
CS419: Computer Security 11/2/19

CS 419: Computer Security 1

Computer Security
08. Authentication

Paul Krzyzanowski

Rutgers University

Fall 2019

1November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

1

Authentication

• Identification: who are you?
• Authentication: prove it
• Authorization: you can do it

Some protocols (or services) combine all three

2November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

2

Cryptographic Authentication

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 3

3

Basic concept: prove you have the key
Ask the other side to prove they can encrypt or decrypt a 
message with the key

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 4

Create a nonce, n
(random bunch of bits)

n

Encrypt the nonce with 
the shared key, KEK(n)Validate the result:

DK(EK(n)) ≟ K 

This assumes a pre-shared key and symmetric cryptography. 
After that, Alice can encrypt & send a session key.
Minimize the use of the pre-shared key.

Alice Bob

4

Mutual authentication

• Alice had Bob prove he has the key
• Bob may want to validate Alice as well

• Bob will do the same thing
– Have Alice prove she has the key

• Pre-shared key: Alice encrypts the nonce with the key
• Public key: Alice encrypts the nonce with her private key

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 5

5

Combined authentication & key exchange

Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys

– Alice wants to talk to Bob: she asks Trent
• Trent generates a session key encrypted for Alice
• Trent encrypts the same key for Bob (ticket)

– Authentication is implicit:
• If Alice can decrypt the session key, she proved she knows her key
• If Alice can decrypt the session key, he proved he knows his key

– Weaknesses that we need address fix:
• Replay attacks – add nonces – Needham-Schroeder protocol
• Replay attacks re-using a cracked old session key

– Add timestamps: Denning-Sacco protocol, Kerberos

– Add session IDs at each step: Otway-Rees protocol

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 6

6



CS419: Computer Security 11/2/19

CS 419: Computer Security 2

Key exchange algorithms

7November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

7

Security Protocol Notation

Z || W
– Z concatenated with W

X → Y : { Z || W } kA,B
– X sends a message to Y
– The message is the concatenation of Z & W and is encrypted by 

key kA,B, which is shared by users A & B

X → Y : { Z } kA ||  { W } kA,Y
– X sends a message to Y
– The message is a concatenation of Z encrypted using A’s key and 

W encrypted by a key shared by A and Y

r1, r2

– nonces – strings of random bits

8November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

8

Bootstrap problem
• How to Alice & Bob communicate securely?
• Alice cannot send a key to Bob in the clear

– We assume an unsecure network

• We looked at two mechanisms:
– Diffie-Hellman key exchange
– Public key cryptography

• Let’s examine the problem some more

9November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

9

Simple Protocol
Use a trusted third party – Trent – who has all the keys

Trent transmits a session key to Alice and Bob 

10

TrentAlice
{ Request session key to Bob } kA

TrentAlice
{ kS } kA || { kS } kB

BobAlice
{ kS } kB

BobAlice
{ m } kS

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

10

Problems
• How does Bob know he is talking to Alice?

– Trusted third party, Trent, has all the keys
– Trent knows the request came from Alice since only he and Alice can have 

the key
– Trent can authorize Alice’s request
– Bob gets a message (session key) encrypted with his key, which only Trent 

could have created
• But Bob doesn’t know who requested the session
• Trent would have to add sender information to the message

• Vulnerable to replay attacks
– Eve records the message from Alice to Bob and later replays it
– Bob might think he’s talking to Alice, reusing the same session key

• Protocols should provide authentication & defend against replay

11November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

11

Needham-Schroeder
Add nonces – random strings – avoid replay attacks

12

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kS || { Alice || kS } kB } kA

BobAlice
{ Alice || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

➀

➁

➂

➃
➄

12



CS419: Computer Security 11/2/19

CS 419: Computer Security 3

• Bob now tries to find out if this is a 
replay attack

• If it is, Eve cannot decipher r2

Add nonces – random strings – avoid replay attacks
• Alice knows only Bob & Trent can 

read this and get the session key.
• Bob knows it’s a request from 

Alice

Needham-Shroeder

13

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kS || { Alice || kS } kB } kA

BobAlice
{ Alice || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

Message must have been created by Trent & is 
a response to the first message (contains r1). 
Use of r1 ensures it’s not a replay attack.

