CS419: Computer Security

—
Computer Security
08. Authentication
Paul Krzyzanowski
Rutgers University
Fall 2019
\\ -
1
P
Cryptographic Authentication
-
3

=
Mutual authentication

+ Alice had Bob prove he has the key
» Bob may want to validate Alice as well
+ Bob will do the same thing

— Have Alice prove she has the key

« Pre-shared key: Alice encrypts the nonce with the key
« Public key: Alice encrypts the nonce with her private key

.

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski

5

CS 419: Computer Security

11/2/19

s

Authentication

* |dentification: who are you?
« Authentication: prove it
* Authorization: you can do it

Some protocols (or services) combine all three

Noverber 2, 2019 ©S 419 ©2019 Paul Krzyzanowski

Basic concept: prove you have the key

Ask the other side to prove they can encrypt or decrypt a
message with the key

Createanonce,n — T

(random bunch of bits)
Ex(n) Encrypt the nonce with
Validate the result: the shared key, K

Dk(Ex(n)) £ K

This assumes a pre-shared key and symmetric cryptography.
After that, Alice can encrypt & send a session key.
Minimize the use of the pre-shared key.

Noverber 2, 2019 €5419©2019 Paul Krzyzanowski

Combined authentication & key exchange

-

Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
— Alice wants to talk to Bob: she asks Trent
« Trent generates a session key encrypted for Alice
« Trent encrypts the same key for Bob (ticket)
— Authentication is implicit:
+ If Alice can decrypt the session key, she proved she knows her key
« If Alice can decrypt the session key, he proved he knows his key
— Weaknesses that we need address fix:
+ Replay attacks — add nonces — Needham-Schroeder protocol

+ Replay attacks re-using a cracked old session key
- Add timestamps: Denning-Sacco protocol, Kerberos
- Add session IDs at each step: Otway-Rees protocol

Noverber 2, 2019 €S 419©2019 Paul Krzyzanowski

6

CS419: Computer Security

11/2/19

Key exchange algorithms

Novermber 2, 2019

CS 419 ©2019 Paul Krzyzanowski 7

Bootstrap problem

» How to Alice & Bob communicate securely?

+ Alice cannot send a key to Bob in the clear
— We assume an unsecure network

* We looked at two mechanisms:
— Diffie-Hellman key exchange
— Public key cryptography

* Let’s examine the problem some more

Novermber 2, 2019 €S 419 ©2019 Paul Krzyzanowski 9

Problems

« How does Bob know he is talking to Alice?
— Trusted third party, Trent, has all the keys
— Trent knows the request came from Alice since only he and Alice can have
the key
— Trent can authorize Alice’s request

— Bob gets a message (session key) encrypted with his key, which only Trent
could have created

« But Bob doesn’t know who requested the session
« Trent would have to add sender information to the message

* Vulnerable to replay attacks
— Eve records the message from Alice to Bob and later replays it
— Bob might think he’s talking to Alice, reusing the same session key

« Protocols should provide authentication & defend against replay

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski 11

11

CS 419: Computer Security

(R\
Security Protocol Notation
Z||w
— Z concatenated with W
X—Y:{Z||W}kss
— X'sends a message to Y
— The message is the concatenation of Z & W and is encrypted by
key ka g, which is shared by users A & B
X—=>Y {ZYka || {W}Kay
— X sends a message to Y
— The message is a concatenation of Z encrypted using A’s key and
W encrypted by a key shared by Aand Y
ry, ra
— nonces — strings of random bits
- J
Noveroer2, 2019 C5 419 ©2019 Paul Kzyzanowsi s
8
e . N
Simple Protocol
Use a trusted third party — Trent — who has all the keys
Trent transmits a session key to Alice and Bob
{ Request session key to Bob } ka
Alice Trent
ks } ka |l {ks} ks
Alice {ejlafi{ks) Trent
{ks} ks
Alice Bob
{m}ks
Alice Bob
- J
Novemoer2, 2019 5419 ©2019 Paul Kizyzanowsia 10
10
(. N
Needham-Schroeder
Add nonces — random strings — avoid replay attacks
{Alice || Bob || r1}
@ Alice Trent
, { Alice || Bob || r1 || ks || { Alice || ks } ks } ka
@ Alice Trent
{Alice || ks } ks
Q) Alice Bob
{r2} ks
® Aice Bob
{rz—=1}ks
® Alice Bob
. J
Noverber 2, 2019 541902019 Paul Kizyzanowse P
12

