CS 419 4/15/18

( 7 ( . A
Original Browser
« Static content on clients
 Servers were responsible for dynamic parts
Computer Secu rity « Security attacks were focused on servers
14. Web Security — Malformed URLSs, buffer overflows, root paths, unicode attacks
Paul Krzyzanowski
Rutgers University
Spring 2018
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Today’s Browsers Complexity creates a huge threat surface
Complex! * More features — more bugs
« JavaScript — allows code execution » Browsers experienced a rapid introduction of features
« Document Object Model (DOM) — change appearance of page » Browser vendors don’t necessarily conform to all specs
« XMLHttpRequest (AJAX) — asynchronously fetch content » Check out
quirksmode.org
* WebSockets — open interactive communication session between
JavaScript on a browser and a server
« Multimedia support - <audio>, <video>, <track>
— MediaStream recording (audio and video), speech recognition & synthesis
« Geolocation
« NaCl - run native code inside a browser (sandboxed)
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Multiple sources What should code on a page have access to?
« Most desktop & mobile apps come from one place « Can analytics code access JavaScript state from a script from
— They may use external libraries, but those are linked in and tested jQuery.com on the same page?
« Web apps usually have components from different places — Scripts are from different places ... but the page author selected them
« E.g., www.cnn.com has + Can analytics scripts interact with event handlers?
~ Fonts from cdn.cnn.com + How about embedded frames?
— Images from turner.com, outbrain.com, bleacherreport.net, chartbeat.net
— Scripts from amazon-adsystem.com, rubiconproject.com, bing.com, krxd.net,
gigya.com, krxd.net, livefyre.com, fyre.co, optimizely.com, facebook.net,
cnn.com, criteo.com, outbrain.com, sharethrough.com, doubleclick.net,
googletagservices.com, ugdturner.com
— XMLHttpRequests from zone-manager.izi, optimizely.com, chartbeat.com,
cnn.io, rubiconproject.com
— Other content from scorecardresearch.com, imnworldwide.com,
facebook.com
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Ideas behind the same-origin policy

« Each origin has client-side resources
— Cookies: simple way to implement state
+ Browser sends cookies associated with the origin
— DOM storage: key-value storage per origin
— JavaScript namespace: functions & variables
— DOM tree: JavaScript version of the HTML structure

« Each frame is assigned the origin of its URL

« JavaScript code executes with the authority of its frame’s origin

— If cnn.com loads JavaScript from jQuery.com, the script runs with the authority
of cnn.com

« Passive content (CSS files, images) has no authority
— It doesn’t (and shouldn’t) contain executable code
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Passive content has no authority

Makes sense ... but why does it matter?
Usually no ... but ...

MIME sniffing attack
— Chance of security problems if browser parses object incorrectly
— Old versions of |E would examine leading bytes of object to fix wrong file
types provided by the user
— Suppose a page contained passive content from an untrusted site
— Attacker could add HTML & JavaScript to the content
« |E would reclassify the content
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Same-origin Policy
Web application security model: same-origin policy
A browser permits scripts in one page to access data
in a second page only if both pages have the same origin
Origin = { URI scheme, hostname, port number }
« Same origin
— http://www.poopybrain.com/419/test.html|
— http://www.poopybrain.com/index.html|
« Different origin
— https://www.poopybrain.com/index.html — different URI scheme (https)
— http://www.poopybrain.com:8080/index.htm!| — different port
— http://[poopybrain.com/index.html - different host
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o 15,2018 S 419 62018 Pau Krzyzanowski 7
( . .
Can two different frames communicate?
« Generally, no — they're isolated if they’re not the same origin
« But postMessage() allows two independent frames to communicate
« Both sides have to optin
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Cross-origin weirdness
« Images
— Aframe can load images from anywhere
— Same-origin policy does not allow it to inspect the image
— However, it can infer the size of the rendered image
- CSS
— Aframe can embed CSS from any origin but cannot inspect the text inside the
file
— But:
It can discover what the CSS does by creating DOM nodes and seeing how
styling changes
« JavaScript
— Aframe can fetch JavaScript and execute it ... but not inspect it
— But ... you can call myfunction.toString() to get the source
— Or ... just download the source via a curl command and look at it
- J
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Cross-Origin Resource Sharing (CORS)
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» A page can contain content from multiple origins
— Images, CSS, scripts, iframes, videos