This is an authentication step: 
Bob asks Alice to prove she has kS

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

➀

➁

➂

➃
➄

13

Needham-Schroeder Protocol Vulnerability

• We assume all keys are secret

• But suppose Eve can obtain the session key from an old message
(she worked hard, got lucky, and cracked an earlier message)

14

BobEve
{ Alice || kS } kB

BobEve
{ r2 } kS

BobEve
{ r2 – 1 } kS

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

Bob sees this as a legitimate 
request approved by Trent. It was 
(but earlier)!

Eve the eavesdropper. She decrypted an old session key and 
is trying to get Bob to use it to think he’s talking to Alice.

Needham-Schroeder is still vulnerable to a certain 
replay attack … if an old session key is known!

➂

➃
➄

14

Denning-Sacco Solution
• Problem: replay in the third step of the protocol

– Eve replays the message: { Alice || kS } kB

• Solution: use a time stamp T to detect replay attacks
– The trusted third party (Trent) places a timestamp in a message 

that is encrypted for Bob
– The attacker has an old session key but not Alice’s, Bob’s or Trent’s 

keys
– Cannot spoof a valid message that is encrypted for Bob.

15November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

15

Needham-Shroeder w/Denning-Sacco mods
Add nonces – random strings – AND a timestamp

16

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kS || { Alice || T || kS } kB } kA

BobAlice
{ Alice || T || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

16

Problem with timestamps
• Use of timestamps relies on synchronized clocks

– Messages may be falsely accepted or falsely rejected because of bad time

• Time synchronization becomes an attack vector
– Create fake NTP responses
– Generate fake GPS signals

17November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

17

Otway-Rees Protocol: Session IDs

• Another way to correct the third message replay problem
• Instead of using timestamps

– Use a random integer, n, that is associated with all messages in the 
key exchange

• The protocol is altered slightly
– Alice first sends a message to Bob

• The message contains the session ID & nonce encrypted with Alice’s 
secret key

– Bob forwards the message to Trent
• And creates a message containing a nonce & the same session ID

encrypted with Bob’s secret key
– Trent creates a session key & encrypts it for both Alice and for Bob

18November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

18



CS419: Computer Security 11/2/19

CS 419: Computer Security 4

Otway-Rees Protocol
Use nonces (r1, r2) & session IDs (n)

19

BobAlice
n || Alice || Bob || {r1 || n || Alice || Bob } kA

BobTrent

BobTrent

BobAlice
n ||  { r1 || kS } kA

n || Alice || Bob || {r1 || n || Alice || Bob } kA

{r2 || n || Alice || Bob } kB

n ||  { r1 || kS } kA  ||  { r2 || kS} kB

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

Alice sends the communication 
request to Bob – with the session ID

Bob authenticates himself & 
forwards request to Trent

19

Kerberos

20November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

20

Kerberos
• Authentication service developed by MIT

– project Athena 1983-1988

• Uses a trusted third party & symmetric cryptography

• Based on Needham Schroeder with the Denning Sacco 
modification

• Passwords not sent in clear text
– assumes only the network can be compromised

21November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

21

Kerberos

Users and services authenticate themselves to each other

To access a service:
– user presents a ticket issued by the Kerberos authentication server
– service examines the ticket to verify the identity of the user

Kerberos is a trusted third party
– Knows all (users and services) passwords
– Responsible for

• Authentication: validating an identity
• Authorization: deciding whether someone can access a service
• Key exchange: giving both parties an encryption key (securely)

22November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

22

Kerberos

• User Alice wants to communicate with a service Bob
• Both Alice and Bob have keys

• Step 1:
– Alice authenticates with Kerberos server

• Gets session key and ticket (sealed envelope)

• Step 2:
– Alice gives Bob the ticket, which contains the session key
– Convinces Bob that she got the session key from Kerberos 

23November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

23

Authenticate, get permission

“I’m Alice and want to talk to Bob”

Alice decrypts this:
• Gets ID of “Bob’s server”
• Gets session key & timestamp
• Knows message came from AS

eh? (Alice can’t read this!)