CS419: Computer Security

11/2/19

(Needham-Shroeder

Add nonces — random strings — avoid replay attacks

« Alice knows only Bob & Trent can

read this and get the session key.
« Bob knows it's a request from
Alice

a response to the first message (contains r1).

Message must have been created by Trent & is
Use of r1 ensures it's not a replay attack.

{Alice || Bob || r1}

Trent
{ Alice || Bob || r1 || ks || { Alice || & })B}/k,q
Trent

+ Bob now tries to find out if this is a
. replay attack
{Alice || ks } ks « If itis, Eve cannot decipher r2

Novermber 2, 2019 CS 419 ©2019 Paul Krzyzanowski 13

Q) Alce Boh
This is an authentication step:
{r2} ks Bob asks Alice to prove she has ks
® Alice Bob
{rz—1}ks
® Alice Bob
I\ J

[Needham-Schroeder Protocol Vulnerability

Needham-Schroeder is still vulnerable to a certain
* We assume all keys are secret replay attack ... if an old session key is known!

» But suppose Eve can obtain the session key from an old message
(she worked hard, got lucky, and cracked an earlier message)

Bob sees this as a legitimate
request approved by Trent. It was
(but earlier)!

{Alice || ks } ke

B Eve Bob
{r2} ks

® Eve Bob
{rz—1}ks

® Eve Bob

Eve the eavesdropper. She decrypted an qld session key and
is trying to get Bob to use it to think he's talking to Alice.

13

=
Denning-Sacco Solution

* Problem: replay in the third step of the protocol
— Eve replays the message: { Alice || ks } kg

+ Solution: use a time stamp T to detect replay attacks
— The trusted third party (Trent) places a timestamp in a message
that is encrypted for Bob
— The attacker has an old session key but not Alice’s, Bob’s or Trent’s
keys
— Cannot spoof a valid message that is encrypted for Bob.

Novermber 2, 2019 €S 419 ©2019 Paul Krzyzanowski 15

. J

15

~
Problem with timestamps

.

Use of timestamps relies on synchronized clocks
— Messages may be falsely accepted or falsely rejected because of bad time

.

Time synchronization becomes an attack vector
— Create fake NTP responses
— Generate fake GPS signals

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski 17

. J

17

CS 419: Computer Security

- J
Noveroer2, 2019 C5 419 ©2019 Paul Kzyzanowsia T
14
r .
Needham-Shroeder w/Denning-Sacco mods
Add nonces — random strings — AND a timestamp
{Alice || Bob || r1}
Alice Trent
X {Alice || Bob || r1 || ks || { Alice || T || ks } kz } ka
Alice Trent
{Alice || T| ks } ka
Alice Bob
{r2} ks
Alice Bob
{rz—1}ks
Alice Bob
. J
Novemoer2, 2019 541902019 Paul Kzyzanowsid ©
16
(. . N
Otway-Rees Protocol: Session IDs
« Another way to correct the third message replay problem
* Instead of using timestamps
— Use a random integer, n, that is associated with all messages in the
key exchange
* The protocol is altered slightly
— Alice first sends a message to Bob
» The message contains the session ID & nonce encrypted with Alice’s
secret key
— Bob forwards the message to Trent
« And creates a message containing a nonce & the same session ID
encrypted with Bob’s secret key
— Trent creates a session key & encrypts it for both Alice and for Bob
& J
Novermber 2, 2019 541962019 Paul Kzyzanowskd)
18

