
Computer Security
09. Authentication

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Authentication

• Identification: who are you?

• Authentication: prove it

• Authorization: you can do it

• Protocols such as Kerberos combine all three

2April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Authentication

Three factors:

– something you have key, card
• Can be stolen

– something you know passwords
• Can be guessed, shared, stolen

– something you are biometrics
• Usually needs hardware, can be copied (sometimes)
• Once copied, you’re stuck

3April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Multi-Factor Authentication

Factors may be combined
– ATM machine: 2-factor authentication

• ATM card something you have
• PIN something you know

– Password + code delivered via SMS: 2-factor authentication
• Password something you know
• Code validates that you possess your phone

Two passwords ≠ Two-factor authentication

4April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Authentication: PAP

Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords
• Insecure on an open network
• Also, password file must be protected from open access

– But administrators can still see everyone’s passwords

5

name:password
database

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Passwords are bad

• Human readable & easy to guess
– People usually pick really bad passwords

• Easy to forget

• Usually short

• Static … reused over & over

• Replayable

6April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Common Passwords
Adobe security breach (November 2013)

– 152 million Adobe customer records … with encrypted passwords
– Adobe encrypted passwords with a symmetric key algorithm
– … and used the same key to encrypt every password!

7

Frequency Password
1 1,911,938 123456
2 446,162 123456789
3 345,834 password
4 211,659 adobe123
5 201,580 12345678
6 130,832 qwerty
7 124,253 1234567
8 113,884 111111
9 83,411 photoshop

10 82,694 123123
11 76,910 1234567890
12 76,186 000000
13 70,791 abc123

Frequency Password
14 61,453 1234
15 56,744 adobe1
16 54,651 macromedia
17 48,850 azerty
18 47,142 iloveyou
19 44,281 aaaaaa
20 43,670 654321
21 43,497 12345
22 37,407 666666
23 35,325 sunshine
24 34,963 123321
25 33,452 letmein
26 32,549 monkey

Top 26 Adobe Passwords

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

It's not getting better

Past seven years of top passwords from SplashData's list

Rank 2011[4] 2012[5] 2013[6] 2014[7] 2015[8] 2016[3] 2017[9]

1 password password 123456 123456 123456 123456 123456

2 123456 123456 password password password password password

3 12345678 12345678 12345678 12345 12345678 12345 12345678

4 qwerty abc123 qwerty 12345678 qwerty 12345678 qwerty

5 abc123 qwerty abc123 qwerty 12345 football 12345

6 monkey monkey 123456789 123456789 123456789 qwerty 123456789

7 1234567 letmein 111111 1234 football 1234567890 letmein

8 letmein dragon 1234567 baseball 1234 1234567 1234567

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski 8

PAP: Reusable passwords
Problem #1: Open access to the password file

What if the password file isn’t sufficiently protected and an intruder gets
hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your
password on other systems.

Solution:

Store a hash of the password in a file
– Given a file, you don’t get the passwords
– Have to resort to a dictionary or brute-force attack
– Example, passwords hashed with SHA-512 hashes (SHA-2)

9April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

What is a dictionary attack?

• Suppose you got access to a list of hashed passwords

• Brute-force, exhaustive search: try every combination
– Letters (A-Z, a-z), numbers (0-9), symbols (!@#$%...)

– Assume 30 symbols + 52 letters + 10 digits = 92 characters

– Test all passwords up to length 8

– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015

– If we test 1 billion passwords per second: ≈ 60 days

• But some passwords are more likely than others
– 1,991,938 Adobe customers used a password = “123456”

– 345,834 users used a password = “password”

• Dictionary attack
– Test lists of common passwords, dictionary words, names

– Add common substitutions, prefixes, and suffixes

10

Easiest to do if you steal a hashed password file – so we read-protect the hashed passwords

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Defenses

• Rate-limit guesses
– Add timeouts after an incorrect password

• Linux waits about 3 secs – and terminates the login program after 5 tries

• Lock out the account after N bad guesses
– But this makes you vulnerable to denial-of-service attacks

• Use a slow algorithm to make guessing slow

11April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

How to speed up a dictionary attack

Create a table of precomputed hashes

Now we just search a table for the hash to find the password

12April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

SHA-256 Hash password
8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92 123456
5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 password
ef797c8118f02dfb649607dd5d3f8c7623048c9c063d532cc95c5ed7a898a64f 12345678
1c8bfe8f801d79745c4631d09fff36c82aa37fc4cce4fc946683d7b336b63032 letmein

… …

What is salt?

