
CS 419 4/24/19

© 2017 Paul Krzyzanowski 1

Computer Security
10r. Network Security – continued

DNS, VPNs, TLS

Paul Krzyzanowski • David Domingo • Ananya Jana

Rutgers University

Spring 2019

1April 24, 2019 CS 419 © 2019 Paul Krzyzanowski

Domain Name System (DNS)
Vulnerabilities

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 2

Domain Name System
• Hierarchical service to map domain names to IP addresses

• How do you find the DNS Server for rutgers.edu?
– That’s what the domain registry keeps track of
– When you register a domain

• You supply the addresses of at least two DNS servers that can answer
queries for your zone

• You give this info to the domain registrar (e.g., Namecheap, GoDaddy)
who updates the database at the domain registry (e.g., Verisign for .com,
.net, .edu, .gov, … domains)
– Domain registrar: Sells domain names to the public
– Domain regsirty: Maintains the top-level domain database

• So how do you find the right DNS server?
– Start at the root

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 3

Root name servers
• The root name servers provide lists of authoritative name servers for

top-level domains

• 13 root name servers
– A.ROOT-SERVERS.NET, B.ROOT-SERVERS.NET, …
– Each has redundancy (via anycast routing or load balancing)

• Each server is really a set of machines

Download the latest list at http://www.internic.net/domain/named.root
April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 4

DNS Resolvers in action

app

app

DNS stub
resolver

cache

/etc/hosts

DNS
resolver

cache

zone info

Local server ISP

Local stub resolver:
- check local cache
- check local hosts file
- send request to external resolver

E.g., on Linux: resolver is configured via
the /etc/resolv.conf file

External resolver:
- Running at ISP, Cloudflare, Google

Public DNS, OpenDNS, etc.

root
DNS server

edu
DNS server

rutgers.edu
DNS server

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 5

Pharming attack

• Redirect traffic to an attacker’s site by modifying how the
DNS resolver gets its information

• Forms of attack
1. Use malware or social engineering to modify a computer’s hosts file

This file maps names→IP addresses and avoids DNS queries

2. Attack the router & modify its DNS server setting
Direct traffic to the attacker’s DNS server, which will give the wrong IP
address for certain domain names

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 6

CS 419 4/24/19

© 2017 Paul Krzyzanowski 2

DNS Vulnerabilities

• Programs (and users) trust the host-address mapping
– This is the basis for some security policies

• Browser same-origin policy, URL address bar

• But DNS responses can be faked
– If an attacker gives a DNS response first, the host will use that
– Malicious responses can direct messages to different hosts
– A receiver cannot detect a forged response

• DNS resolvers cache their results (with an expiration)
– If it gets a forged response, the forged results will be passed on to any

systems that query it
– Cache-poisoning attack

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 7

DNS spoofing attack
Redirect traffic to an attacker via DNS cache poisoning

• An attacker sends the wrong DNS response
– The DNS resolver requesting it will cache it and provide that to anyone else

who asks in the near future

• How does we prevent spoofed responses?
– Each DNS query contains a 16-bit Query ID (QID) – only 65,536 to guess

• Response from the DNS server must have a matching QID
– DNS uses UDP and this was created to make it easy for a system to match

responses with requests

• An attacker will have to guess the QID number
– But numbers were sequential and not hard to guess
– Fix by using random Query IDs

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 8

DNS spoofing via Cache Poisoning
• What happens?

– Malicious JavaScript on a web page cuases the client to try to look up
a.bank.com, b.bank.com, etc.

– At the same time, the attacker is sending a stream of DNS “responses”
hoping that one will have a matching QID

• If the attacker is successful, one of the responses matches up?
– But we expect the victim to go to bank.com, not f.bank.com
– However….

The DNS response can also define a new DNS server for bank.com!
– This overwrites any saved DNS info for bank.com that may be cached

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 9

DNS spoofing via Cache Poisoning
JavaScript on a website may launch a DNS attacker

browser Local DNS
resolver

.com DNS
server

DNS query

a.bank.com
QID = x1

a.bank.com

attacker256 responses with
random QIDs: y1, y2, …
NS bank.com = ns.bank.com
A ns.bank.com = attacker_IP_addr

If there is some j such that x1 = yj then the response will be cached
All future DNS queries for anything at bank.com will go to attacker_IP_addr
If it doesn’t work … try again with b.bank.com, c.bank.com, etc.