CS419: Computer Security

11/2/19

-
Kerberos
-
Noveroer2, 2019 C5 419 ©2019 Paul Kzyzanowsia »
20
e
Kerberos
Users and services authenticate themselves to each other
To access a service:
— user presents a ticket issued by the Kerberos authentication server
— service examines the ticket to verify the identity of the user
Kerberos is a trusted third party
— Knows all (users and services) passwords
— Responsible for
« Authentication: validating an identity
« Authorization: deciding whether someone can access a service
« Key exchange: giving both parties an encryption key (securely)
.
November 2, 2019 541902019 Paul Kzyzanowsid 2
22

=
Authenticate, get permission

Alice

Authentication Server (AS)
P
“I'm Alice and want to talk to Bob” W (

{“Alice” || Bob } }—»

If Alice is allowed to talk to Bob,

generate session key, S
{“Bob’s server”, T, ks } ka

Alice decrypts this:

* Gets ID of “Bob’s server”

* Gets session key & timestamp
* Knows message came from AS

—]

eh? (Alice can’t read this!)
L

TICKET
sealed envelope

—

{“Alice”, T, ks } kg

-

Noverber 2, 2019 €S 419©2019 Paul Krzyzanowski 2

s N
Otway-Rees Protocol
Use nonces (I'1, r2) & session IDs (n) Alice sends the communication
request to Bob — with the session ID
Bob authenticates himself &
forwards request to Trent
n || Alice || Bob || {rs || n || Alice || Bob } ka
Alice Bob
n || Alice || Bob || {r7 || n || Alice || Bob } ka
Trent
ren {21 n | Alice || Bob } ke Bob
Trent n || {rr| ks}ka || {rz|| ks} ks Bob
n |l {rrll ks} ka
Alice Bob
N J
19
s N
Kerberos
+ Authentication service developed by MIT
— project Athena 1983-1988
* Uses a trusted third party & symmetric cryptography
» Based on Needham Schroeder with the Denning Sacco
modification
» Passwords not sent in clear text
— assumes only the network can be compromised
N J
21
s N
Kerberos
* User Alice wants to communicate with a service Bob
* Both Alice and Bob have keys
* Step 1:
— Alice authenticates with Kerberos server
« Gets session key and ticket (sealed envelope)
* Step 2:
— Alice gives Bob the ticket, which contains the session key
— Convinces Bob that she got the session key from Kerberos
N J
23

CS 419: Computer Security

24

CS419: Computer Security

11/2/19

s

Send key

-

A J J

Alice Bob

Alice encrypts a timestamp with

session key
_‘ {“Alice”, S} kg || { T’} ks }—'

sealed envelope

Bob decrypts envelope:

« Envelope was created by
Kerberos on request from Alice

« Gets session key

Decrypts time stamp
« Validates time window
« Prevent replay attacks

November 2, 2019 ©S 419 ©2019 Paul Kizyzanowski 2

=
Authenticate recipient of message

Alice Bob

~

Encrypt Alice’s timestamp in return

message

{T+1}ks

—

Alice validates timestamp

—

{Messages} ks }—

Alice & Bob communicate
by encrypting data with S

J

-

November 2, 2019

©S419©2019 Paul Kzyzanowski

25

26

Kerberos key usage

« Every time a user wants to access a service

— User’s password (key) must be used to decode the message from
Kerberos

» We can avoid this by caching the password in a file
— Not a good idea

 Another way: create a temporary password
— We can cache this temporary password
— Similar to a session key for Kerberos — to get access to other services

— Split Kerberos server into
Authentication Server + Ticket Granting Server

Novermber 2, 2019 €S 419 ©2019 Paul Krzyzanowski 27

f Ticket Granting Server (TGS)

» TGS works like a temporary ID

« User first requests access to the TGS
— Contact Kerberos Authentication Server
« Knows all users & their secret keys
 User enters a password to do this
« Gets back a ticket & session key to the TGS — these can be cached

« To access any service
— Send a request to the TGS — encrypted with the TGS session key
along with the ticket for the TGS
— The ticket tells the TGS what your session key is
— It responds with a session key & ticket for that service

-

November 2, 2019 €S419©2019 Paul Krzyzanowski

27

Using Kerberos

$ kinit
Password: enter password

ask AS for permission (session key) to access TGS

Alice gets: ‘ {"TGS", S } ka
| {"Alice”, S ¥ kics
\ {T}ks
Compute key (A) from password to decrypt session key S
and get TGS ID.

