Computer Security 14r. Pre-exam 3 Review

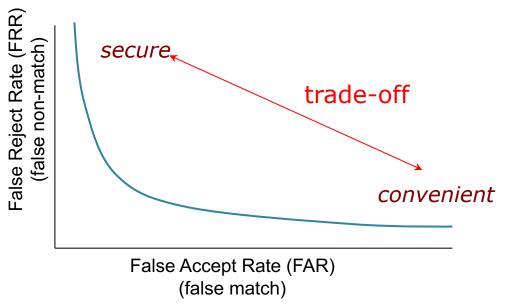
Paul Krzyzanowski

Rutgers University

Spring 2017

This covers highlights of the past four lectures – <u>not</u> all the material

If any of this is really unclear to you, it's an indication that you should spend some time studying the material


Biometrics

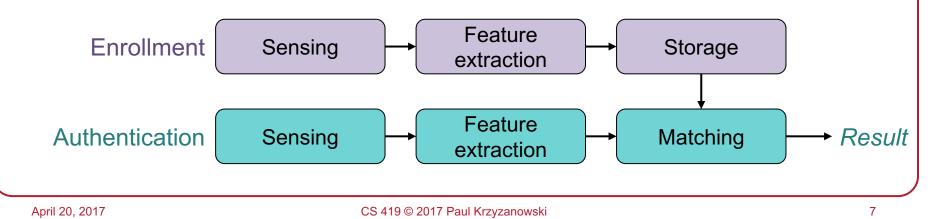
Biometric Authentication

- Identify a person based on physical or behavioral characteristics
 - Not ownership of keys or knowledge of passwords
- Unlike other forms of authentication
 - Biometrics relies on statistical pattern recognition
 - Comparing sampled biometric data with stored biometric data will almost never yield an exact match

ROC Curve

- False Accept Rate (FAR)
 - Non-matching pair of biometric data is accepted as a match
- False Reject Rate (FRR)
 - Matching pair of biometric data is rejected as a match
- ROC (Receiver Operator Characteristic) curve identifies the behavior of a biometric system
 - FAR vs. FRR

Robustness and Distinctiveness


- Robustness
 - Repeatable, not subject to large changes over time
 - Fingerprints & iris patterns are more robust than voice

Distinctiveness

- Differences in the biometric measurement among population
- Fingerprints: typically 40-60 distinct features
- Irises: typically >250 distinct features
- Hand geometry: ~1 in 100 people may have a hand with measurements close to yours.

Authentication Process

- 1. Sensing
 - Capture the biometric data
- 2. Feature extraction
 - Extract the interesting (unique) parts of the data
- 3. Pattern matching
 - Compare the extracted data with stored samples
- 4. Decision
 - Decide whether the sensed data is close enough to the stored sample

Security Problems

- Need a trusted and tamper-proof capture & authentication path
 - Sensor hardware \rightarrow Feature extraction processing \rightarrow Processing & Decision
- Need trusted storage for stored samples of data
- Biometric data cannot be compartmentalized
 - You cannot have different data for your Amazon & bank accounts
- Biometric data can be stolen
 - Photos (irises, fingerprints), lifting fingerprints
 - Once biometric data is compromised, it remains compromised
 - You cannot change your iris or finger

CAPTCHA

- <u>Not biometrics</u> a technique for software to detect if it's dealing with a human being or a bot
- Present distorted text that is difficult for a computer to process but relatively easy for humans
- Alternate approach
 - Recognize pictures or parts of a scene
- Problem: OCR has improved to the point where computers can recognize sloppy text
- NoCAPTCHA RECAPTCHA
 - No puzzles!
 - Perform "risk analysis"
 - Check IP address of known bots
 - Check Google cookies for legiitimate users
 - Track mouse movements for randomness

Code Signing

- Challenge: distribute software and ensure that it is not modified during distribution or on the computer
- Solution
 - Use digital signatures, just like for messages
 - Publisher: Hash the software \rightarrow encrypt the hash with your private key
 - User: Hash the software \rightarrow validate the hash using the publisher's public key
- Publisher's public keys are distributed as X.509 digital certificates
- Sign page-size blocks of software
 - Operating system's demand paging does not load the whole program at once, just individual pages when they are needed
 - OS can verify a page as it is loaded

Network security

Data link layer

- MAC Attacks CAM overflow
 - An Ethernet switch builds up a switch table in content-addressable memory
 - Table identifies source ethernet MAC addresses with the switch port
 - If you send spoofed random source addresses, you will overflow the table
 - The switch will then broadcast all traffic onto all ports
- VLAN Hopping
 - A computer can spoof itself to appear as an ethernet switch with a trunk connection to another switch
 - It will receive traffic for all VLANs (Virtual Local Area Networks) and can see all of it rather than just the traffic for one VLAN

