Computer Security
13r. Review: Homework & Web Security

Paul Krzyzanowski « David Domingo * Ananya Jana
Rutgers University

Spring 2019

_

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

/ Question 1

What are minutiae points in a fingerprint?

"Minutiae can be defined as the points where the ridge lines
* Their relative locations are

end or fork.” r———
N‘g Ridge Island
what make fingerprints ’—\ E

o Ridge Ending
distinctive ///i\\ —
/:-\\\ Ridge Dot
'_\ \

« Registration and verification

both re U|re 2 M \r Ridge Enclosure
q. . /\\\ :
— Capturing the image

R _._ A " \-. e Bilurcation
— Processing it to identify minutiae points | == ~:~r—~§f .
— Creating a graph: vertices = types of points, edges = distance between points

 Verification means comparing two graphs

— But some points may be missing or others may appear
— Need to make a decision of whether the match is good enough

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 2

/ Question 2

How does invisible reCAPTCHA (reCAPTCHA v3) work?

JavaScript that generates a reCAPTCHA score using
"adaptive risk analysis.”

It looks at the user's interaction with the browser to determine
if it's @ human or a bot. The score signifies how suspicious
the Iinteraction seems.

* The goal is to validate that the server is interacting with a human and
not a bot

« A page that uses reCAPTCHA will have a script that:
— Calls the JavaScript reCAPTCHA library to present the user with the puzzle
— Gets a token when the user has entered the data and the server scored it

— Makes a decision on whether the score is high enough for its needs
* 0.0 =very likely to be a bot . .. 1.0 = very likely to be a human

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 3

[Question 3

How does re CAPTCHA adapt for mobile devices?

Instead of presenting distorted text and having the user
decode it, it presents an image labeling problem ("select all
images that ...").

|deally, reCAPTCHA hopes to avoid asking the user to prove he/she is a
human.

On computers
— Look at movements of the mouse, IP addresses, cookies
— If the data looks trustworthy, don’t bother the user
— If not sure, pop up a window and ask the user to decipher text

On phones/tablets

— Show the user a collection of images and have them select a specific subset (e.g., all
images with a traffic light).

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 4

-

Question 4

_

What does the author state as the main problem of using a biometric for combined
identification and authentication?

If a biometric is stolen, it serves as both the identity &
authentication. There is no secret!

In many cases, biometrics are not well-suited for identification or
authentication, even though they may try to do both

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Question 4 (continued)

|dentification
— Biometrics are public data: most of your biometrics (fingerprint, voice, face,
iris, ...) can be obtained quite easily
— They serve as identification, but they are not guaranteed to be absolutely
unique

— Searching a database of biometric identities may be time-consuming since
you need to perform pattern matches to determine if the sampled data is
close enough

Authentication
— Common biometrics (fingerprint, face shape) have been compromised with
little effort
— Cannot be revoked
* You can change your password or replace a key/fob but not your iris

— Cannot be compartmentalized
* You can have different passwords for google, amazon, twitter, Instagram, ...
« |t is difficult to do that with biometric data

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 6

/ Question 5a

How does U2F operate without a shared secret?

It uses public key cryptography.

U2F uses a hardware authenticator (usually) that communicates with the
client software (e.g., a browser) via USB or Bluetooth.

Quick: users don’t need to type in one-time passwords

Just touch the authenticator and it will send
the right response

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 7

/ Question 5b

What is the technique that U2F uses to authenticate with the server?

It uses challenge-based authentication:
Server sends a challenge (a random bunch of bits).
The authenticator signs the challenge with its private key.

The server validates it with the corresponding public key.

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

p
Question 5 discussion

Registration
— Server sends a challenge (a bunch of random bytes)
— Authenticator hardware generates a public/private key pair
Unique to the server
— The private key never leaves the device
— Authenticator creates a “handle”. device info and public key

— Authenticator sends back:
{ Handle, challenge } signed by the private key

— Server stores key handle in its database

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Question 5 discussion

.

Authentication
— Server sends a challenge (random bytes) and user’s key handle

— Authenticator device looks up the private key for that service

— Authenticator sends back:
{ Client info, challenge } signed by the private key for that service

— Server validates the signature against the stored public key

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

10

_

Web security review — some key concepts

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

11

[Cross-Origin Resource Sharing (CORS)

* Web pages normally enforce the same-origin policy

— JavaScript can only access content from the same origin
* Images, CSS, iframes within the page, embedded videos, other scripts, ...

|t cannot make asynchronous requests to other sites
(e.g.,via XMLHttpRequest)

« CORS allows a server to define other origins (e.g., another
domain name) as being equivalent

¢ Risk:
— HTTP allows the client to specify the valid origins ... that’s good

— The page origin can be specified in the header of the browser’s request
... that’s not good since a malicious client can change it

— But ... it's easy for a server to just ignore the header

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 12

Injection Attacks

Remote code execution attack
— We studied these outside the web
— These are data validation attacks when used on web pages

Possible if user input is injected into a string and later evaluated by an
interpreter (e.g., SQL, JavaScript, PHP)

May be done via:
— Parameters on the URL that are later used in a query, script, or other
interpreted environment

— User responses sent by submitting a form via HTTP POST and then
processed by the server

Preventing remote code execution
— Avoid using user-supplied data inside any evaluated code

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 13

/ Cross-Site Scripting (XSS)

Form of an injection attack

 Reflected XSS
— Non-persistent — the malicious code is not stored on the server
— HTTP query parameters used without sanitization and contain code

— Distributed as links on spam email or web sites
« Links look legitimate because the domain name is a valid, trusted server

— Attacks may take advantage of existing cookies that will authenticate a user

« Persistent XSS
— Data provided by the attacker is stored and later presented to users going to
valid pages
— Example: place malicious JavaScript as part of response on a discussion
thread
— When any user navigates to that discussion, they load the JavaScript

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski 14

/ Cross-Site Resource Forgery (XSRF)

« User sends unauthorized commands to the server
— Commands are parameters on the URL

Just like a Reflected XSS attack, the attacker will get the user to click
on a link

— The link is to a legitimate site (e.g., bank.com)

— Clicking on the link takes the user to the server (bank.com)

— The browser sends HTTP headers with cookies for bank.com
 If the user is logged in, there will be an authentication cookie identifying the user

— The parameters on the URL provide a command

— The server thinks the request came from the user ... because it did
* Only the user did not intend to submit it.

.

April 17, 2019 CS 419 © 2019 Paul Krzyzanowski

15

_

The end

April 17, 2019

CS 419 © 2019 Paul Krzyzanowski

16