‘ <— Session key

‘ < TGS Ticket

‘ <— Encrypted timestamp

You now have a ticket to access the Ticket Granting Service

J

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski 2

29

CS 419: Computer Security

28

[Using Kerberos

$ rlogin somehost

rlogin uses the TGS Ticket to request a ticket for the rlogin service
on somehost

Alice sends session key, S, to TGS

rlogin TGS

—{ {“Alice’, ks} kres, {T} ks |

Alice receives ion key for rl

in service & ticket to pass to rlogin service

— {rlogin@somehost’, kst ks | —

—

{“Alice”, ks} kr for rlogin

on somehost
&

S’ = session key

ticket for rlogin server

J

Noverber 2, 2019

€S 419©2019 Paul Krzyzanowski

0

30

CS419: Computer Security

11/2/19

Public Key Exchange

We did this
+ Alice’s & Bob’s public keys known to all: ea, es

day db
+ Simple protocol to send symmetric session key: ks

{ks}es

Alice

-

* Alice & Bob’s private keys are known only to the owner:

Bob

Novermber 2, 2019 ©S 419 ©2019 Paul Kizyzanowski

=
Problem

* Vulnerable to forgery or replay

* Public keys are known to anyone
— Bob has no assurance that Alice sent the message

« Fix: have Alice sign the session key

{{ks}da}es
Alice Bob

Key ks encrypted with Alice’s private key
Entire message encrypted with Alice’s public key

-

Noverber 2, 2019 ©S419©2019 Paul Krzyzanowski

31

(Problem #2

» How do we know we have the right public keys?
» Send a certificate so Bob can verify it

{{ks}da}es X

Alice

Add Alice’s certificate, which contains Alice’s
verifiable public key

.

Bob

November 2, 2019 €5 419 ©2019 Paul Kizyzanowski

33

(Cryptographic toolbox

» Symmetric encryption
* Public key encryption
+ Hash functions

* Random number generators

-

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski

35

CS 419: Computer Security

32

f Combined authentication & key exchange

« Basic idea with symmetric cryptography:

Use a trusted third party (Trent) that has all the keys

— Alice wants to talk to Bob: she asks Trent
« Trent generates a session key encrypted for Alice
« Trent encrypts the same key for Bob (ticket)

— Authentication is implicit:
« If Alice can decrypt the session key, she proved she knows her key
« If Alice can decrypt the session key, he proved he knows his key

— Weaknesses that we had to fix:
+ Replay attacks — add nonces — Needham-Schroeder protocol

+ Replay attacks re-using a cracked old session key
- Add timestamps (Denning-Sacco protocol, Kerberos)
~ Add session IDs at each step (Otway-Rees Protocol)

-

Noverber 2, 2019 €5419©2019 Paul Krzyzanowski

34

User Authentication

€S 419©2019 Paul Krzyzanowski

CS419: Computer Security

(Authentication

* Key, card

-

Three factors:

« Can be stolen

—Ownership: something you have

—Inherence: something you are
* Biometrics
« Usually needs hardware, can be copied (sometimes)
« Once copied, you're stuck

—Knowledge: something you know
* Passwords, PINs
« Can be guessed, shared, stolen

November 2, 2019

©S 419 ©2019 Paul Kizyzanowski

37

(Authentication: PAP

client

login, password

OK

« Unencrypted, reusable passwords
« Insecure on an open network

Password Authentication Protocol

server

« Also, the password file must be protected from open access

— But administrators can still see everyone’s passwords
What if you use the same password on Facebook as on Amazon?