Salt = random string (typically up to 16 characters)
– Concatenated with the password
– Stored with the password file (it’s not secret)

"am$7b22QL" + "password"

– Even if you know the salt, you cannot use precomputed hashes to
search for a password (because the salt is prefixed)

You will not have a precomputed hash(“am$7b22QLpassword”)

13

Example: SHA-256 hash of “password”, salt = “am$7b22QL”=
hash("am$7b22QLpassword")=
7a87d1d5118873b1c16d30176936e1920f33b91d8be1517d5cc295dfd0268906

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Longer passwords

• English text has an entropy of about 1.2-1.5 bits per character

• Random text has an entropy ≈ log2(1/95) ≈ 6.6 bits/character

14

Assume 95 printable characters

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

People forget passwords

• Especially seldom-used ones

• How do we handle that?

• Email them?

– Common solution

– Requires that the server be able to get the password (can’t store a hash)

– What if someone reads your email?

• Reset them?

– How do you authenticate the requester?

– Usually send reset link to email address created at registration

– But – what if someone reads your mail? …or you no longer have that address?

• Hints?

• Write them down?

– OK if the threat model is electronic only

15April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Reusable passwords in multiple places
• People often use the same password in different places

• If one site is compromised, the password can be used elsewhere
– People often try to use the same email address and/or user name

• This is the root of phishing attacks

• Password managers
– Software that stores passwords in an encrypted file
– Do you trust the protection? The synchronization capabilities?
– Can malware get to the database?
– In general, these are good

• Way better than storing passwords in a file
• Encourages having unique passwords per site
• Password managers may have the ability to recognize web sites

& defend against phishing

16April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski 17

PAP: Reusable passwords
Problem #2: Network sniffing

Passwords can be stolen by observing a user’s session in person or
over a network:

– snoop on telnet, ftp, rlogin, rsh sessions
– Trojan horse
– social engineering
– brute-force or dictionary attacks

Solutions:

(1) Use an encrypted communication channel

(2) Use one-time passwords

18April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

One-time passwords

Use a different password each time
– If an intruder captures the transaction, it won’t work next time

Three forms

1. Sequence-based: password = f(previous password)

2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

19April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

S/key authentication

• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way functions

20April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Authenticate Alice for 100 logins
• pick random number, R
• using a one-way function, f(x):

x1 = f(R)
x2 = f(x1) = f(f(R))
x3 = f(x2) = f(f(f(R)))

… …
x100 = f(x99) = f(…f(f(f(R)))…)

• then compute:
x101 = f(x100) = f(…f(f(f(R)))…)

S/key authentication

Give this list
to Alice

21April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

S/key authentication

Authenticate Alice for 100 logins

store x101 in a password file or database record
associated with Alice

alice: x101

22April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

S/key authentication

Alice presents the last number on her list:

Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with the value in
the database

if (x100 provided by alice) = passwd(“alice”)
replace x101 in db with x100 provided by alice
return success

else
fail

next time: Alice presents x99

if someone sees x100 there is no way to generate x99.

23April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Authentication: CHAP

Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).

We create a hash of the nonce and the secret.

An intruder does not have the secret and cannot do this!