If Alice is allowed to talk to Bob,

generate session key, S
{ “Bob’s server”, T, kS } kA

Alice Authentication Server (AS)

{“Alice”, T, kS } kB

TICKET
sealed envelope

24

{ “Alice” || Bob }

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

24



CS419: Computer Security 11/2/19

CS 419: Computer Security 5

Send key

Alice encrypts a timestamp with 
session key

Bob decrypts envelope:
• Envelope was created by 

Kerberos on request from Alice
• Gets session key

Decrypts time stamp
• Validates time window
• Prevent replay attacks

{ “Alice”, S } kB || { T’ } kS

Alice Bob

sealed envelope

25November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

25

Authenticate recipient of message

Alice validates timestamp

Encrypt Alice’s timestamp in return 
message

Alice Bob

{ T’+1 } kS

{Messages} kS

Alice & Bob communicate 
by encrypting data with S

26November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

26

Kerberos key usage
• Every time a user wants to access a service

– User’s password (key) must be used to decode the message from 
Kerberos

• We can avoid this by caching the password in a file
– Not a good idea

• Another way: create a temporary password
– We can cache this temporary password
– Similar to a session key for Kerberos – to get access to other services
– Split Kerberos server into

Authentication Server + Ticket Granting Server

27November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

27

Ticket Granting Server (TGS)
• TGS works like a temporary ID
• User first requests access to the TGS

– Contact Kerberos Authentication Server
• Knows all users & their secret keys
• User enters a password to do this
• Gets back a ticket & session key to the TGS – these can be cached

• To access any service
– Send a request to the TGS – encrypted with the TGS session key

along with the ticket for the TGS
– The ticket tells the TGS what your session key is
– It responds with a session key & ticket for that service

28November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

28

Using Kerberos

$ kinit

Password: enter password

ask AS for permission (session key) to access TGS
Alice gets:

Compute key (A) from password to decrypt session key S 
and get TGS ID.

You now have a ticket to access the Ticket Granting Service

{“TGS”, S } kA

{“Alice”, S } kTGS

29

TGS Ticket

Session key

{ T } kS Encrypted timestamp

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

29

Using Kerberos
$ rlogin somehost

rlogin uses the TGS Ticket to request a ticket for the rlogin service
on somehost

{“rlogin@somehost”, kS’} kS

{“Alice”, kS’} kR

{“Alice”, kS} kTGS, {T} kS

rlogin TGS

S’ = session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS 

Alice receives session key for rlogin service & ticket to pass to rlogin service

30November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

30



CS419: Computer Security 11/2/19

CS 419: Computer Security 6

Public Key Exchange

We did this
• Alice’s & Bob’s public keys known to all: eA, eB

• Alice & Bob’s private keys are known only to the owner:
da, db

• Simple protocol to send symmetric session key: kS

31

BobAlice
{ kS } eB

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

31

Problem 

• Vulnerable to forgery or replay
• Public keys are known to anyone

– Bob has no assurance that Alice sent the message

• Fix: have Alice sign the session key

32

BobAlice
{ { kS } da } eB

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

Key kS encrypted with Alice’s private key 
Entire message encrypted with Alice’s public key 

32

Problem #2 
• How do we know we have the right public keys?
• Send a certificate so Bob can verify it

33

BobAlice
{ { kS } da } eB, X

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

Add Alice’s certificate, which contains Alice’s 
verifiable public key

33

Combined authentication & key exchange
• Basic idea with symmetric cryptography:

Use a trusted third party (Trent) that has all the keys
– Alice wants to talk to Bob: she asks Trent

• Trent generates a session key encrypted for Alice
• Trent encrypts the same key for Bob (ticket)

– Authentication is implicit:
• If Alice can decrypt the session key, she proved she knows her key
• If Alice can decrypt the session key, he proved he knows his key

– Weaknesses that we had to fix:
• Replay attacks – add nonces – Needham-Schroeder protocol
• Replay attacks re-using a cracked old session key

– Add timestamps (Denning-Sacco protocol, Kerberos)

– Add session IDs at each step (Otway-Rees Protocol)

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 34

34

Cryptographic toolbox

• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

35November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

35

User Authentication

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 36

36



CS419: Computer Security 11/2/19

CS 419: Computer Security 7

Authentication

Three factors:

– Ownership: something you have
• Key, card
• Can be stolen

– Knowledge: something you know
• Passwords, PINs
• Can be guessed, shared, stolen