name:password
database

- J
Novemer2, 2019 €S 41902019 Paut Kizyzanowsid a
e 1
Common Passwords
Adobe security breach (November 2013)
— 152 million Adobe customer records ... with encrypted passwords
— Adobe encrypted passwords with a symmetric key algorithm
— ... and used the same key to encrypt every password!
Top 26 Adobe Passwords
Frequency _ Password Froquency Password
1 1,911,938 123456 14 61,453 1234
2 446,162 123456789 15 56,744 adobe1
3 345,834 password 16 54,651 macromedia
4 211,659 adobe123 17 48,850 azerty
5 201,580 12345678 18 47,142 iloveyou
6 130,832 qwerty 19 44,281 aaaaaa
7 124,253 1234567 20 43,670 654321
8 113,884 1M1 21 43,497 12345
9 83,411 photoshop 22 37,407 666666
10 82,694 123123 23 35,325 sunshine
" 76,910 1234567890 24 34,963 123321
12 76,186 000000 25 33,452 letmein
13 70,791 abc123 26 32,549 monkey
. J

November 2, 2019

€S 418 ©2019 Paul Krzyzanowski

41

CS 419: Computer Security

11/2/19

(Multi-Factor Authentication

Factors may be combined
- ATM machine: 2-factor authentication (2FA)

*« ATM card something you have
* PIN something you know

- Password + code delivered via SMS: 2-factor authentication

« Password something you know
* Code validates that you possess your phone

Two passwords # Two-factor authentication

The factors must be different

November 2, 2019 ©S419©2019 Paul Kzyzanowski 38

(. J

38

Passwords are bad

* Human readable & easy to guess
— People usually pick really bad passwords
« Easy to forget
* Usually short
« Static ... reused over & over
— Security is as strong as the weakest link

— If a user name (or email) & password is stolen from one server, it might be
usable on others

* Replayable
— If someone can grab it or see it, they can play it back

Recent large-scale leaks of password from servers have shown that
people DO NOT pick good passwords

Noverber 2, 2019 €5419©2019 Paul Krzyzanowski a0

40

(i R
It's not getting better
Leaks have not convinced people to use good passwords
Rank 2012 2013 2014 2015 2016 2017 2018
1 password 123456 123456 123456 123456 123456 123456
2 123456 | password | password | password | password | password | Password
3 12345678 | 12345678 12345 | 12345678 12345 | 12345678 | 123456789
4 abc123 qwerty | 12345678 qwerty | 12345678 qwerty | 12345678
5 qerty abc123 querty 12345 football 12345 12345
6 monkey | 123456789 | 123456789 | 123456789 qwerty | 123456789 11111
7 letmein M1 1234 football | 1234567890 letmein 1234567
8 dragon | 1234567 | baseball 1234 | 1234567 | 1234567 | sunshine
Past seven years of top passwords from SplashData's list
hitps:/len wikipedia.orghvikilList_of_the_most_common_passwords
- J
Noverber 2, 2019 €5419 ©2019 Paul Krzyzanowski 2

42

CS419: Computer Security

11/2/19

=
Policies to the rescue?

« Password rules
“Everyone knows that an exclamation point is a 1, or
an |, or the last character of a password. $ is an S or
a 5. If we use these well-known tricks, we aren’t
fooling any adversary. We are simply fooling the
database that stores passwords into thinking the
user did something good”
— Paul Grassi, NIST

« Periodic password change requirements
— People tend to change passwords rapidly to
exhaust the history list and get back to their
favorite password
— Forbidding changes for several days enables a
denial of service attack

— People pick worse passwords, incorporating
numbers, months, or years

NIST recommendations

* Remove periodic password change
requirements

* Drop complexity requirements
(numbers, letters, symbols)

» Choose long passwords

* Avoid

— Passwords obtained from databases
of previous breaches

— Dictionary words
— Repetitive or sequential characters (e.g. ‘aaaaa’, ‘1234abcd’)

— Context-specific words, such as the name of the service, the
username, and derivatives thereof