Data link layer

- ARP cache poisoning
 - Address Resolution Protocol (ARP): computer broadcasts a query asking if anyone knows the MAC address corresponding to a given IP address
 - Anyone can reply
 - If a malicious host responds with its MAC address, it will receive traffic for that IP address
- DHCP server spoofing
 - DHCP is used to configure devices on the network
 - Assigns IP address, subnet mask, router address, DNS server address
 - A malicious host can act as a DHCP server and provide bad data for routers or DNS servers to redirect traffic

Network (IP) & transport (TCP/UDP) layers

- No source address authentication anyone can fake a source address
- UDP data- trivial to forge since there is no sequencing
- TCP data harder: need to match sequence numbers
- TCP connection setup
 - Random starting sequence numbers make it hard to guess sequence #
 - SYN flooding attack:
 - Send TCP connection requests (SYN packets) with an unreachable source address
 - Receiver will allocate resources for the connection
 - Eventually will not be able to accept any more connections
 - Defense: SYN cookies
 - Do not allocate resources until the handshake is complete
 - Server computes the SYN-ACK sequence number by
 - hash(src_addr, dest_addr, src_port, dest_port, SECRET)
 - SECRET is just a random number that the server picked

Routing Protocols & DNS

- IP networks (autonomous systems) share routing information using BGP (Border Gateway Protocol)
 - TCP connection
 - Route announcements are not authenticated
 - Fake route announcements can cause routers throughout the Internet to redirect data to a different place
- DNS (Domain Name System)
 - Responsible for converting domain names to IP addresses
 - Responses can be intercepted & modified, providing the wrong address for a domain name

Firewalls & VPNs

Virtual Private Networks

• Key principle: Tunneling

- Encapsulate an entire packet as payload in another packet that is routed over a public network
- Receiver extracts the encapsulated packet and routes it onto its network

• **IPsec** – popular set of VPN protocols

- Authentication Header (AH) protocol
 - Guarantees integrity & authenticity of IP packets
 - Adds a MAC for the contents of the entire IP packet
- Encapsulating Security Payload (ESP)
 - Adds encryption of the entire payload (encapsulated packet)
- IPsec uses
 - HMAC (hash-based MACs) for integrity
 - Symmetric cryptography for confidentiality
 - Kerberos, digital certificates, or pre-shared keys for authentication

Transport Layer Security (TLS)

- Goal: provide an authenticated, encrypted, and tamper-proof connection between two hosts that software can use in a manner similar to TCP sockets
- Designed with web security in mind
 - Mutual authentication is usually not needed
 - Client needs to identify the server but the server won't know all clients
 - Users may often log in from different systems, so certificate & key management may be troublesome
 - Rely on passwords after the secure channel is set up

SSL/TLS Principles

- Use symmetric cryptography to encrypt data
 - Keys generated uniquely at the start of each session
- Include a MAC with transmitted data to ensure message integrity
- Use public key cryptography & X.509 certificates for authentication
 - Optional can authenticate 0, 1, or both parties
- Support different key exchange, encryption, integrity, & authentication protocols – negotiate what to use at the start of a session

Firewalls

Firewall (screening router)	1 st generation packet filter that filters packets between networks. Blocks/accepts traffic based on IP addresses, ports, protocols
Stateful inspection firewall	Like a screening router but also takes into account TCP connection state and information from previous connections (e.g., related ports for TCP)
Application proxy	Gateway between two networks for a specific application. Prevents direct connections to the application from outside the network. Responsible for validating the protocol.
IDS/IPS	Can usually do what a stateful inspection firewall does + examine application-layer data for protocol attacks or malicious content
Host-based firewall	Typically screening router with per-application awareness. Sometimes includes anti-virus software for application- layer signature checking
Host-based IPS	Typically allows real-time blocking of remote hosts performing suspicious operations (port scanning, ssh logins)

Web Security

Same-origin Policy

- Web application security model: **same-origin policy**
- A browser permits scripts in one page to access data in a second page only if both pages have the same origin
- Origin = { URI scheme, hostname, port number }
- Same origin
 - http://www.poopybrain.com/419/test.html
 - http://www.poopybrain.com/index.html
- Different origin
 - https://www.poopybrain.com/index.html different URI scheme (https)
 - http://www.poopybrain.com:8080/index.html different port
 - http://poopybrain.com/index.html different host

Ideas behind the same-origin policy

- Each origin has client-side resources
 - Cookies: simple way to implement state
 - Browser sends cookies associated with the origin
 - JavaScript namespace: functions & variables
 - DOM storage: key-value storage per origin
 - DOM tree: JavaScript version of the HTML structure
- Each frame gets the origin of its URL
- JavaScript code executes with the authority of its frame's origin
 - If cnn.com loads JavaScript from jQuery.com, the script runs with the authority of cnn.com
- Passive content (CSS files, images) has <u>no</u> authority
 - It doesn't (and shouldn't) contain executable code