– Inherence: something you are
• Biometrics
• Usually needs hardware, can be copied (sometimes)
• Once copied, you’re stuck

37November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

37

Multi-Factor Authentication

Factors may be combined
– ATM machine: 2-factor authentication (2FA)

• ATM card something you have
• PIN something you know

– Password + code delivered via SMS: 2-factor authentication
• Password something you know
• Code validates that you possess your phone

Two passwords ≠ Two-factor authentication
The factors must be different

38November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

38

Authentication: PAP
Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords
• Insecure on an open network
• Also, the password file must be protected from open access

– But administrators can still see everyone’s passwords
What if you use the same password on Facebook as on Amazon?

39

name:password
database

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

39

Passwords are bad
• Human readable & easy to guess

– People usually pick really bad passwords

• Easy to forget

• Usually short

• Static ... reused over & over 
– Security is as strong as the weakest link 
– If a user name (or email) & password is stolen from one server, it might be 

usable on others 

• Replayable
– If someone can grab it or see it, they can play it back

Recent large-scale leaks of password from servers have shown that 
people DO NOT pick good passwords

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 40

40

Common Passwords
Adobe security breach (November 2013)

– 152 million Adobe customer records … with encrypted passwords
– Adobe encrypted passwords with a symmetric key algorithm
– … and used the same key to encrypt every password!

41

Frequency Password

1 1,911,938 123456
2 446,162 123456789
3 345,834 password
4 211,659 adobe123
5 201,580 12345678
6 130,832 qwerty
7 124,253 1234567
8 113,884 111111
9 83,411 photoshop

10 82,694 123123
11 76,910 1234567890
12 76,186 000000
13 70,791 abc123

Frequency Password

14 61,453 1234
15 56,744 adobe1
16 54,651 macromedia
17 48,850 azerty
18 47,142 iloveyou
19 44,281 aaaaaa
20 43,670 654321
21 43,497 12345
22 37,407 666666
23 35,325 sunshine
24 34,963 123321
25 33,452 letmein
26 32,549 monkey

Top 26 Adobe Passwords

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

41

It's not getting better

Past seven years of top passwords from SplashData's list

Rank 2012 2013 2014 2015 2016 2017 2018

1 password 123456 123456 123456 123456 123456 123456

2 123456 password password password password password password

3 12345678 12345678 12345 12345678 12345 12345678 123456789

4 abc123 qwerty 12345678 qwerty 12345678 qwerty 12345678

5 qwerty abc123 qwerty 12345 football 12345 12345

6 monkey 123456789 123456789 123456789 qwerty 123456789 111111

7 letmein 111111 1234 football 1234567890 letmein 1234567

8 dragon 1234567 baseball 1234 1234567 1234567 sunshine

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 42

Leaks have not convinced people to use good passwords

42



CS419: Computer Security 11/2/19

CS 419: Computer Security 8

Policies to the rescue?
• Password rules

“Everyone knows that an exclamation point is a 1, or 
an I, or the last character of a password. $ is an S or 
a 5. If we use these well-known tricks, we aren’t 
fooling any adversary. We are simply fooling the 
database that stores passwords into thinking the 
user did something good”

— Paul Grassi, NIST

• Periodic password change requirements
– People tend to change passwords rapidly to 

exhaust the history list and get back to their 
favorite password

– Forbidding changes for several days enables a 
denial of service attack

– People pick worse passwords, incorporating 
numbers, months, or years

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 43

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://fortune.com/2017/05/11/password-rules/

43

NIST recommendations

• Remove periodic password change 
requirements

• Drop complexity requirements 
(numbers, letters, symbols)

• Choose long passwords
• Avoid

– Passwords obtained from databases 
of previous breaches

– Dictionary words
– Repetitive or sequential characters (e.g. ‘aaaaa’, ‘1234abcd’)
– Context-specific words, such as the name of the service, the 

username, and derivatives thereof

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 44

https://pages.nist.gov/800-63-3/sp800-63b.html

44

PAP: Reusable passwords
Problem #1: Open access to the password file

What if the password file isn’t sufficiently protected and an intruder gets 
hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your 
password on other systems.

How about encrypting the passwords?

