
Computer Security
08r. Assignment 7 review

Pre-exam 2 review – the major concepts

Paul Krzyzanowski • David Domingo • Ananya Jana

Rutgers University

Spring 2019

March 27, 2019 CS 419 © 2019 Paul Krzyzanowski 1

Assignment 7 Review

2March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Question 1

Claude Shannon proved that a cipher has perfect secrecy if
and only if there are as many possible keys as possible
plaintexts, so every key is equally likely.

This means the key has to be random and as long as the
message … which means that this is not practical for most
real-word use cases

See page 133

3

What is a necessary condition for perfect secrecy?

March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Question 2

He published an anagram of a message and revealed it two years later.
This allowed him to establish priority for his idea (Hooke’s Law for a
spring) without disclosing it at the time.

Discussion:

This is a precursor to the idea of using a hash.

If I publish a hash of a message, H(M)

And later show you the message, M, you know that I must have had the message
in order to generate the hash – a good cryptographic hash function will make it
difficult to generate a message that hashes to a specific, desired value

Note that “difficult” = “not feasible” = “impossible for all practical purposes”

See page 137

4

How did Robert Hooke use a one-way function in 1678?

March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Question 3

1.They are one-way functions
– Given x, it is easy to compute h(x)

but difficult to find x when given h(x)

2. The function does not give any information about
any part of the input.

3. It is hard to find collisions
– A collision is when you can find two messages

M1, M2 where M1 ≠ M2 but h(M1) = h(M2)

See section 5.3.1 (Random Functions – Hash Functions), 5.3.1.1 (Properties)
Page 141

5

What are the three properties of hash functions listed in the
text?

March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Question 4

• It is a substitution box – it substitutes one bit pattern with
another

• Think of it as a lookup table

See section 5.4.1, SP Networks, p. 149

6

What does an s-box do in a symmetric block cipher?

March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Question 4 – discussion

“The earliest block ciphers were simple networks which combined
substitution and permutation circuits, and so were called SP-networks.
Figure 5.10 shows an SP-network with sixteen inputs, which we can
imagine as the bits of a sixteen-bit number, and two layers of four-bit
invertible substitution boxes (or S-boxes), each of which can be visualized
as a lookup table containing some permutation of the numbers 0 to 15.”

7

From the text:

March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Question 4 – discussion

Popular symmetric ciphers (e.g., AES and DES) are
– Block ciphers

• They encrypt a chunk of data, then do the next chunk, …

– Use an SP network: a combination of substitutions & permutations
• This adds confusion & diffusion

– Confusion = every bit of ciphertext depends on various bits of the key. You
cannot find a connection between a bit of the key and a bit of the ciphertext.

– Diffusion = if you change a bit in the plaintext, approximately half of the bits
in the ciphertext will change.

– Iterate over multiple rounds
• One or a few iterations through s-boxes will not add enough confusion &

diffusion to the output.
• Modern symmetric ciphers use many more rounds (iterations)

8March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Topics you should know for the exam

9March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

This is not a review of everything we covered in the past 4
lectures but a listing of some of the major concepts you
should know

You should be familiar with these topics

If you are not, this this an indication of areas you need to
focus on in preparing for the exam

We will not review everything from four lectures in 50
minutes!

10March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Application Sandboxing

11March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Application sandboxing vs. full sandboxing

• Full sandboxing (e.g., containers)
– Create an isolated environment for an application or group of

related programs
– Almost always: isolated file system namespace
– Try to simulate a virtual machine – isolate a service (program)

• Application sandboxing
– Restrict operations that an application can perform
– Not just if it’s root
– Example: deny access to the network or to specific files

12March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Forms of application sandboxing

• System call interposition with user-level validation
– System call hooks in the kernel but decisions made by a user process

(example: Janus sandbox)

• Full OS sandboxing
– The OS has native support for sandboxing

– Policies are compiled & pushed into the kernel

– Examples: Linux Seccomp-BPF, Apple sandbox

• Brower-based native applications
– Example: Chrome NaCL (Native Client)

– Compile code with special libraries that perform validation of system

requests

• Java sandbox (process virtual machine)

– Runtime environment gets all requests & validates them

13March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Malware

14March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Worms & Viruses

• Worm
– Standalone software

• Virus
– Requires a host program: a virus attaches itself to another piece of

software

• Components
– Infection mechanism: how does it spread?
– Payload: what does the malware do?
– Trigger (logic bomb): when will the payload run?