-

https://pages.nist.gov/800-63-3/sp800-63b.htm

Noverber 2, 2019 ©S419©2019 Paul Krzyzanowski a4

Noveroer2, 2019 CS 419 ©2019 Paul Krzyzanowsi @
43
e
PAP: Reusable passwords
Problem #1: Open access to the password file
What if the password file isn’t sufficiently protected and an intruder gets
hold of it? All passwords are now compromised!
Even if a trusted admin sees your password, this might also be your
password on other systems.
How about encrypting the passwords?
« Where would you store the key?
« Adobe did that
— 2013 Adobe security breach leaked 152 million Adobe customer records
— Adobe used encrypted passwords
« But the passwords were all encrypted with the same key
« If the attackers steal the key, they get the passwords
-
November 2, 2019 €S 41902019 Paut Kizyzanowsid 4
45
e

What is a dictionary attack?

.

Suppose you got access to a list of hashed passwords

.

Brute-force, exhaustive search: try every combination

— Letters (A-Z, a-z), numbers (0-9), symbols (!\@#$%...)

— Assume 30 symbols + 52 letters + 10 digits = 92 characters

— Test all passwords up to length 8

— Combinations = 92° + 927 + 92° + 92° + 92* + 92° + 922 + 92" = 5.189 x 10'°
— If we test 1 billion passwords per second: = 60 days

.

But some passwords are more likely than others
— 1,991,938 Adobe customers used a password = “123456”
— 345,834 users used a password = “password”

.

Dictionary attack
— Test lists of common passwords, dictionary words, names
— Add common substitutions, prefixes, and suffixes

Easiest to do if the attacker steals a hashed password file —
so we read-protect the hashed passwords to make it harder to get them

(—

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski a7

47

CS 419: Computer Security

44

[PAP: Reusable passwords

Solution:
Store a hash of the password in a file
— Given a file, you don'’t get the passwords
— Have to resort to a dictionary or brute-force attack
— Example, passwords hashed with SHA-512 hashes (SHA-2)

-

November 2, 2019 €S419©2019 Paul Krzyzanowski 6

46

~
How to speed up a dictionary attack

Create a table of precomputed hashes
Now we just search a table for the hash to find the password

SHA-256 Hash password
3020 120200923adc609: 123456
04715 7360: 11ef721d1542d8 paSSWOrd

ef797c811 dd5d3f8c7623048c9c063d5: 2898a64f 12345678

1 1d79745c4631d09fff36c82aa3 3d7b336b63032

letmein

-

Noverber 2, 2019 €S 419©2019 Paul Krzyzanowski 48

48

CS419: Computer Security

11/2/19

s

Salt: defeating dictionary attacks

-

Salt = random string (typically up to 16 characters)
— Concatenated with the password
— Stored with the password file (it's not secret)
"am$7b22QL" + "password"

— Even if you know the salt, you cannot use precomputed hashes to
search for a password
(because the salt is prefixed to the password string)
Example: SHA-256 hash of “password”, salt = “am$7b22QL"=

hash("am$7b22QLpassword")=
7a87d1d5118873b1c16d30176936e1920f33b91d8be1517d5¢cc295dfd0268906

You will pot have a precomputed hash(“am$7b22QLpassword”)

Novermber 2, 2019 ©S 419 ©2019 Paul Kizyzanowski 49

49

Ve

Defenses

* Use longer passwords
— But can you trust users to pick ones with enough entropy?

* Rate-limit guesses
— Add timeouts after an incorrect password
« Linux waits about 3 secs — and terminates the login program after 5 tries

* Lock out the account after N bad guesses
— But this makes you vulnerable to denial-of-service attacks

+ Use a slow algorithm to make guessing slow

Novermber 2, 2019 €S 419 ©2019 Paul Krzyzanowski 51

51

Reusable passwords in multiple places

-

.

People often use the same password in different places

.

If one site is compromised, the password can be used elsewhere
— People often try to use the same email address and/or user name

.

This is the root of phishing attacks

.