24

= nonce

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

25April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Time-Based Authentication

Time-based One-time Password (TOTP) algorithm

• Both sides share a secret key

• User runs TOTP function to generate a one-time password
one_time_password = hash(secret_key, time)

• User logs in with:
– Name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski 27

Time-based One-time Passwords

Used by

– Microsoft Two-step Verification

– Google Authenticator

– Facebook Code Generator

– Amazon Web Services

– Bitbucket

– Dropbox

– Evernote

– Zoho

– Wordpress

– 1Password

– Many others…

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski 28

RSA SecurID card
Username:

paul
Password:

1234032848

PIN passcode from card+

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password
4. Read password & enter Password:

354982

Passcode changes every 60 seconds

29April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

SecurID card

• Proprietary device from RSA

– SASL mechanism: RFC 2808

• Two-factor authentication based on:

– Shared secret key (seed)

• stored on authentication card

– Shared personal ID – PIN

• known by user

30

Something you have

Something you know

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

SecurID (SASL) authentication: server side

• Look up user’s PIN and seed associated with the token

• Get the time of day
– Server stores relative accuracy of clock in that SecurID card
– historic pattern of drift
– adds or subtracts offset to determine what the clock chip on the

SecurID card believes is its current time

• Passcode is a cryptographic hash of seed, PIN, and time
– server computes f (seed, PIN, time)

• Server compares results with data sent by client

31April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

32

Alice Mike Bob

Hi Bob, I’m Alice

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

33

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

34

Alice Mike Bob

What’s your password? What’s your password?

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

35

Alice Mike Bob

It’s 123456 It’s 123456

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

36

Alice Mike Bob

So long, sucker! Welcome, Alice!

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

37

Alice Mike Bob

Huh? Download my files

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Guarding against man-in-the-middle attacks

• Use a covert communication channel
– The intruder won’t have the key
– Can’t see the contents of any messages
– But you can’t send the key over that channel!

• Use signed messages for all communication
– Signed message = { message, encrypted hash of message }
– Both parties can reject unauthenticated messages
– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

• But watch out for replay attacks!
– May need to use session numbers or timestamps

38April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Cryptographic toolbox

• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

39April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Code Integrity

40April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Review: signed messages

41

Message M

Hash(M) Ea(H(M))

Encrypt with Alice’s private key
= digital signature

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

We can sign code as well

• Validate integrity of the code
– If the signature matches, then the code has not been modified

• Enables
– Distribution from untrusted sources
– Distribution over untrusted channels
– Detection of modifications by malware

• Signature = encrypted hash signed by trusted source
– Does not validate the code is good … just where it comes from

42April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Code Integrity: signed software

• Windows 7-10: Microsoft Authenticode
– SignTool command
– Hashes stored in system catalog or signed & embedded in the file
– Microsoft-tested drivers are signed

• macOS
– codesign command
– Hashes & certificate chain stored in file

• Also Android & iOS

43April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Code signing: Microsoft Authenticode
A format for signing executable code (dll, exe, cab, ocx, class files)

• Software publisher:
– Generate a public/private key pair
– Get a digital certificate: VeriSign class 3 Commercial Software Publisher’s

certificate
– Generate a hash of the code to create a fixed-length digest
– Encrypt the hash with your private key
– Combine digest & certificate into a Signature Block
– Embed Signature Block in executable

• Microsoft SmartScreen:
– Manages reputation based on download history, popularity, anti-virus results

• Recipient:
– Call WinVerifyTrust function to validate:

• Validate certificate, decrypt digest, compare with hash of downloaded code

44April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Per-page hashing

• Integrity check when program is first loaded

• Per-page signatures – improved performance

– Check hashes for every page upon loading (demand paging)

• Per-page hashes can be disabled optionally on both

Windows and macOS

45April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Windows code integrity checks

• Program integrity
– Implemented as a file system driver
– Works with demand paging from executable
– Check hashes for every page as the page is loaded

• Hashes stored in system catalog or embedded in file
along with X.509 certificate.

• Check integrity of boot process
– Kernel code must be signed or it won’t load
– Drivers shipped with Windows must be certified or contain a

certificate from Microsoft

46April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

Computer Security
10. Biometric authentication

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics

Identify a person based on physical or behavioral
characteristics

2

scanned_fingerprint = capture();
if (scanned_fingerprint == stored_fingerprint)

accept_user();
else

reject_user();

=?

