











### U2F: Universal 2<sup>nd</sup> Factor Authenticator

- Hardware authenticator (usually Bluetooth or USB)
   Stores public/private keys for each service
- · Uses challenge-based authentication
- · Registration with a service (usually a web site) initial access
- Server sends a challenge (N)
- Device generates public/private key pair for the service
   Sends { device\_id, public key, N } signed with its private key
- Authentication
  - Server sends a challenge (N)
- Device sends back { *device\_id*, *N* } signed with its private key
- Server can validate using the public key associated with that device\_id

### Code Signing

Challenge: distribute software and ensure that it is not modified during distribution or on the computer

### Solution

pril 25, 2019

- Use digital signatures, just like for network messages
- Publisher; Hash the software → encrypt the hash with your private key
   X.509 certificate attached to the application
- $\underline{\text{QS}}$ : Hash the software  $\rightarrow\,$  validate the hash using the publisher's public key
- Per-page signatures: sign page-size blocks of software
   OS can verify a page as it is loaded instead of scanning the entire file ahead of time















## Routing Protocols & DNS BGP (Border Gateway Protocol) Used by IP networks (autonomous systems) to share routing information Uses a TCP connection between routers Route announcements are not authenticated <u>Attacks</u> Fake route announcements can cause routers throughout the Internet to redirect data to a different place DNS (Domain Name System) Responsible for converting domain names to IP addresses <u>Attacks</u>

Responses can be intercepted & modified, providing the wrong address for a domain name



April 25, 2019

### The blockchain

- Decentralized list of transactions (*ledger*)
- Block = set of transactions (in Bitcoin, ~10-minute window)
- Blockchain: blocks connected via hash pointers into a list of blocks
- Entire blockchain is replicated on all participating servers
   Merkle tree: binary tree of hash pointers within a block to make it
- easy to find the desired transaction
- User ID (address) = your public key
   Only you have the private key (which is stored in your wallet)
- · Guarding against forgery
  - Each transaction signed by the owner

### Avoiding double spending

- · New transactions are sent to all participants
- Each transaction identifies **inputs** (past transactions where the money comes from)
- No two transactions cannot use the same inputs
- This ensures there is no double spending
- Each participant checks the blockchain to make sure the transaction is valid
- · Valid transactions are added to the block

### **Proof of Work**

When a block is ready to be added to the chain...

Secure the block with a Proof of Work

- Field in the block that is modified so that the *hash(block)* has specific properties (first *n* bits are 0).
- This takes a huge amount of computation trying different bit patterns

Finding the Proof of Work is called mining

### Proof of Work

- The first server that computes the Proof of Work advertises it to other systems
- Each receiver validates: this is efficient just compute the hash
- Server that finds this gets rewarded with bitcoins
- When a majority of systems approves the Proof of Work
   The block becomes part of the blockchain (connected via a hash pointer to the previous block)

### Changing the Past

The Proof of Work makes it difficult for a server to change old transactions

- You would need to recompute the Proof of Work for all blocks back to the one you need to modify
- This means creating an alternate blockchain
- If there are competing blockchains
- The longest chain is considered the legitimate one

• 51% attack

April 25, 2019

 To alter past transactions & create a longer chain, you need to own over 50% of the computation power

### Confirming transactions When do we feel safe about a transaction? • A transaction is confirmed after N number of additional blocks are added to the blockchain

- A confirmation value of N mean that an attacker will need to recompute N+1 Proof of Work values to modify the blockchain
- Computationally not feasible

April 25, 2019

 Large values of N are recommended for high-value transactions (typically N=6)







| Firewalls                    |                                                                                                                                                                                  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Firewall (screening router)  | 1 <sup>st</sup> generation packet filter that filters packets between networks. Blocks/accepts traffic based on IP addresses, ports, protocols                                   |
| Stateful inspection firewall | Like a screening router but also takes into account TCP<br>connection state and information from previous<br>connections (e.g., related ports for TCP)                           |
| Application proxy            | Gateway between two networks for a specific application.<br>Prevents direct connections to the application from outside<br>the network. Responsible for validating the protocol. |
| IDS/IPS                      | Can usually do what a stateful inspection firewall does +<br>examine application-layer data for protocol attacks or<br>malicious content                                         |
| Host-based firewall          | Typically screening router with per-application awareness.<br>Sometimes includes anti-virus software for application-<br>layer signature checking                                |
| Host-based IPS               | Typically allows real-time blocking of remote hosts<br>performing suspicious operations (port scanning, ssh<br>logins)                                                           |
| April 25, 2019               | CS 419 © 2019 Paul Krzyzanowski 28                                                                                                                                               |



| • Ba     | asic security model for the web                                                                                               |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
| – A<br>F | A browser permits scripts in one page to access data in a second bage <b>only if</b> both pages have the same origin          |
| - 0      | <pre>Drigin = { URI scheme, hostname, port number }</pre>                                                                     |
| • Ea     | ach frame gets the origin of its URL                                                                                          |
|          | lavaScript code executes with the authority of its frame's origin                                                             |
| – I<br>a | f cnn.com loads JavaScript from jQuery.com, the script runs with the authority of cnn.com                                     |
| – F<br>• | <sup>2</sup> assive content (CSS files, images) has <u>no</u> authority<br>It doesn't (and shouldn't) contain executable code |
| • Cr     | oss-Origin Resource Sharing (CORS)                                                                                            |
| — A      | A way for the server to tell a browser to treat multiple origins as the                                                       |





### Android Security

### · App isolation

- Linux user IDs are used as app IDs: each app has its own Linux UID
   Java apps run in a Dalvik virtual machine
- · Mandatory code signing
- Can be self-signed or signed by a third party Android does not validate CAs
- App communication
  - Apps communicate with <u>intents</u>; messages that contain an action & data sent to some other component
  - · This is the way apps request services from system services or other apps

CS 419 © 2019 Paul Krzyzano

- Permissions
- Apps must request permission to access resources at install time
- OS maintains a whitelist of what an app is allowed to access

### · File system encryption

### April 25, 2019

## App isolation App sandbox restricts access to other app's data & resources App communication Inter-app communication only through iOS APIs Mandatory code signing Must be signed using an Apple Developer certificate App data protection Apps can use built-in hardware encryption File encryption Each file is encrypted with a unique key

iOS Security

pril 25, 2019

# Hardware protection ARM TrustZone: two "worlds" Non-secure world Cannot access secure resources directly Main OS and apps run in the non-secure (non-trusted) world Secure world Cryptographic functions & key storage Each world has its own OS & applications Secure key management & key generation Secure boot, digital rights management, secure payment Apple Secure Enclave: Apple's customized TrustZone-like solution Dedicated co-processor for the secure world All cryptographic functions are handled in the secure enclave (secure world)