Password managers
— Software that stores passwords in an encrypted file
— Do you trust the protection? The synchronization capabilities?
— Can malware get to the database?
— In general, these are good

« Way better than storing passwords in a file

« Encourages having unique passwords per site

« Password managers may have the ability to recognize web sites

& defend against phishing

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski 53

53

CS 419: Computer Security

()
Longer passwords
» English text has an entropy of about 1.2-1.5 bits per character
» Random text has an entropy = log,(1/95) = 6.6 bits/character
L Assume 95 printable characters
Noveroer2, 2019 C5 419 ©2019 Paul Kzyzanowsia s
50
(R
People forget passwords
« Especially seldom-used ones
* How do we handle that?
« Email them?
— Common solution
— Requires that the server be able to get the password (can’t store a hash)
— What if someone reads your email?
* Reset them?
— How do you authenticate the requester?
— Usually send reset link to email address created at registration
— But — what if someone reads your mail? ...or you no longer have that address?
« Provide hints?
« Write them down?
— OKif the threat model is electronic only
. J
November 2, 2019 541902019 Paul Kzyzanowsid 52
52
(N
& J
Novermber 2, 2019 541962019 Paul Kzyzanowskd 5

54

CS419: Computer Security

PAP: Reusable passwords

Problem #2: Network sniffing or shoulder surfing

a network:
— Snoop on telnet, ftp, rlogin, rsh sessions
— Trojan horse
— Social engineering
— Key logger, camera, physical proximity
— Brute-force or dictionary attacks

Solutions:
(1) Use an encrypted communication channel

(2) Use one-time passwords

Passwords can be stolen by observing a user’s session in person or over

(3) Use multi-factor authentication, so a password alone is not sufficient

11/2/19

~
One-time passwords

Use a different password each time
— If an intruder captures the transaction, it won’t work next time

Three forms
1. Sequence-based: password = f(previous password)
2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

-

November 2, 2019 ©S419©2019 Paul Kzyzanowski

56

f S/key authentication

Authenticate Alice for 100 logins

* pick random number, R

* using a one-way function, f{x):

X = f(R)
X2 = f{x1) = (R)) o
X3 = f{x) = AA(R))) G this st

X100 = f{Xeo) = (.. AAARY)))....)
« then compute:

Xio1 = f(x100) = (.. AAAR)))....)

-

November 2, 2019 €S419©2019 Paul Krzyzanowski

58

[S/key authentication

Alice presents the /ast number on her list:
Alice to host: { “alice”, X100 }

Host computes f(x100) and compares it with the value in
the database
if (X100 provided by alice) = passwd(“alice”)
replace x101 in db with x100 provided by alice
return success
else
fail

next time: Alice presents Xgg
If someone sees xiqo there is no way to generate Xggo.

€S 419©2019 Paul Krzyzanowski

N i J
55
e . N
S/key authentication
* One-time password scheme
* Produces a limited number of authentication sessions
* Relies on one-way functions
N J
57
e . N
S/key authentication
Authenticate Alice for 100 logins
Store X401 in @ password file or database record
associated with Alice
alice: X101
N _ J
59