We'd like to use
logic like this

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics

• Rely on statistical pattern recognition
– Thresholds

• False Accept Rate (FAR)
– Non-matching pair of biometric data is accepted as a match

• False Reject Rate (FRR)
– Matching pair of biometric data is rejected as a match

3April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics

Each biometric system has a characteristic ROC curve
(receiver operator characteristic, a legacy from radio electronics)

False Accept Rate (FAR)
(false match)

Fa
ls

e
R

ej
ec

t R
at

e
(F

R
R

)
(fa

ls
e

no
n-

m
at

ch
)

convenient

secure

trade-off

4April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics: forms
• Fingerprint

– Reasonable uniqueness

• Iris
– Analyze pattern of spokes: excellent uniqueness,

signal can be normalized for fast matching

• Retinal scan
– Excellent uniqueness but not popular for non-criminals

• Hand geometry: length of fingers, width of fingers, thickness, surface area
– Low guarantee of uniqueness: generally need 1:1 match

• Signature, Voice
– Behavioral vs. physical system
– Can change with demeanor, tend to have low recognition rates

• Others
– Facial geometry, facial thermographs, DNA, finger vein scans, palm vein scans, odor

5April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics: distinct features

Example: Fingerprints – identify minutia

source: http://anil299.tripod.com/vol_002_no_001/papers/paper005.html

6

Arches

Loops

Whorls

Ridge endings

Bifurcations

Islands

Bridges

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics: desirable characteristics

• Robustness
– Repeatable, not subject to large changes over time
– Fingerprints & iris patterns are more robust than voice

• Distinctiveness
– Differences in the pattern among population
– Fingerprints: typically 40-60 distinct features
– Irises: typically >250 distinct features
– Hand geometry: ~1 in 100 people may have a hand with

measurements close to yours.

7April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics: desirable characteristics

Biometric Robustness Distinctiveness

Fingerprint Moderate High

Hand Geometry Moderate Low

Voice Moderate Low

Iris High Ultra high

Retina High Ultra high

Signature Low Moderate

8April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Irises vs. Fingerprints

• Number of features measured:
– High-end fingerprint systems: ~40-60 features
– Iris systems: ~240 features

• False accept rates (FAR)
– Fingerprints: ~ 1:100,000 (varies by vendor; may be ~1:500)
– Irises: ~ 1:1.2 million
– Retina scan ~1:10,000,000

9April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Irises vs. Fingerprints

• Ease of data capture
– More difficult to damage an iris … but lighting is an issue
– Feature capture more difficult for fingerprints:

• Smudges, gloves, dryness, …

• Ease of searching
– Fingerprints cannot be normalized

1:many searches are difficult
– Irises can be normalized to generate a unique IrisCode

1:many searches much faster

10April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometric: authentication process

0. Enrollment
– The user’s entry in a database of biometric

signals must be populated.

– Initial sensing and feature extraction

– May be repeated to ensure good feature
extraction

11April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometric: authentication process

1. Sensing
– User�s characteristic must be presented to a sensor
– Output is a function of:

• Biometric measure
• The way it is presented
• Technical characteristics of sensor

2. Feature Extraction
– Signal processing
– Extract the desired biometric pattern

• remove noise and signal losses
• discard qualities that are not distinctive/repeatable
• Determine if feature is of �good quality�

12April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometric: authentication process

3. Pattern matching
– Sample compared to original signal in database
– Closely matched patterns have �small distances� between them
– Distances will hardly ever be 0 (perfect match)

4. Decision
– Decide if the match is close enough
– Trade-off:
¯ false non-matches leads to ­false matches

13

Sensing Feature
extraction Storage

Sensing Feature
extraction Matching

Enrollment

Authentication Result

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Identification vs. Verification

• Identification: Who is this?
– 1:many search

• Verification: Is this Bob?
– Present a name, PIN, token
– 1:1 (or 1:small #) search

14April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics: Essential characteristics

• Trusted sensor

• Liveness testing

• Tamper resistance

• Secure communication

• Acceptable thresholds

16April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Biometrics: other characteristics

• Cooperative systems (multi-factor)
– User provides identity, such as name and/or PIN

• vs. Non-cooperative
– Users cannot be relied on to identify themselves
– Need to search large portion of database

• Overt vs. covert identification

• Habituated vs. non-habituated
– Do users regularly use (train) the system

17April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Problems with biometric systems

