containing applications & supporting libraries & files
– Can be deployed on many environments

• Make deployment easy
– Git-like commands: docker push, docker commit, ...
– Make it easy to reuse image and track changes
– Download updates instead of entire images

• Keep Docker images immutable (read-only)
– Run containers by creating a writable layer to temporarily store runtime

changes
31February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Later Docker additions

• Docker Hub: cloud based repository for docker images

• Docker Swarm: deploy multiple containers as one
abstraction

32February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Not Just Linux

• Microsoft introduced Containers in Windows Server 2016

and support for Docker

• Windows Server Containers

– Assumes trusted applications

– Misconfiguration or design flaws may permit an app to escape its

container

• Hyper-V Containers

– Each has its own copy of the Windows kernel & dedicated memory

– Same level of isolation as in virtual machines

– Essentially a VM that can be coordinated via Docker

– Less efficient in startup time & more resource intensive

– Designed for hostile applications to run on the same host

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 33

Container Orchestration

• We wanted to manage containers across systems

• Multiple efforts
– Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker

Swarm, …

• Google designed Kubernetes for container orchestration
– Google invented Linux control groups
– Standard deployment interface
– Scale rapidly (e.g., Pokemon Go)
– Open source (unlike Docker Swarm)

34February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Container Orchestration

Kubernetes orchestration
– Handle multiple containers and start each one at the right time
– Handle storage
– Deal with hardware and container failure

• Automatic restart & migration

– Add or remove containers in response to demand
– Integrates with the Docker engine, which runs the actual container

35February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Containers & Security

Primary goal was software distribution, not security

– Makes moving & running a collection of software simple
• E.g., Docker Container Format

– Everything at Google is deployed & runs in a container
• Over 2 billion containers started per week (2014)
• lmctfy (“Let Me Contain That For You”)

– Google’s old container tool – similar to Docker and LXC (Linux Containers)
• Then Kubernetes to manage multiple containers & their storage

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 36

Containers & Security
But there are security benefits

– Containers use namespaces, control groups, & capabilities
• Restricted capabilities by default
• Isolation among containers

– Containers are usually minimal and application-specific
• Just a few processes
• Minimal software & libraries
• Fewer things to attack

– They separate policy from enforcement
– Execution environments are reproducible

• Easy to inspect how a container is defined
• Can be tested in multiple environments

– Watchdog-based restarting: helps with availability
– Containers help with comprehension errors

• Decent default security without learning much
• Also ability to enable other security modules

37February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Some things to watch out for
• Privileges & escaping the container

– Privileged containers map uid 0 to the host’s uid 0
Prevention of escape is based on MAC (apparmor), capabilities & namespace
configuration

– Unprivileged containers map uid 0 to an unprivileged user outside the
container
No possibility of root escalation

• DoS attacks possible
– Untrusted users may launch attacks within containers
– Cgroup limits are often not configured

• Users in multiple containers may share the same real ID
– If users map to the same parent ID, they share all the limits of that ID
– A user in one container can perform a DoS attack on another user

• Network spoofing
– A container can transmit raw ethernet packets and spoof any service

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 38

Security Concerns
• Kernel exploits

– All containers share the same kernel

• Denial of service attacks
– If one container can monopolize a resource, others suffer

• Privilege escalation
– Shouldn't happen with capabilities ... But there might be bugs

• Origin integrity
– Where is the container from and has it been tampered?

39February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Machine Virtualization

40February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Machine Virtualization
Normally all hardware and I/O managed by one operating system

Machine virtualization
– Abstract (virtualize) control of hardware and I/O from the OS
– Partition a physical computer to act like several real machines

• Manipulate memory mappings
• Set system timers
• Access devices

– Migrate an entire OS & its applications from one machine to another

1972: IBM System 370
– Allow kernel developers to share a computer

41February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Why are VMs popular?

• Wasteful to dedicate a computer to each service
– Mail, print server, web server, file server, database

• If these services run on a separate computer
– Configure the OS just for that service
– Attacks and privilege escalation won’t hurt other services

42February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Hypervisor

Hypervisor: Program in charge of virtualization

– Aka Virtual Machine Monitor
– Provides the illusion that the OS has full access to the hardware
– Arbitrates access to physical resources
– Presents a set of virtual device interfaces to each host

43February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Machine Virtualization
An OS is just a bunch of code!