• Where would you store the key?

• Adobe did that
– 2013 Adobe security breach leaked 152 million Adobe customer records 
– Adobe used encrypted passwords

• But the passwords were all encrypted with the same key
• If the attackers steal the key, they get the passwords

45November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

45

PAP: Reusable passwords
Solution:

Store a hash of the password in a file
– Given a file, you don’t get the passwords
– Have to resort to a dictionary or brute-force attack
– Example, passwords hashed with SHA-512 hashes (SHA-2)

46November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

46

What is a dictionary attack?
• Suppose you got access to a list of hashed passwords
• Brute-force, exhaustive search: try every combination

– Letters (A-Z, a-z), numbers (0-9), symbols (!@#$%...)
– Assume 30 symbols + 52 letters + 10 digits = 92 characters
– Test all passwords up to length 8
– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015

– If we test 1 billion passwords per second: ≈ 60 days

• But some passwords are more likely than others
– 1,991,938 Adobe customers used a password = “123456”
– 345,834 users used a password = “password”

• Dictionary attack
– Test lists of common passwords, dictionary words, names
– Add common substitutions, prefixes, and suffixes

47

Easiest to do if the attacker steals a hashed password file –
so we read-protect the hashed passwords to make it harder to get them

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

47

How to speed up a dictionary attack

Create a table of precomputed hashes
Now we just search a table for the hash to find the password

48November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

SHA-256 Hash password
8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92 123456
5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 password
ef797c8118f02dfb649607dd5d3f8c7623048c9c063d532cc95c5ed7a898a64f 12345678
1c8bfe8f801d79745c4631d09fff36c82aa37fc4cce4fc946683d7b336b63032 letmein

… …

48



CS419: Computer Security 11/2/19

CS 419: Computer Security 9

Salt: defeating dictionary attacks

Salt = random string (typically up to 16 characters)
– Concatenated with the password
– Stored with the password file (it’s not secret)

"am$7b22QL" + "password"

– Even if you know the salt, you cannot use precomputed hashes to 
search for a password
(because the salt is prefixed to the password string)

You will not have a precomputed hash(“am$7b22QLpassword”)

49

Example: SHA-256 hash of “password”, salt = “am$7b22QL”=
hash("am$7b22QLpassword")= 
7a87d1d5118873b1c16d30176936e1920f33b91d8be1517d5cc295dfd0268906

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

49

Longer passwords
• English text has an entropy of about 1.2-1.5 bits per character

• Random text has an entropy ≈ log2(1/95) ≈ 6.6 bits/character

50

Assume 95 printable characters

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

50

Defenses
• Use longer passwords

– But can you trust users to pick ones with enough entropy?

• Rate-limit guesses
– Add timeouts after an incorrect password

• Linux waits about 3 secs – and terminates the login program after 5 tries

• Lock out the account after N bad guesses
– But this makes you vulnerable to denial-of-service attacks

• Use a slow algorithm to make guessing slow

51November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

51

People forget passwords
• Especially seldom-used ones

• How do we handle that?

• Email them?
– Common solution
– Requires that the server be able to get the password (can’t store a hash)
– What if someone reads your email?

• Reset them?
– How do you authenticate the requester?
– Usually send reset link to email address created at registration
– But – what if someone reads your mail?  …or you no longer have that address?

• Provide hints?

• Write them down?
– OK if the threat model is electronic only

52November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

52

Reusable passwords in multiple places
• People often use the same password in different places

• If one site is compromised, the password can be used elsewhere
– People often try to use the same email address and/or user name

• This is the root of phishing attacks

• Password managers
– Software that stores passwords in an encrypted file
– Do you trust the protection? The synchronization capabilities?
– Can malware get to the database?
– In general, these are good

• Way better than storing passwords in a file
• Encourages having unique passwords per site
• Password managers may have the ability to recognize web sites 

& defend against phishing

53November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

53

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 54

54



CS419: Computer Security 11/2/19

CS 419: Computer Security 10

PAP: Reusable passwords
Problem #2: Network sniffing or shoulder surfing

Passwords can be stolen by observing a user’s session in person or over 
a network:

– Snoop on telnet, ftp, rlogin, rsh sessions
– Trojan horse
– Social engineering
– Key logger, camera, physical proximity
– Brute-force or dictionary attacks