• Requires a sensor
– Camera works OK for iris scans & facial detection

(but a good Iris scan will also take IR light into account)

• Tampering with device or device link
– Replace sensed data– or just feed new data

• Tampering with stored data
• Biometric data cannot be compartmentalized

– You cannot have different data for your Amazon & bank accounts

• Biometric data can be stolen
– Photos, lifting fingerprints
– Once biometric data is compromised, it remains compromised

• You cannot change your iris or finger

18April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Detecting Humanness

19April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Gestalt Psychology (1922-1923)

• Max Wertheimer, Kurt Koffka
• Laws of organization

– Proximity
• We tend to group things together that are close together in space

– Similarity
• We tend to group things together that are similar

– Good Continuation
• We tend to perceive things in good form

– Closure
• We tend to make our experience as complete as possible

– Figure and Ground
• We tend to organize our perceptions by distinguishing between a figure

and a background

Source: http://www.webrenovators.com/psych/GestaltPsychology.htm 20April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Gestalt Psychology

18 x 22 pixels
21April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Gestalt Psychology

22April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

HELLO
Gestalt Psychology

23April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Authenticating humanness
Battle the Bots

– Create a test that is easy for humans but extremely difficult for computers

CAPTCHA
– Completely Automated Public Turing test to tell Computers and Humans Apart
– Image Degradation

• Exploit our limits in OCR technology
• Leverages human Gestalt psychology: reconstruction

Origins
– 1997: AltaVista – prevent bots from adding URLs to the search engine
– 2000: Yahoo! and Manuel Blum & team at CMU

• EZ-Gimpy: one of 850 words
– Henry Baird @ CMU & Monica Chew at UCB

• BaffleText: generates a few words + random non-English words

Source: http://www.sciam.com/print_version.cfm?articleID=00053EA7-B6E8-1F80-B57583414B7F0103
http://tinyurl.com/dg2zf

24April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

CAPTCHA Example

Microsoft

See captchas.net

25April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Problems

• Accessibility
– Visual impairment → audio CAPTCHAs
– Deaf-blind users suffer

• Frustration
– OCR & computer vision has improved a lot!
– Challenges that are difficult for computers may be difficult for humans

• Attacks
– Man in the middle (sort of)

• Use human labor – CAPTCHA farms
– Automated CAPTCH solvers

• Initially, educated guesses over a small vocabulary

26April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Alternate approaches

• MAPTCHAs = math CAPTCHAs
– Solve a simple math problem

• Puzzles, scene recognition

27April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

reCAPTCHA
• Ask users to translate images of real

words & numbers from archival texts
– Human labor fixed up the archives of

the New York Times

• Two sections
– One for known text and the other is the image text
– Assume that if you get one right then you get the next one correct

• Try it again on a few other people to ensure identical answers before marking it
correct

• Google bought reCAPTCHA 2009
– Used free human labor to improve transcription of old books & street data

2014: Google found that AI could crack CAPTCHA & reCAPTCHA images
with 99.8% accuracy

28April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

NoCAPTCHA reCAPTCHA

Ask users if they are robots

• Reputation management
– “Advanced Risk Analysis backend”
– Check IP addresses of known bots
– Check Google cookies from your browser
– Considers user’s entire engagement with the CAPTCHA: before,

during, and after
• Mouse movements & acceleration, precise location of clicks

• Newest version: invisible reCAPTCHA
– Don’t even present a checkbox

29April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

NoCAPTCHA fallback

If risk analysis fails,
– Present a CAPTCHA
– For mobile users, present a image

labeling problem

30April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Alternative: Text/email verification

• Text/email verification
– Ask users for a phone # or email address
– Service sends a message containing a verification code

• Still susceptible to spamming
• Makes it a bit more difficult … and slower

• Measure form completion times
– Users take longer than bots to fill out and submit forms
– Measure completion times

• Bots can program delays if they realize this is being done

31April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Computer Security
11. Network Security

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 19, 2018 CS 419 © 2018 Paul Krzyzanowski

The Internet

ISP

ISP ISP

Packet switching: store-and-forward routing across multiple physical networks
... across multiple organizations

