CS 419 4/15/18

(7 (. A
Original Browser
« Static content on clients
 Servers were responsible for dynamic parts
Computer Secu rity « Security attacks were focused on servers
14. Web Security — Malformed URLSs, buffer overflows, root paths, unicode attacks
Paul Krzyzanowski
Rutgers University
Spring 2018
- J & J
Rori 15,2018 CS 4190 2018 Paul Krzyzanowsi T i 15,2018 S 41902018 Paul Kzyzanowse 2
(’ h (. N
Today’s Browsers Complexity creates a huge threat surface
Complex! * More features — more bugs
« JavaScript — allows code execution » Browsers experienced a rapid introduction of features
« Document Object Model (DOM) — change appearance of page » Browser vendors don’t necessarily conform to all specs
« XMLHttpRequest (AJAX) — asynchronously fetch content » Check out
quirksmode.org
* WebSockets — open interactive communication session between
JavaScript on a browser and a server
« Multimedia support - <audio>, <video>, <track>
— MediaStream recording (audio and video), speech recognition & synthesis
« Geolocation
« NaCl - run native code inside a browser (sandboxed)
- J - J
Apil 16,2018 €5 41902018 Paul Kizyzanowsid 3 Apil 15,2018 €5 41902018 Paul Kzyzanowsid s
(i N (. 7
Multiple sources What should code on a page have access to?
« Most desktop & mobile apps come from one place « Can analytics code access JavaScript state from a script from
— They may use external libraries, but those are linked in and tested jQuery.com on the same page?
« Web apps usually have components from different places — Scripts are from different places ... but the page author selected them
« E.g., www.cnn.com has + Can analytics scripts interact with event handlers?
~ Fonts from cdn.cnn.com + How about embedded frames?
— Images from turner.com, outbrain.com, bleacherreport.net, chartbeat.net
— Scripts from amazon-adsystem.com, rubiconproject.com, bing.com, krxd.net,
gigya.com, krxd.net, livefyre.com, fyre.co, optimizely.com, facebook.net,
cnn.com, criteo.com, outbrain.com, sharethrough.com, doubleclick.net,
googletagservices.com, ugdturner.com
— XMLHttpRequests from zone-manager.izi, optimizely.com, chartbeat.com,
cnn.io, rubiconproject.com
— Other content from scorecardresearch.com, imnworldwide.com,
facebook.com
- J & J
“Apr 15,2018 5 419.© 2018 Paut Kizyzanowsa s Tl 15,2018 5 41902018 Paut Kzyzanowsk s

© 2017 Paul Krzyzanowski 1

CS 419

4/15/18

Ideas behind the same-origin policy

« Each origin has client-side resources
— Cookies: simple way to implement state
+ Browser sends cookies associated with the origin
— DOM storage: key-value storage per origin
— JavaScript namespace: functions & variables
— DOM tree: JavaScript version of the HTML structure

« Each frame is assigned the origin of its URL

« JavaScript code executes with the authority of its frame’s origin

— If cnn.com loads JavaScript from jQuery.com, the script runs with the authority
of cnn.com

« Passive content (CSS files, images) has no authority
— It doesn’t (and shouldn’t) contain executable code

April 15,2018 ©S 419 ©2018 Paul Krzyzanowski 8

Passive content has no authority

Makes sense ... but why does it matter?
Usually no ... but ...

MIME sniffing attack
— Chance of security problems if browser parses object incorrectly
— Old versions of |E would examine leading bytes of object to fix wrong file
types provided by the user
— Suppose a page contained passive content from an untrusted site
— Attacker could add HTML & JavaScript to the content
« |E would reclassify the content

April 15,2018 ©S 419 ©2018 Paul Krzyzanowski 10

()
Same-origin Policy
Web application security model: same-origin policy
A browser permits scripts in one page to access data
in a second page only if both pages have the same origin
Origin = { URI scheme, hostname, port number }
« Same origin
— http://www.poopybrain.com/419/test.html|
— http://www.poopybrain.com/index.html|
« Different origin
— https://www.poopybrain.com/index.html — different URI scheme (https)
— http://www.poopybrain.com:8080/index.htm!| — different port
— http://[poopybrain.com/index.html - different host
- J
o 15,2018 S 419 62018 Pau Krzyzanowski 7
(. .
Can two different frames communicate?
« Generally, no — they're isolated if they’re not the same origin
« But postMessage() allows two independent frames to communicate
« Both sides have to optin
- J
Ao 15,2018 €5 41992018 Paul Krzyzanowski 9
s . _ R
Cross-origin weirdness
« Images
— Aframe can load images from anywhere
— Same-origin policy does not allow it to inspect the image
— However, it can infer the size of the rendered image
- CSS
— Aframe can embed CSS from any origin but cannot inspect the text inside the
file
— But:
It can discover what the CSS does by creating DOM nodes and seeing how
styling changes
« JavaScript
— Aframe can fetch JavaScript and execute it ... but not inspect it
— But ... you can call myfunction.toString() to get the source
— Or ... just download the source via a curl command and look at it
- J