« XMLHttpRequests are not permitted
— CORS - allows servers to define allowable origins

— Example, a server at service.example.com may respond with
Access-Control-Allow-Origin: http://www.example.com

— Stating that it will allow treating www . example.com as the same origin
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Cookies

« Cookies are identified with a domain & a path
pk.org/419

All paths in the domain have access to the cookie

« Whoever sets the cookie chooses what domain & paths looks like
— JavaScript can set
document.cookie = “username=paul”;

— Server can set cookies by sending them in the HTTP header
Set-Cookie: username=paul

When a browser generates an HTTP request
it sends all matching cookies
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Cross-Site Request Forgery (XSRF)
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« Abrowser sends cookies for a site along with a request

« If an attacker gets a user to access a site
... the user’s cookies will be sent with that request

« If the cookies contain the user’s identity or session state
— The attacker can create actions on behalf of the user

« Planting the link
— Forums or spam

http://mybank.com/?action=transfer&amount=100000&to=attacker_account
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Clickjacking

« Attacker overlays an image to trick a user to clicking a button or link

« User sees this

FREEiPad

« Not realizing there’s an invisible frame over the image

« Clicking there could generate a Facebook like
... or download malware
... or change security settings for the Flash plugin

« Defense
— JavaScript in the legitimate code to check that it's the top layer
window.self == window.top

— Set Xx-Frame-Options to not allow frames from other domains
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Cookies
» Cookies are often used to track server sessions
— If malicious code can modify the cookie or give it to someone else, an
attacker may be able to
« View your shopping cart
« Get or use your login credentials
« Have your web documents or email get stored into a different account
« HttpOnly flag: disallows scripts from accessing the cookie
— Sentin a set-Cookie HTTP response header
« Secure flag: send the cookie only over https
Set-Cookie: username=paul; path=/; HttpOnly; Secure
- J
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Cross-Site Request Forgery (XSRF)
Defenses
— Validate the referrer header at the server
— Require unique tokens per request
+ Add randomness to the URL that attackers will not be able to guess
« E.g., legitimate server can set tokens via hidden fields instead of cookies
— Default-deny browser policy for cross-site requests (but may interfere with
legitimate uses)
- J
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Screen sharing attack

HTMLS5 added a screen sharing API

Normally: no cross-origin communication from client to server

This is violated with the screen sharing API

— If a frame is granted permission to take a screenshot, it can get a screenshot
of the entire display (monitor, windows, browser)

— Can also get screenshots within the user’s browser without consent

User might not be aware of the scope of screen sharing

http:/dl.acm.org/citation.cfm?id=2650789

hitp://mews.sv.cmu.edu/papers/oakland-14.pdf

-
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Input sanitization

Remember SQL injection attacks?

Any user input must be parsed carefully

<script> var x = “untrusted_data”; </script>

Attacker can set untrusted_data to something like:

hi”; </script> <hl> Hey, some text! </hl> <script> malicious code.. </script>

Sanitization should be used with any user input that may be part of

Shellshock attack

+ Discovered in 2014 .... Existed since 1989!