Backbone

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 2

The Internet: Key Design Principles
1. Support interconnection of networks

– No changes needed to the underlying physical network
– IP is a logical network

2. Assume unreliable communication
– If a packet does not get to the destination, software on the receiver will have

to detect it and the sender will have to retransmit it

3. Routers connect networks
– Store & forward delivery

4. No global (centralized) control of the network

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 3

Protocol layers

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical1

2

3

4

5

6

7
Logical View

Protocol layers communicate with their counterparts
Low-level attacks can affect higher levels

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 4

IP Protocol Stack

Application

Transport

Network

Data Link

Physical

Internet protocol stack

1

2

3

4

5

6

7

Ethernet MAC, 802.11, ARP

IP

TCP, UDP

SMTP, IMAP, HTTP, FTP, …

BGP, DNS, NTP

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 5

Data Link Layer

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 6

Data Link Layer (Layer 2)

Layer 2 generally has weak security

• MAC Attacks – CAM overflow

• VLAN Hopping

• ARP cache poisoning

• DHCP spoofing

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 7

Link Layer: CAM overflow

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 8

Layer 2: Ethernet Switches

Cisco Nexus 9516 Switch
• 1/10/40 GbE
• 21-rack-unit chassis
• Up to 576 1/10 Gb ports

TP-Link Switch
• 8 1-GbE ports

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 9

Ethernet MAC addresses

• Ethernet frames are delivered based on their 46-bit MAC address
– Top 24 bits: manufacturer code assigned by IEEE
– Bottom 24 bits: assigned by manufacturer
– ff:ff:ff:ff:ff:ff = broadcast address

Ethernet MAC address ≠ IP address

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 10

How does an Ethernet switch work?

• A switch contains a switch table (MAC address table)
– Contains entries for known MAC addresses & their interface

• Forwarding & filtering: a frame arrives for some destination address D

– Look up D in the switch table to find the interface

– If found & the interface is the same as the one the frame arrived on
• Discard the frame (filter)

– If found & D is on a different interface
• Forward the frame to that interface: queue if necessary

– If not found
• Forward to ALL interfaces

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 11

The switch table
A switch is self-learning

• Switch table (MAC address → interface): initially empty

• Whenever a frame is received, associate the interface with the source
MAC address in the frame

• Delete switch table entries if they have not been used for some time

Switches have to be fast: can’t waste time doing lookups
– They use CAM – Content Addressable Memory
– Fixed size table

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 12

CAM overflow attack
Exploit size limit of CAM-based switch table

• Send bogus Ethernet frames with random source MAC addresses
– Each new address will displace an entry in the switch table
– macof tool: ~100 lines of perl

• With the CAM table full, legitimate traffic will be broadcast to all links
– A host on any port can now see all traffic
– CAM overflow attack turns a switch into a hub

• Countermeasures: port security
– Some managed switches let you limit # of addresses per switch port

dsniff: collection of tools for network auditing and penetration testing
https://monkey.org/~dugsong/dsniff/

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Link Layer: VLANs & VLAN hopping

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 14

VLANs

• A switch + cables creates a local area network (LAN)

• We use LANs to
– Isolate broadcast traffic from other groups of systems
– Isolate users into groups
– What if users move? What if switches are inefficiently used?

• Virtual Local Area Networks (VLANs)
– Create multiple virtual LANs over one physical switch infrastructure
– Network manager can assign a switch’s ports to a specific VLAN
– Each VLAN is a separate broadcast domain

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 15

VLAN Trunking

VLANs across multiple locations/switches
– VLAN Trunking: a single connection between two VLAN-enabled switches

carries all traffic for all VLANs

Development

Test

Development

Test

Local switch

Remote switch

VLAN
Trunk

Looks like another LAN

Looks like one LAN

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 16

VLAN Hopping Attack

• VLAN trunk carries traffic for all VLANs

• Extended Ethernet frame format

– 802.1Q for frames on an Ethernet trunk = Ethernet frame + VLAN tag

– Sending switch adds VLAN tag for traffic on the trunk

– Receiving switch removes VLAN tag and sends traffic to appropriate

VLAN ports based on VLAN ID

Attack: switch spoofing
Devices can spoof themselves

to look like a switch with a trunk

connection and become a member

of all VLANs

Local switch

Remote switch

VLAN

Trunk

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 17

Avoiding VLAN Hopping

• Disable unused ports & assign them to an unused VLAN

• Disable auto-trunking

• Explicitly configure trunking on switch ports that are used for
trunks

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 18

ARP Cache Poisoning
(ARP Spoofing)