April 15, 2018 CS 419 ©2018 Paul Krzyzanowski 11

Cross-Origin Resource Sharing (CORS)

-

» A page can contain content from multiple origins
— Images, CSS, scripts, iframes, videos

« XMLHttpRequests are not permitted
— CORS - allows servers to define allowable origins

— Example, a server at service.example.com may respond with
Access-Control-Allow-Origin: http://www.example.com

— Stating that it will allow treating www . example.com as the same origin

April 15,2018 CS 418 ©2018 Paul Krzyzanowski 12

© 2017 Paul Krzyzanowski

CS 419

4/15/18

s

Cookies

« Cookies are identified with a domain & a path
pk.org/419

All paths in the domain have access to the cookie

« Whoever sets the cookie chooses what domain & paths looks like
— JavaScript can set
document.cookie = “username=paul”;

— Server can set cookies by sending them in the HTTP header
Set-Cookie: username=paul

When a browser generates an HTTP request
it sends all matching cookies

April 15,2018 CS 419 © 2018 Paul Krzyzanowski

Cross-Site Request Forgery (XSRF)

-

« Abrowser sends cookies for a site along with a request

« If an attacker gets a user to access a site
... the user’s cookies will be sent with that request

« If the cookies contain the user’s identity or session state
— The attacker can create actions on behalf of the user

« Planting the link
— Forums or spam

http://mybank.com/?action=transfer&amount=100000&to=attacker_account

April 15, 2018 €S 419 © 2018 Paul Krzyzanowski

Clickjacking

« Attacker overlays an image to trick a user to clicking a button or link

« User sees this

FREEiPad

« Not realizing there’s an invisible frame over the image

« Clicking there could generate a Facebook like
... or download malware
... or change security settings for the Flash plugin

« Defense
— JavaScript in the legitimate code to check that it's the top layer
window.self == window.top

— Set Xx-Frame-Options to not allow frames from other domains

April 15, 2018 CS 419 ©2018 Paul Krzyzanowski

(i 7
Cookies
» Cookies are often used to track server sessions
— If malicious code can modify the cookie or give it to someone else, an
attacker may be able to
« View your shopping cart
« Get or use your login credentials
« Have your web documents or email get stored into a different account
« HttpOnly flag: disallows scripts from accessing the cookie
— Sentin a set-Cookie HTTP response header
« Secure flag: send the cookie only over https
Set-Cookie: username=paul; path=/; HttpOnly; Secure
- J
April 15, 2018 5 419 ©.2018 Pau Krzyzanowski T
(.
Cross-Site Request Forgery (XSRF)
Defenses
— Validate the referrer header at the server
— Require unique tokens per request
+ Add randomness to the URL that attackers will not be able to guess
« E.g., legitimate server can set tokens via hidden fields instead of cookies
— Default-deny browser policy for cross-site requests (but may interfere with
legitimate uses)
- J
April 15, 2018 €5 41902018 Paul Kzyzanowsid 1
~

Screen sharing attack

HTMLS5 added a screen sharing API

Normally: no cross-origin communication from client to server

This is violated with the screen sharing API

— If a frame is granted permission to take a screenshot, it can get a screenshot
of the entire display (monitor, windows, browser)

— Can also get screenshots within the user’s browser without consent

User might not be aware of the scope of screen sharing

http:/dl.acm.org/citation.cfm?id=2650789

hitp://mews.sv.cmu.edu/papers/oakland-14.pdf

-

April 15,2018 CS 418 ©2018 Paul Krzyzanowski 18

© 2017 Paul Krzyzanowski

CS 419

4/15/18

=
Input sanitization

Remember SQL injection attacks?

Any user input must be parsed carefully

<script> var x = “untrusted_data”; </script>

Attacker can set untrusted_data to something like:

hi”; </script> <hl> Hey, some text! </hl> <script> malicious code.. </script>

Sanitization should be used with any user input that may be part of

Shellshock attack

+ Discovered in 2014 Existed since 1989!