Solutions:

(1) Use an encrypted communication channel

(2) Use one-time passwords

(3) Use multi-factor authentication, so a password alone is not sufficient

55November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

55

One-time passwords

Use a different password each time
– If an intruder captures the transaction, it won’t work next time

Three forms
1. Sequence-based: password = f(previous password)

2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

56November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

56

S/key authentication
• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way functions

57November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

57

Authenticate Alice for 100 logins
• pick random number, R

• using a one-way function, f(x):

x1 = f(R)
x2 = f(x1) = f(f(R))
x3 = f(x2) = f(f(f(R)))

… …
x100 = f(x99) = f(…f(f(f(R)))…)

• then compute:
x101 = f(x100) = f(…f(f(f(R)))…)

S/key authentication

Give this list
to Alice

58November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

58

S/key authentication

Authenticate Alice for 100 logins

Store x101 in a password file or database record 
associated with Alice

alice: x101

59November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

59

S/key authentication

Alice presents the last number on her list:
Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with the value in 
the database

if  (x100 provided by alice) = passwd(“alice”)
replace x101 in db with x100 provided by alice
return success

else
fail

next time: Alice presents x99

If someone sees x100 there is no way to generate x99.

60November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

60



CS419: Computer Security 11/2/19

CS 419: Computer Security 11

Authentication: CHAP

Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).

We create a hash of the nonce and the secret.

An intruder does not have the secret and cannot do this!

61

= nonce

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

61

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

62November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

62

SMS/Email Authentication
• Second factor = your possession of a phone (or 

computer)
• After login, sever sends you a code via SMS (or email)
• Entering it is proof that you could receive the message
• Dangers

– SIM swapping attacks (social engineering on the phone company)
• Viable for high-value targets

– Social engineering to get email credentials

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 64

64

Time-Based Authentication
Time-based One-time Password (TOTP) algorithm

• Both sides share a secret key
– Sometimes sent via a QR code so the user can scan it into the TOTP app

• User runs TOTP function to generate a one-time password
one_time_password = hash(secret_key, time)

• User logs in with:
– Name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

• Typically 30-second granularity for time

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 65

65

Time-based One-time Passwords

Used by
– Microsoft Two-step Verification
– Google Authenticator
– Facebook Code Generator
– Amazon Web Services
– Bitbucket
– Dropbox
– Evernote
– Zoho
– Wordpress
– 1Password
– Many others…

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski 66

66

RSA SecurID card
Username:

paul

Password:

1234032848

PIN passcode from card+

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password
4. Read password & enter Password:

354982

Passcode changes every 60 seconds

67November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

67



CS419: Computer Security 11/2/19

CS 419: Computer Security 12

SecurID card

Same principle as Time-based One-Time Passwords
• Proprietary device from RSA

– SASL mechanism: RFC 2808

• Two-factor authentication based on:
– Shared secret key (seed)

• stored on authentication card
– Shared personal ID – PIN 

• known by user

68

Something you have

Something you know

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

68

Yubikey: Yubico One Time Password

HOTP = Hash-based One-Time Password
OTP = f( hardware_id, passcode, counter)
Passcode generated on the device from session counters, previous 
values, other sources

70

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

71

Alice Mike Bob

Hi Bob, I’m Alice

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

71

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

72

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

72

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

73

Alice Mike Bob

What’s your password? What’s your password?

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

73

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

74

Alice Mike Bob

It’s 123456 It’s 123456 

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

74



CS419: Computer Security 11/2/19

CS 419: Computer Security 13

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

75

Alice Mike Bob

So long, sucker! Welcome, Alice!

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

75

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

76

Alice Mike Bob

Huh? Download my files

November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

76

Guarding against man-in-the-middle attacks
• Use a covert communication channel

– The intruder won’t have the key 
– Can’t see the contents of any messages
– But you can’t send the key over that channel!

• Use signed messages for all communication
– Signed message = { message, encrypted hash of message }
– Both parties can reject unauthenticated messages
– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

• But watch out for replay attacks!
– May need to use session numbers or timestamps

77November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

77

The End

78November 2, 2019 CS 419 © 2019 Paul Krzyzanowski

78