CS 419: Computer Security

10

CS419: Computer Security 11/2/19

(A\ (7
Authentication: CHAP CHAP authentication
Challenge-Handshake Authentication Protocol
Alice network host
= nonce
challenge/ “alice” “alice” look up alice’s
key, K
| hash(challenge, secret)
client server
generate random
C challenge number C
OK R'=f(KC) 9
Has shared secret Has shared secret R R=f(K, C)
The challenge is a nonce (random bits). welcome R=R’?
We create a hash of the nonce and the secret. e
An intruder does not have the secret and cannot do this! an eavesdropper does not see K
- J - J
Noveroer2, 2019 CS 419 ©2019 Paul Krzyzanowsi o Noveroer2, 2019 C5 419 ©2019 Paul Kzyzanowsia @
61 62
(. . . \ (. . . \
SMS/Email Authentication Time-Based Authentication
» Second factor = your possession of a phone (or Time-based One-time Password (TOTP) algorithm
computer)
« After login, sever sends you a code via SMS (or email) * Both sides share a secret key N
— Sometimes sent via a QR code so the user can scan it into the TOTP app
* Entering it is prOOf that you could receive the message » User runs TOTP function to generate a one-time password
. Dangers one_time_password = hash(secret_key, time)
— SIM swapping attacks (social engineering on the phone company)
« Viable for high-value targets « User logs in with:
— Social engineering to get email credentials — Name, password, and one_time_password
« Service generates the same password
one_time_password = hash(secret_key, time)
« Typically 30-second granularity for time
- J N J
Novemer2, 2019 €5 419 ©2019 Paul Krzyzanowsk o Novemoer2, 2019 541902019 Paul Kzyzanowsid &
64 65
(. K I (N
Time-based One-time Passwords RSA SecurlD card
Used by Username:
— Microsoft Two-step Verification
— Google Authenticator Password:
— Facebook Code Generator 1234032848
— Amazon Web Services —
_ Bitbucket PIN + passcode from card
— Dropbox Something you know
— Evernote Passcode changes every 60 seconds Something you have
— Zoho
— Wordpress 1. Enter PIN
— 1Password 2. Press?
— Many others... 3. Card computes password
4. Read password & enter Password:
354 982
- J N J
Noveroer 2, 2019 5419 02019 Paut Krzyzanowsi e Noveroer 2, 2019 541902019 Paul Kizyzanowse s
66 67

CS 419: Computer Security 11

CS419: Computer Security

SecurlD card

Same principle as Time-based One-Time Passwords

* Proprietary device from RSA
— SASL mechanism: RFC 2808

» Two-factor authentication based on:
— Shared secret key (seed) <:I Something you have
« stored on authentication card
— Shared personal ID — PIN
« known by user

<:I Something you know

-

Novermber 2, 2019 ©S 419 ©2019 Paul Kizyzanowski

68

[Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks
— Attacker acts as the server

Hi Bob, I'm Alice

R

Alice Mike Bob

-

November 2, 2019 €5 419 ©2019 Paul Kizyzanowski

71

(" Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks
— Attacker acts as the server

What’s your password? What's your password?

Alice Mike Bob

-

November 2, 2019 €S 418 ©2019 Paul Krzyzanowski

11/2/19

Yubikey: Yubico One Time Password

HOTP = Hash-based One-Time Password

OTP = f(hardware_id, passcode, counter)

Passcode generated on the device from session counters, previous
values, other sources

70

[Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks
— Attacker acts as the server

Hi Bob, I'm Alice

s

Hi Bob, I'm Alice

Alice Mike Bob

N

Noverber 2, 2019 €5419©2019 Paul Krzyzanowski

72

(" Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks
— Attacker acts as the server

Its 123456

T

Its 123456

T

Alice Mike Bob

-

Noverber 2, 2019 €S 419©2019 Paul Krzyzanowski

73

CS 419: Computer Security

74

12

CS419: Computer Security 11/2/19

(" Man-in-the-Middle Attacks [Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks Password systems are vulnerable to man-in-the-middle attacks
— Attacker acts as the server — Attacker acts as the server

So long, sucker! Welcome, Alice! Huh? Download my files

N T

Alice Mike Bob Alice Mike Bob

- J = J

Novermber 2, 2019 ©S 419 ©2019 Paul Kizyzanowski 75 Noverber 2, 2019 ©S419©2019 Paul Krzyzanowski 76

75 76

Guarding against man-in-the-middle attacks

+ Use a covert communication channel
— The intruder won'’t have the key
— Can't see the contents of any messages
— But you can’t send the key over that channel! The End

+ Use signed messages for all communication
— Signed message = { message, encrypted hash of message }
— Both parties can reject unauthenticated messages
— The intruder cannot modify the messages
« Signatures will fail (they will need to know how to encrypt the hash)

» But watch out for replay attacks!
— May need to use session numbers or timestamps

. J - J

Novermber 2, 2019 €S 419 ©2019 Paul Krzyzanowski 7 November 2, 2019 €S419©2019 Paul Krzyzanowski 78

77 78

CS 419: Computer Security 13