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 19

Find MAC address given an IP address
• We need to send a datagram to an IP address

• It is encapsulated in an Ethernet frame and a MAC address

• How do we know what MAC address to use?

MAC destination MAC source type CRCIP header IP data

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 20

Address Resolution Protocol (ARP)
• ARP table

– Kernel table mapping IP addresses & corresponding MAC addresses
– OS uses this to fill in the MAC header given an IP destination address
– What if the IP address we want is not in the cache?

• ARP Messages
– A host creates an ARP query packet & broadcasts it on the LAN

• Ethernet broadcast MAC address: ff:ff:ff:ff:ff:ff
– All adapters receive it

• If an adapter’s IP address matches the address in the query, it responds
• Response is sent to the MAC address of the sender

see the arp command on
Linux/BSD/Windows/OS X

Protocol type
(e.g., IPv4)

HW Protocol
(ethernet)

MAC addr
length

query/
response

sender
MAC addr

sender
IP addr

target
MAC addr

target
IP addr

ARP packet structure

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 21

ARP Cache Poisoning
• Network hosts cache any ARP replies they see … even if they did not

originate them … on the chance that they might have to use that IP
address

• Any client is allowed to send an unsolicited ARP reply
– Called a gratuitous ARP

• ARP replies will overwrite older entries in the ARP table … even if they
did not expire

• An attacker can create fake ARP replies
– Containing the attacker’s MAC address and the target’s IP address
– This will direct any traffic meant for the target to the attacker
– Enables man-in-the-middle or denial of service attacks

See Ettercap – a multipurpose sniffer/interceptor/logger
https://github.com/Ettercap/ettercap

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 22

Defenses against ARP cache poisoning
• Ignore replies that are not associated with requests

– But you have to hope that the reply you get is a legitimate one

• Use static ARP entries
– But can be an administrative nightmare

• Enable Dynamic ARP Inspection
– Validates ARP packets against DHCP Snooping database information or

static ARP entries

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 23

DHCP Server Spoofing

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 24

DHCP
• Computer joins a network – needs to be configured

– Broadcasts a DHCP Discover message

• A DHCP server picks up this requests and sends back a response
• IP address
• Subnet mask
• Default router (gateway)
• DNS servers
• Lease time

• Spoof responses that would be sent by a valid DHCP server

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 25

DHCP Spoofing
• Anybody can pretend to be a DHCP server

– Spoof responses that would be sent by a valid DHCP server
– Provide:

• False gateway address
• False DNS server address

• Attacker can now direct traffic from the client to go anywhere

• The real server may reply too
– If the attacker responds first, he wins
– Can delay or disable the real server: denial of service attack

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 26

Defenses
• Some switches (Cisco, Juniper) support DHCP snooping

– Switch ports can be configured as “trusted” or “untrusted”

– Only specific machines are allowed to send DHCP responses

– The switch will use DHCP data to track client behavior
• Ensure hosts use only the IP address assigned to them
• Ensure hosts do not fake ARP responses

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 27

Network Layer (IP)

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 28

Network Layer: IP

Responsible for end-to-end delivery of packets

• No guarantees on message ordering or delivery

• Key functions
– Routing

• Each host knows the address of one or more connected routers (gateways)
• The router knows how to route to other networks

– Fragmentation & reassembly
• An IP fragment may be split if the MTU size on a network is too small
• Reassembled at its final destination

– Error reporting
• ICMP messages sent back to the sender (e.g., if packet is dropped)

– Time-to-live
• Hop count avoids infinite loops; packet dropped when TTL = 0

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 29

Source IP address

No source IP address authentication

• Clients are supposed to use their own source IP address
– Can override with raw sockets
– Error responses will be sent to the forged source IP address