Cross-Origin Resource Sharing (CORS)

- A page can contain content from multiple origins
 - Images, CSS, scripts, iframes, videos
- XMLHttpRequests from different origin are <u>not</u> permitted
 - **CORS** allows servers to define allowable origins
 - Example, a server at service.example.com may respond with Access-Control-Allow-Origin: http://www.example.com
 - Stating that it will allow treating www.example.com as the same origin

Cross-Site Request Forgery (XSRF)

- A browser sends cookies for a site along with a request
- If an attacker gets a user to access a site ... the user's cookies will be sent with that request
- If the cookies contain the user's identity or session state
 - The attacker can create actions on behalf of the user
- This attack works if the URL and cookies contain all necessary information to perform an action
- Planting the link
 - Forums or spam

http://mybank.com/?action=transfer&amount=100000&to=attacker_account

Clickjacking

- Attacker overlays an image to trick a user to clicking a button or link
- User sees this

There's an invisible frame over the image with a clickable link. User clicks on a maliciously-placed link

- Defense
 - JavaScript in the legitimate code to check that it's the top layer window.self == window.top
 - Set X-Frame-Options to not allow frames from other domains

Input Sanitization

- As we saw in the past, using user input directly can be dangerous
- Malicious users can
 - Modify the content of JavaScript code
 - URLs
 - CSS definitions
- Cross-site scripting (XSS)
 - User-generated text presented as part of HTML (e.g., content from user forums)
 - This text can contain malicious JavaScript, HTML frames, etc.
 - Reflected XSS
 - URL contains malicious content that will be sent to the server and then back to the user (e.g., an invalid login message)
 - Persistent XSS
 - Website stores user input and presents it as part of HTML to other users

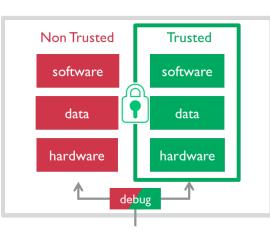
Mobile Device Security

Android Security

- App isolation
 - Apps run in a Dalvik virtual machine
 - Each app has its own Linux user ID
- App communication
 - Apps communicate with <u>intents</u>: messages that contain an action & data sent to some other component
- Permissions
 - Apps request permission to access resources at install time
 - OS maintains a whitelist of what an app is allowed to access
- File system encryption

iOS Security

App isolation


App sandbox restricts access to other app's data & resources

App communication

- Inter-app communication only through iOS APIs
- Mandatory code signing
 - Must be signed using an Apple Developer certificate
- App data protection
 - Apps can use built-in hardware encryption
- File encryption
 - Each file is encrypted with a unique key

Hardware protection

- ARM TrustZone
 - Non-secure world cannot access secure resources directly
 - Main OS and apps run in the non-secure (non-trusted) world
 - If a key is stored in the secure world (trusted), even the OS cannot access it
- Processor executes in one world at any given time
- Each world has its own OS & applications
- Applications
 - Secure key management & key generation
 - Secure boot, digital rights management, secure payment
- Apple Secure Enclave: Apple's customized TrustZone
 - All cryptographic functions are handled in the secure enclave (secure world)

Content Protection, Watermarking, & Steganography

Content Protection and DRM

- Digital Rights Management (DRM)
 - Specify how content can be played and copied
 - Requires a trusted player (trusted software) that plays by these rules
- Digital Video Broadcasting
 - Encrypted content
 - Key (Encrypted Control Word) for the content changes every few minutes and is also broadcast
 - These ECW keys are encrypted with another key. This key is updated less frequently to each user & encrypted with the secret key in their smart card

CableCARD

- Secure device that stores keys and decrypts encrypted video streams if the user is authorized
- Authorization info and keys are encrypted for the card and sent to the user

DVD and **Blu-Ray**

- Movie is encrypted with a symmetric media key
- The media key is encrypted lots of times, once for each device family
- Trusted player decrypts the media key for with its device key
- Both DVD and Blu-Ray content protection systems have been broken
 - You can get a lot of player keys and most (all) media keys

Steganography & Watermarking

- Steganography
 - Hide the contents of a message
 - Goal: transmit the hidden message to a receiver who knows what to look for
 - Examples
 - Null Cipher: Hide the message among other useless data (e.g., look at the first character of each word)
 - Chaffing & Winnowing:
 - Messages are sent in plaintext but only some messages are valid
 - Each message is signed but signatures for invalid messages are garbage
 - Only trusted receivers have the key to validate signatures
 - Images
 - Set least-significant bits
 - Hide a message in the frequency domain
- Watermarking
 - Goal: robust message that an intruder cannot remove
 - Not necessarily invisble

Watermarking

- Examples
 - Ultraviolet images on documents
 - Text with lines, words, or letters shifted based on bits to transmit
 - Bits added to pictures, audio, or video data (as with steganography)

The end