• Privileged vs. unprivileged instructions

• If regular applications execute privileged instructions, they trap

• Operating systems are allowed to execute privileged instructions

• If running kernel code, the VMM catches the trap and emulates the
instruction
– Trap & Emulate

44February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Hypervisor

Application or Guest OS runs until:
– Privileged instruction traps
– System interrupts
– Exceptions (page faults)
– Explicit call: VMCALL (Intel) or VMMCALL (AMD)

45

Hypervisor (Virtual Machine Monitor)

Operating System & Applications

MMU emulation
CPU instruction

or device
emulation

I/O emulation

Page
Fault

Instruction
Fault

Virtual
IRQ

Unprivileged

Privileged

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Hardware support for virtualization

Root mode (Intel example)
– Layer of execution more privileged than the kernel

apps

Guest OS

VMM

hardware

Non-root mode
privilege levels

Root mode
privilege level

OS traps to VMM

RING 0

RING 1

RING 2

RING 3apps

Guest OS RING 0

RING 1

RING 2

RING 3

Without virtualization

47

sy
sc

al
l

Guest mode
privilege level

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

VMM performs
emulation of request

Architectural Support

• Intel Virtual Technology

• AMD Opteron

Guest mode execution: can run privileged instructions directly
– E.g., a system call does not need to go to the VM

– Certain privileged instructions are intercepted as VM exits to the VMM

– Exceptions, faults, and external interrupts are intercepted as VM exits

– Virtualized exceptions/faults are injected as VM entries

48February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

CPU Architectural Support
• Setup

– Turn VM support on/off
– Configure what controls VM exits
– Processor state

• Saved & restored in guest & host areas

• VM Entry: go from hypervisor to VM
– Load state from guest area

• VM Exit
– VM-exit information contains cause of exit
– Processor state saved in guest area
– Processor state loaded from host area

49February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Two Approaches to Running VMs

1. Native VM (hypervisor model)

2. Hosted VM

50February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Native Virtual Machine

Native VM (or Type 1 or Bare Metal)
– No primary OS
– Hypervisor is in charge of access to the devices and scheduling
– OS runs in “kernel mode” but does not run with full privileges

Applications

OS

Virtual Machine

Virtual Machine Monitor (Hypervisor)

Applications

OS

Virtual Machine

Applications

OS

Virtual Machine

Physical Machine

51

Example:
VMware ESX

Device driver

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Hosted Virtual Machine
Hosted VM

– VMM runs without special privileges
– Primary OS responsible for access to the raw machine

• Lets you use all the drivers available for that primary OS
– Guest operating systems run under a VMM
– VMM invoked by host OS

• Serves as a proxy to the host OS for access to devices

Applications

Host OS VM Driver

Applications

Guest OS

VMM

Physical Machine

52

Example:
VMware

Workstation

Device driver

Device emulation

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Security Benefits

• Virtual machines provide isolation of operating systems

• Attacks & malware can target the guest OS & apps

• Malware cannot escape from the infected VM
– If a guest OS is compromised or fails

• the host and other OSes are unaffected
• The ability of other OSes to access resources is unaffected
• The performance of other OSes is unaffected

– Cannot infect the host OS
– Cannot infect the VMM
– Cannot infect other VMs on the same computer

53February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Security Benefits

• Recovery from snapshots
– Easy to revert to a previous version of the system

• Easy to replicate virtual machines
– Treat the system as a virtual “appliance”
– If it gets infected with malware, just start another appliance

• Operate as a test environment
– Great for testing suspicious software
– See what files have been modified
– Compare before/after states
– Restore to pre-installed state

54February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Covert Channels

55

Classified VM Public VM

Classified

Data
Malware

Malware

Listener

VMM

1. Malware can perform CPU-intensive task at specific times

2. Listener can do CPU-intensive tasks and measure completion times

This allows malware to send a bit pattern:

malware working = 1 = slowdown on listener
Depends on scheduler but there are other mechanisms too… like memory access

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Covert channel
– Secret communication channel

between components that are not

allowed to communicate

Side channel attack
– Communication using some aspect

of a system's behavior

Sandboxes

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 56

Untrusted applications

• Jail / container / VM solutions
– Great for running services

• Not really useful for applications
– These need to be launched by users & interact with their environment

57

The sandbox

• A restricted area where code can play in

• Allow users to download and execute untrusted applications with limited
risk

• Restrictions can be placed on what an application is allowed to do in its
sandbox

• Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
… but we want to focus on giving users the ability to run apps

sand•box, ’san(d)-"bäks, noun. Date: 1688
: a box or receptacle containing loose sand: as
a: a shaker for sprinkling sand on wet ink b: a
box that contains sand for children to play in

58February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

System Call Interposition
• System calls interface with resources

– An application must use system calls to access any resources, initiate attacks
… and cause any damage
• Modify/access files/devices: creat, open, read, write, unlink, chown, chgrp, chmod, …
• Access the network: socket, bind, connect, send, recv

• Interposition
– Intercept & inspect an app’s system calls

59February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Example: Janus
App sandboxing tool implemented as a loadable kernel module

60

User space

Kernel space

Application Environment

Process
Process

Process

System call entry
mod_janus

Janus

Policy
Engine

open(“file.txt”) result

Kernel

result
Deny

open(“file.txt”)

Allow
open(“file.txt”)

op
en

(“f
ile

.tx
t”)

A
llo

w
 /

D
en

y
February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Example: Janus
• Policy file defines allowable files and network operations

• Dedicated policy per process
– Policy engine reads policy file
– Forks
– Child process execs application
– All accesses to resources are screened by Janus

• System call entry points contain hooks
– Redirect control to mod_Janus
– Module tells the user-level Janus process that a system call has been

requested
• Process is blocked
• Janus process queries the module for details about the call
• Makes a policy decision

61February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Implementation Challenge

Janus has to mirror the state of the operating system!