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 10

Defenses against DNS cache poisoning

• Query IDs used to be predictable
– Easy to guess
– Have a web page make a DNS query to a domain under the attacker’s

control & look at the QID
– The attacker can then guess the next one

• Randomize source port # – where DNS queries originate
– Attack will take several hours instead of a few minutes
– Will have to send responses to a range of ports
– But this is tricky in real environments that use NAT (network address

translation) and may limit the exposed UDP ports

• Issue double DNS queries
– Attacker will have to guess the Query ID twice (32 bits)

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 11

Defenses against DNS cache poisoning
• Use TCP instead of UDP

– It’s much harder to inject a response into a TCP stream
– But

• Much higher latency
• Much more overhead at the DNS resolver

• The better long-term solution: DNSSEC
– Secure extension to DNS that provide authenticated requests & responses
– Responses contain a digital signature
– But

• Adoption has been very slow
• DNSSEC response size is much bigger than a DNS response, which makes it more

powerful for DoS attacks

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 12

CS 419 4/24/19

© 2017 Paul Krzyzanowski 3

DNS Rebinding

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 13

DNS Rebinding
Attack that allows attackers to run a script to attack other systems on the
victim’s private network

• What is the same-origin policy?
– The core web application security model
– Client web browser scripts can access data from other web pages only if they

have the same origin
– Origin = same { protocol, host name, port number }

• The policy relies on comparing domain names

• If we can change the underlying address:
– We can send messages to an attacker’s system while the software thinks it’s

still going to the same domain
– This can let us access private machines in the user's local area network
– Example: access local web services, cameras, thermostats, printers, …

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 14

DNS Rebinding
• Attacker

– Registers a domain (attacker.com)
– Sets up a DNS server
– DNS server responds with very short TTL values – response won’t be cached

• Client (browser)
– Script on page causes access to a malicious domain
– Attacker’s DNS server responds with IP address of a server hosting malicious

client-side code
– Malicious client-side code makes additional references to the domain

• Permitted under same-origin policy
– A browser permits scripts in one page to access data in another only if both pages have the

same origin & protocol

• The script causes the browser to issue a new DNS request
• Attacker replies with a new IP address (e.g., a target somewhere outside the domain)
• The script can continue to access content at the same domain

– But it really isn’t in the domain!

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 15

Defending against DNS rebinding
• Force minimum TTL values

– This may affect some legitimate dynamic DNS services

• DNS pinning: refuse to switch the IP address for a domain name
– This is similar to forcing minimum TTL values

• Have the local DNS resolver make sure DNS responses don’t contain
private IP addresses

• Server-side defense within the local area network
– Reject HTTP requests with unrecognized Host headers
– Authenticate users

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 16

Network Layer Conversation Isolation:
Virtual Private Networks (VPNs)

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 17

Fundamental Layer 2 & 3 Problems
• IP relies on store-and-forward networking

– Network data passes through untrusted hosts
– Routes may be altered to pass data through malicious hosts

• Packets can be sniffed (and new forged packets injected)

• Ethernet, IP, TCP & UDP
– All designed with no authentication or integrity mechanisms
– No source authentication on IP packets
– TCP session state can be examined or guessed …

… and TCP sessions can be hijacked

• ARP, DHCP, DNS protocols
– Can be spoofed to redirect traffic to malicious hosts

• Internet route advertisement protocols are not secure
– Can redirect traffic to malicious routers/hosts

CS 419 4/24/19

© 2017 Paul Krzyzanowski 4

Solution: Use private networks

Connect multiple geographically-separated private
subnetworks together

Private network line

Gateway
Router

Internal subnet

Gateway
Router

Internal subnet

192.168.1.0/24 192.168.2.0/24

But this is expensive … and not feasible in many cases (e.g., cloud servers)

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 19

What’s a tunnel?

Tunnel = Packet encapsulation
Treat an entire IP datagram as payload on the public network

Internet

Gateway
Router

Internal subnet

Gateway
Router

Internal subnet

192.168.1.0/24 192.168.2.0/24

Src: 192.168.1.11
Dest: 192.168.2.22
Data: [--------]

Src: 192.168.1.11
Dest: 192.168.2.22
Data: [--------]Src: 68.36.210.57

Dest: 128.6.4.2
Data: From: 192.168.1.11

To: 192.168.2.22
Data: [--------]

68
.3

6.
21

0.
57

12
8.

6.
4.

2

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 20

Tunnel mode vs. transport mode
• Tunnel mode

– Communication between gateways: network-to-network
– Or host-to-network
– Entire datagram is encapsulated

• Transport mode
– Communication between hosts
– IP header is not modified

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 21

Virtual Private Networks
Take the concept of tunneling

… and safeguard the encapsulated data

• Add a MAC
– Ensure that outsiders don't modify the data

• Encrypt the contents
– Ensure that outsiders can't read the data

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 22

IPsec

Internet Protocol Security

• End-to-end solution at the IP layer

• Two protocols:
– IP Authentication Header Protocol (AH)

• Authentication & integrity of payload and header
• Provides integrity

– Encapsulating Security Payload (ESP)
• AH + Confidentiality of payload
• Adds content encryption

Application

Transport (TCP, UDP)

Network
(IP)

Data Link

Physical1

2

3

4

5

6

7

IPSec

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 23

IPsec Authentication Header (AH)
Guarantees integrity & authenticity of IP packets

– MAC for the contents of the entire IP packet
– Over unchangeable IP datagram fields (e.g., not TTL or fragmentation fields)

Protects from:
– Tampering
– Forging addresses
– Replay attacks (signed sequence number in AH)