« Privilege escalation vulnerability in bash

— Function export feature is buggy, allowing functions defined in one instance of
bash to be available to other instances via environment variable lists

* Web servers using CGl scripts (Common Gateway Interface)
— HTTP headers get converted to environment variables
— Command gets executed by the shell via system()

env x="() { :;}; echo vulnerable' bash -c "echo this is a test"

» Bogus function definition in bash

— Bash gets confused while parsing function definitions and executes the
second part (“echo vulnerable”), which could invoke any operation
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— HTML
— URL
— JavaScript
- CSss
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Cross-Site Scripting (XSS)

Code injection attack
< Allows attacker to execute JavaScript in a user’s browser

< Exploit vulnerability in a website the victim visits
— Possible if the website includes user input in its pages
— Example: user content in forums (feedback, postings)

* What's the harm?
— Access cookies related to that website
— Hijack a session
— Create arbitrary HTTP requests with arbitrary content via XMLHtttpRequest
— Make arbitrary modifications to the HTML document by modifying the DOM
— Install keyloggers
— Download malware — or run JavaScript ransomware
— Try phishing by manipulating the DOM and adding a fake login page

April 15, 2018 €S 419 © 2018 Paul Krzyzanowski 21

Types of XSS attacks
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* Reflected XSS
— Malicious code is not stored anywhere
« ltis returned as part of the HTTP response
+ Only impacts users who open a malicious link or third-party web page
« Attack string is part of the link
— Web application passes unvalidated input back to the client
« The script is in the link and is returned in its original form & executed

www.mysite.com/login.asp?user=<script>malicious_code(..) </script>

« Persistent XSS
— Website stores user input and serves it back to other users at a later stage
— Victims do not have to click on a malicious link to run the payload
— Example: forum comments
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( XSS Defense

SQL Injection & pathnames

+ One of the problems in preventing XSS is character encoding
— Filters might check for "<script>" but not "%3cscript%3e”

» Key defense is sanitizing ALL user input
— E.g., Django templates: <b> hello, {{name}} </b>

» Use a less-expressive markup language for user input
— E.g., markdown

« Privilege separation
— Use a different domain for untrusted content
« E.g., googleusercontent.com for static and semi-static content
« Limits damage to main domain

» Content Security Policy (CSP)
— Designed to prevent XSS & clickjacking
— Allows website owners to identify approved origins of content & types of content
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We examined these earlier
SQL Injection
» Many web sites use a back-end database
« Links contain queries mixed with user input
query = “select * from table where user=" + username
Pathnames

« Escape the HTML directory

//mysite/images/../../../etc/shadow

April 15,2018 CS 418 ©2018 Paul Krzyzanowski 2

© 2017 Paul Krzyzanowski



CS 419

4/15/18

( Network addresses

« Aframe can send http & https requests to hosts that match the origin

+ The security of same origin is tied to the security of DNS
— Recall the DNS rebinding attack
+ Register attacker.com; get user to visit attacker.com
+ Browser generates request for attacker.com
+ DNS response contains a really short TTL
« After the first access, attacker reconfigures the DNS server
— Binds attacker.com to the victim’s IP address
— Web site can now fetch a new object via AJAX
+ Web browser thinks request goes to an external site
+ Really, it goes to a server in the victim’s network
— The attacker is now accessing data within the victim’s servers and can send
data back to an attacker’s site

-
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The situation is not good

HTML, JavaScript, and CSS continue to evolve

All have become incredibly complex

Web apps themselves can be incredibly complex, hence buggy

Web browsers are forgiving

— You don’t see errors

— They try to correct syntax problems and guess what the author meant
— Usually, something gets rendered

-
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GIFAR attack
« Java applets are sent as JAR files
— This is just a zip format
— Header is stored at the end of the file
* GIF files are images
— Header is stored at the beginning of the file
+ We can combine the two files: gif + jar
* GIFAR attack
— Submit a GIFAR file (myimage.gif) to a site that only allows image uploads
— Use XSS to inject <applet archive:"'myimage.gif'>
— Code will run in the context of the server
« Attacker gets to run with the authority of the origin (server)
-
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Network addresses
« Solution — no foolproof solutions
— Don't allow DNS resolutions to return internal addresses
— Force longer TTL
-
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The end
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