• If process forks, the Janus monitor must fork

• Keep track of the network protocol

– socket, bind, connect, read/write, shutdown

• Does not know if certain operations failed

• Gets tricky if file descriptors are duplicated

• Remember filename parsing?

– We have to figure out the whole dot-dot (..) thing!

– Have to keep track of changes to the current directory too

• App namespace can change if the process does a chroot

• What if file descriptors are passed via Unix domain sockets?

– sendmsg, recvmsg

• Race conditions: TOCTTOU

62February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Web plug-ins
• External binaries that add capabilities to a browser

• Loaded when content for them is embedded in a page

• Examples: Adobe Flash, Adobe Reader, Java

63February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Chromium Native Client (NaCl)
• Designed for

– Safe execution of platform-independent untrusted native code in a browser
– Compute-intensive applications
– Interactive applications that use resources of a client

• Two types of code: trusted & untrusted
– Untrusted has to run in a sandbox
– Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio

• Untrusted native code
– Built using NaCl SDK or any compiler that follows alignment rules and

instruction restrictions
• GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
• 32-bit x86 support

– NaCl statically verifies the code to check for use of privileged instructions

64February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Chromium Native Client (NaCl)
Two sandboxes

– Outer sandbox: restricts capabilities using system call interposition
– Inner sandbox: uses x86 segmentation to isolate memory among apps

65

Browser

Untrusted programUntrusted program

NaCl runtime

IPC NaCl sandbox syscall

Operating System

Native syscall Chrome sandbox syscall

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Java Language

• Type-safe & easy to use
– Memory management and range checking

• Designed for an interpreted environment: JVM

• No direct access to system calls

66February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Java Sandbox
1. Bytecode verifier: verifies Java bytecode before it is run

• Disallow pointer arithmetic
• Automatic garbage collection
• Array bounds checking
• Null reference checking

2. Class loader: determines if an object is allowed to add classes
• Ensures key parts of the runtime environment are not overwritten
• Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
• Defines the boundaries of the sandbox (file, net, native, etc. access)
• Consulted before any access to a resource is allowed

67February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

JVM Security

• Complex process

• ~20 years of bugs … hope the big ones have been found!

• Buffer overflows found in the C support library
– C support library buggy in general

• Generally, the JVM is considered insecure
– But Java in general is pretty secure

• Array bounds checking, memory management
• Security manager with access controls

– Use of native methods allows you to bypass security checks

68February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

OS-Level Sandboxes

Example: the Apple Sandbox

• Create a list of rules that is consulted to see if an operation is permitted

• Components:
– Set of libraries for initializing/configuring policies per process
– Server for kernel logging
– Kernel extension using the TrustedBSD API for enforcing individual policies
– Kernel support extension providing regular expression matching for policy

enforcement

• sandbox-exec command & sandbox_init function
– sandbox-exec: calls sandbox_init() before fork() and exec()
– sandbox_init(kSBXProfileNoWrite, SANDBOX_NAMED, errbuf);

69February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Apple sandbox setup & operation

sandbox_init:
– Convert human-readable policies into a binary format for the kernel

– Policies passed to the kernel to the TrustedBSD subsystem

– TrustedBSD subsystem passes rules to the kernel extension

– Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls

– System calls hooked by the TrustedBSD layer will pass through

Sandbox.kext for policy enforcement

– The extension will consult the list of rules for the current process

– Some rules require pattern matching (e.g., filename pattern)

70February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Apple sandbox policies

Some pre-written profiles:
– Prohibit TCP/IP networking

– Prohibit all networking

– Prohibit file system writes
– Restrict writes to specific locations (e.g., /var/tmp)

– Perform only computation: minimal OS services

71February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

Virtual Machines

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 72

Virtual CPUs (sort of)

What time-sharing operating systems give us

• Each process feels like it has its own CPU & memory
– But cannot execute privileged CPU instructions

(e.g., modify the MMU or the interval timer, halt the processor, access I/O)

• Illusion created by OS preemption, scheduler, and MMU

• User software has to “ask the OS” to do system-related functions

• Containers, BSD Jails, namespaces give us operating system-level
virtualization

February 18, 2019 CS 419 © 2019 Paul Krzyzanowski 73

Process Virtual Machines

CPU interpreter running as a process

• Pseudo-machine with interpreted instructions
– 1966: O-code for BCPL
– 1973: P-code for Pascal
– 1995: Java Virtual Machine (JIT compilation added)
– 2002: Microsoft .NET CLR (pre-compilation)
– 2003: QEMU (dynamic binary translation)
– 2008: Dalvik VM for Android
– 2014: Android Runtime (ART) – ahead of time compilation

• Advantage: run anywhere, sandboxing capability

• No ability to even pretend to access the system hardware
– Just function calls to access system functions
– Or “generic” hardware

74February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

The end

75February 18, 2019 CS 419 © 2019 Paul Krzyzanowski