15March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Some places where malware resides (1)

• File infector
– Virus is part of an executable program

• Bootloader
– Boot process invokes the malware

• Flash drive
– Malicious software on the drive
– or modified malicious firmware makes the drive send commands
– or lost drive causes allows data to be stolen by someone else

• Macros
– Office documents, editor files, PDF files

• Trojan horse
– Useful program but also has a covert purpose

16March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Some places where malware resides (2)

• Backdoors
– Program with some undocumented mechanism to allow a user to

log in or execute commands

• Rootkit
– Modify the operating system, libraries, and/or commands to hide

the presence of malware

17March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Social engineering

• #1 way of getting malware onto a system

• Get users to do something that isn’t in their best interest

• Examples:
– Phishing: email masqueraded to come from someone you trust with

links or attachments you’re asked to click on
– Spear phishing: personalized phishing
– Deceptive web sites: web sites that masquerade as legitimate

companies or services
• Phishing requests often take you there
• Goal: steal login credentials

– Deceptive content on web sites
• Ads on file sharing sites often look like download links

18March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Defenses

1. Signature-based scanning
– Accurate but requires knowledge of sample bytes of the malware

2. Behavior-based monitoring
– Difficult to detect what is an anomaly but works on new malware

Countermeasures
– Use a packer to obscure the payload when it’s in the file system
– Polymorphic viruses

• Modify the code each time the virus propagates

– Social engineering: ask a user to override permissions

19March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Cryptographic Systems

20March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Ciphers

• Symmetric
– Same key for encryption & decryption

• Asymmetric (public key)
– Two related keys: encrypt with one, decrypt with the other
– Based on trapdoor functions

• Kerckhoffs’s Principle – use publicly known algorithms

21March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Classic cipher types
• Monoalphabetic substitution cipher

– Replace one character (bit pattern) with another
– Caesar cipher: the substitution alphabet is the alphabet shifted by n positions
– Vulnerable to frequency analysis: certain letters are more likely than others

• Polyalphabetic substitution cipher
– Change the substitution alphabet based on the position of the character
– Still vulnerable to frequency analysis but more difficult

• One-time pad
– Key = long set of random characters
– Each key character encrypts one plaintext character
– Problem

• Key must be (1) truly random, (2) as long as the message, (3) never reused

• Transposition cipher
– Scramble the data instead of substituting it

22March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Ciphers
• What is perfect secrecy?

– Ciphertext contains no information about the plaintext

• Stream cipher
– Approximation of a one time pad
– Instead of a random stream of bits for the long key, create the stream

using a pseudorandom number generator

• Block ciphers
– Encrypt a chunk of data at a time
– Most ciphers we use are block ciphers – usually based on key size

• Symmetric ciphers: AES (32- or 64-byte blocks), DES (8-byte blocks)
• Public key ciphers:

RSA (typically 8- or 16-byte blocks)
ECC (typically 28-, 32-, or 64-byte blocks)

23March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Using block ciphers
• Electronic code book (ECB)

– Each block of plaintext is encrypted individually

• Problem
– Common parts of plaintext will produce identical ciphertext

• Solution
– Counter mode

• An incrementing count is encrypted with the key for each block
• Result is XORed with the block of plaintext to create ciphertext

– Cipher block chaining (CBC) mode
• Encryption of each block is a function of the previous blocks

24March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Secure communication

25March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Secure communication

• Symmetric cryptography
– Encrypt and decrypt with a shared secret key

• Public key cryptography
– Encrypt with the destination’s public key
– They decrypt with their private key

• Hybrid cryptography
– Public key cryptography is really slow … and generating keys takes

time
• Use public key cryptography to send a random session key
• Then communicate with symmetric cryptography

26March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Key Exchange

27March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Key exchange
• Diffie-Hellman key exchange

– Not an encryption algorithm: only key exchange
– Forward secrecy

• Means that even if you steal someone’s private key, you cannot decipher their
past communications

• Requires single-use (ephemeral) keys

• Needham-Schroeder algorithm – use a trusted 3rd party to send a
session key
– Denning-Sacco protocol: add timestamps
– Otway-Rees protocol: Use a random session ID for each message

• Kerberos
– Authentication, authorization, & key exchange
– Essentially the Denning-Sacco protocol

28March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Integrity

29March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

Integrity

• Hash function = strong checksum

• Hash pointer = pointer and hash(data pointed to)
– Blockchain = linked list
– Merkle tree = binary tree

• MAC = Message Authentication Code
– Encrypted hash – shared key
– Forms: HMAC, CBC-MAC

• Digital signature
– Encrypted hash – using public key cryptography

• Digital certificates
– { name, public key } signed by the issuer (Certification Authority)

30March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

The end

31March 27, 2019 CS 419 © 2019 Paul Krzyzanowski