Layered directly on top of IP (protocol 51) - not UDP or TCP

ApplicationTCP/UDPIP AH

ApplicationTCP/UDPNew IP AH IP

original IP packet

Tunnel
mode

Transport
mode

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 24

CS 419 4/24/19

© 2017 Paul Krzyzanowski 5

IPsec Encapsulating Security Payload (ESP)
Encrypts entire payload

– Plus authentication of payload + IP header (everything AH does)
(may be optionally disabled – but you don’t want to)

Directly on top of IP (protocol 51) - not UDP or TCP

ApplicationTCP/UDPIP ESP
header

ESP
trailer

ESP
auth

Encrypted

ApplicationTCP/UDPNew IP ESP
header

ESP
trailer

ESP
auth

Authenticated

IP

Encrypted

Authenticated

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 25

IPSec algorithms
• Authentication

– Certificates, or pre-shared key authentication

• Key exchange
– Diffie-Hellman to exchange keying material for key generation
– Key lifetimes determine when new keys are regenerated

• Confidentiality
– 3DES-CBC
– AES-CBC

• Integrity protection & authenticity
– HMAC-SHA1
– HMAC-SHA2

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 26

Transport Layer Conversation Isolation:
Transport Layer Security (TLS)

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 27

Transport Layer Security
• Goal: provide a transport layer security protocol

• After setup, applications feel like they are using TCP
sockets

SSL: Secure Socket Layer

• Created with HTTP in mind
– Web sessions should be secure
– Mutual authentication is usually not needed

• Client needs to identify the server but the server won’t know all clients
• Rely on password authentication after the secure channel is set up

TLS vs. SSL – versions

SSL evolved to TLS (Transport Layer Security)

SSL 3.0 was the last version of SSL
… and is considered insecure

We now use TLS (but is often still called SSL)
– TLS 1.0 = SSL 3.1, TLS 1.1 = SSL 3.2, TLS 1.2 = SSL 3.3
– Latest version = TLS 1.3 = SSL 3.4

• Retired versions
– TLS 1.0/SSL 3 are not considered strong anymore and their use is not recommended
– As of 2019, Google Chrome deprecates support for TLS 1.1

TLS Protocol
Goal:

Provide authentication (usually one-way), privacy, & data integrity
between two applications

• Principles
– Data encryption

• Use symmetric cryptography to encrypt data
• Key exchange: keys generated uniquely at the start of each session

– Data integrity
• Include a MAC with transmitted data to ensure message integrity

– Authentication
• Use public key cryptography & X.509 certificates for authentication
• Optional – can authenticate 0, 1, or both parties

– Interoperability & evolution
• Support many different key exchange, encryption, integrity, & authentication

protocols – negotiate what to use at the start of a session

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 32

CS 419 4/24/19

© 2017 Paul Krzyzanowski 6

TLS Protocol & Ciphers
Two sub-protocols

1. Authenticate & establish keys
2. Communicate

• HMAC used for message authentication

• Authentication
– Public keys (X.509 certificates and – usually – RSA cryptography)

• Key exchange options
– Ephemeral Diffie-Hellman keys (generated for each session)
– Pre-shared key

• Data encryption options
– AES GCM, AES CBC, ARIA (GCM/CBC), ChaCha20-Poly1305, …

• Data integrity options
– HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384, …

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 33

TLS Protocol
(1) Client hello

Version & crypto information

(2) Server hello

Server certificate
[client certificate request](3) Verify server

certificate
(4) Client key exchange (D-H)

Send encrypted session key

[(5) Send client certificate]

[(6) Verify client
certificate]

(7) Client done

(8) Server done

(9) Communicate

Symmetric encryption + HMAC

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 34

Benefits of TLS
• Benefits

– Protects integrity of communications
– Protects the privacy of communications
– Validates the authenticity of the server (if you trust the CA)

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 35

Some attacks on TLS
• Man-in-the-middle: BEAST attack in TLS 1.0

– Attacker was able to see Initialization Vector (IV) for CBC and deduce
plaintext (because of known HTML headers & cookies)

– An IV doesn’t have to be secret – but it turned out this wasn’t a good idea
– Attacker was able to send chosen plaintext & get it encrypted with a known IV
– Fixed by using fresh IVs for each new 16K block

• Man-in-the-middle: crypto renegotiation
– Attacker can renegotiate the handshake protocol during the session to disable

encryption
– Proposed fix: have client & server verify info about previous handshakes

• THC-SSL-DoS attack
– Attacker initiates a TLS handshake & requests a renegotiation of the

encryption key – repeat over & over, using up server resources

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 36

Other problems with TLS

• Client authentication Problem
– Client authentication is almost never used

• Generating keys & obtaining certificates is not an easy process for users
• Any site can request the certificate

– User will be unaware their anonymity is lost
• Moving private keys around can be difficult

– What about public computers?

– We usually rely on other authentication mechanisms
• Usually user name and password
• But no danger of eavesdropping since the session is encrypted
• May use one-time passwords or two-factor authentication if worried about

eavesdroppers at physical premises

April 24, 2019 CS 419 © 2019 Paul Krzyzanowski 37

The end

38April 24, 2019 CS 419 © 2019 Paul Krzyzanowski