« Privilege escalation vulnerability in bash

— Function export feature is buggy, allowing functions defined in one instance of
bash to be available to other instances via environment variable lists

* Web servers using CGl scripts (Common Gateway Interface)
— HTTP headers get converted to environment variables
— Command gets executed by the shell via system()

env x="() { :;}; echo vulnerable' bash -c "echo this is a test"

» Bogus function definition in bash

— Bash gets confused while parsing function definitions and executes the
second part (“echo vulnerable”), which could invoke any operation

April 15,2018 ©S 419 ©2018 Paul Krzyzanowski 20

— HTML
— URL
— JavaScript
- CSss
- J
horl 15,2018 S 419.© 2018 Paul Kzyzanowsia 9
(N

Cross-Site Scripting (XSS)

Code injection attack
< Allows attacker to execute JavaScript in a user’s browser

< Exploit vulnerability in a website the victim visits
— Possible if the website includes user input in its pages
— Example: user content in forums (feedback, postings)

* What's the harm?
— Access cookies related to that website
— Hijack a session
— Create arbitrary HTTP requests with arbitrary content via XMLHtttpRequest
— Make arbitrary modifications to the HTML document by modifying the DOM
— Install keyloggers
— Download malware — or run JavaScript ransomware
— Try phishing by manipulating the DOM and adding a fake login page

April 15, 2018 €S 419 © 2018 Paul Krzyzanowski 21

Types of XSS attacks

- J

* Reflected XSS
— Malicious code is not stored anywhere
« ltis returned as part of the HTTP response
+ Only impacts users who open a malicious link or third-party web page
« Attack string is part of the link
— Web application passes unvalidated input back to the client
« The script is in the link and is returned in its original form & executed

www.mysite.com/login.asp?user=<script>malicious_code(..) </script>

« Persistent XSS
— Website stores user input and serves it back to other users at a later stage
— Victims do not have to click on a malicious link to run the payload
— Example: forum comments

April 15,2018 ©S 419 ©2018 Paul Krzyzanowski 2

(XSS Defense

SQL Injection & pathnames

+ One of the problems in preventing XSS is character encoding
— Filters might check for "<script>" but not "%3cscript%3e”

» Key defense is sanitizing ALL user input
— E.g., Django templates: hello, {{name}}

» Use a less-expressive markup language for user input
— E.g., markdown

« Privilege separation
— Use a different domain for untrusted content
« E.g., googleusercontent.com for static and semi-static content
« Limits damage to main domain

» Content Security Policy (CSP)
— Designed to prevent XSS & clickjacking
— Allows website owners to identify approved origins of content & types of content

April 15, 2018 CS 419 ©2018 Paul Krzyzanowski 23

. J

We examined these earlier
SQL Injection
» Many web sites use a back-end database
« Links contain queries mixed with user input
query = “select * from table where user=" + username
Pathnames

« Escape the HTML directory

//mysite/images/../../../etc/shadow

April 15,2018 CS 418 ©2018 Paul Krzyzanowski 2

© 2017 Paul Krzyzanowski

CS 419

4/15/18

(Network addresses

« Aframe can send http & https requests to hosts that match the origin

+ The security of same origin is tied to the security of DNS
— Recall the DNS rebinding attack
+ Register attacker.com; get user to visit attacker.com
+ Browser generates request for attacker.com
+ DNS response contains a really short TTL
« After the first access, attacker reconfigures the DNS server
— Binds attacker.com to the victim’s IP address
— Web site can now fetch a new object via AJAX
+ Web browser thinks request goes to an external site
+ Really, it goes to a server in the victim’s network
— The attacker is now accessing data within the victim’s servers and can send
data back to an attacker’s site

-

April 15,2018 ©S 419 ©2018 Paul Krzyzanowski 26

The situation is not good

HTML, JavaScript, and CSS continue to evolve

All have become incredibly complex

Web apps themselves can be incredibly complex, hence buggy

Web browsers are forgiving

— You don’t see errors

— They try to correct syntax problems and guess what the author meant
— Usually, something gets rendered

-

April 15,2018 ©S 419 ©2018 Paul Krzyzanowski 28

~
GIFAR attack
« Java applets are sent as JAR files
— This is just a zip format
— Header is stored at the end of the file
* GIF files are images
— Header is stored at the beginning of the file
+ We can combine the two files: gif + jar
* GIFAR attack
— Submit a GIFAR file (myimage.gif) to a site that only allows image uploads
— Use XSS to inject <applet archive:"'myimage.gif'>
— Code will run in the context of the server
« Attacker gets to run with the authority of the origin (server)
-
horl 15,2018 S 419.© 2018 Paul Kzyzanowsia s
-~
Network addresses
« Solution — no foolproof solutions
— Don't allow DNS resolutions to return internal addresses
— Force longer TTL
-
Ao 15,2018 €5 41902018 Paul Kizyzanowsid 7
-~
The end
-

April 15, 2018 €S 419 © 2018 Paul Krzyzanowski

© 2017 Paul Krzyzanowski