• Enables
– Anonymous DoS attacks
– DDoS attacks

• Sent lots of packets from many places that will cause routers to generate
ICMP responses

• All responses go to the forged source address

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 30

Transport Layer (UDP, TCP)

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 31

TCP & UDP

• UDP: User Datagram Protocol
– Stateless, connectionless & unreliable
– Anyone can send forged UDP messages

• TCP
– Stateful, connection-oriented & reliable
– Every packet contains a sequence number (byte offset)

• Receiver assembles packets into correct order
• Sends acknowledgements
• Missing packets are retransmitted

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 32

TCP connection setup: three-way handshake

ServerClient

Create SYN segment

Allocate TCP buffers & variables
Create SYN-ACK segment

SYN

SYN-ACK

• SYN=1
• Random initial seq # (client_isn)
• No data

• SYN=1
• ACK = client_isn + 1
• server_isn = random #
• No data

Allocate TCP buffers & variables
Create ACK segment

• SYN = 0
• ACK = server_isn + 1
• Data optional ACK

Server knows the client has the sequence #
Connection is established!

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 33

Why random initial sequence numbers?
If predictable, an attacker can create a TCP session on behalf of a forged
source IP address

Random numbers make this attack harder – especially if the attacker
cannot sniff the network

Attacker Server Victim

SYN
src_addr = victim

ACK
src_addr = victim

ack # = X+1

SYN/ACK
dest_addr = victim

server_isn = X

command
src_addr = victim

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 34

Denial of service: SYN Flooding

An OS will allocate only a finite # of TCP buffers

• SYN Flooding attack
– Send lots of SYN segments but never complete the handshake
– The OS will not be able to accept connections until those time out

• SYN Cookies: Dealing with SYN flooding attacks
– Do not allocate buffers & state when a SYN segment is received

– Create initial sequence # =
hash(src_addr, dest_addr, src_port, dest_port, SECRET)

– When an ACK comes back, validate the ACK #
Compute the hash as before & add 1

– If valid, then allocate resources necessary for the connection & socket

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 35

Denial of service: Reset
• Attacker can send a RESET (RST) packet to an open socket

• If the server sequence number is correct then the connection will close

• Sequence numbers are 32 bits
– Chance of success is 1/232 ≈ 1 in 4 billion
– But many systems allow for a large range of sequence numbers
– Attacker can send a flood of RST packets until the connection is broken

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 36

Routing Protocols

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 37

Routing protocols
• OSPF: Open Shortest Path First

– Interior Gateway Protocol (IGP) within an autonomous system (AS)
– Uses a link state routing algorithm (Dijkstra’s shortest path)

• BGP: Border Gateway Protocol
– Exterior Gateway Protocol (EGP) between autonomous systems (AS)
– Exchanges routing and reachability information
– Distance vector routing protocol

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 38

BGP sessions maintained via TCP links

Pairs of routers exchange information via semi-permanent
TCP connections

– One connection for each link between gateway routers
• External BGP (eBGP) session

– Also BGP TCP connections between routers inside an AS
• Internal BGP (iBGP) session

AS1

AS2
AS3

eBGP
session

eBGPsession

iBGP

se
ssi

on

iBGP session

eBGP session

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 39

Route selection

• A, B, C: transit ASes – ISPs & backbone

• W, X, Y: stub ASes – customers

BGP route selection
– Policies allow selection of preferred routes
– Otherwise, pick the route with the shortest path
– If there’s a tie, choose the shortest path with the closest router

A

B

C

W
X

Y

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 40

Security problems with BGP

• Route advertisements are not authenticated
– Anyone can inject advertisements for arbitrary routes
– Information will propagate throughout the Internet
– Can be used for DoS or eavesdropping

• (Partial) Solutions
– RPKI (Resource Public Key Infrastructure) framework

• Each AS obtains an X.509 certificate from the Regional Internet Registry (RIR)
• AS admin creates a Route Origin Authorization (ROA)

– Associates the set of prefixes managed by that AS

• ROA is signed by the AS’s private key
• Advertisements without a valid, signed ROA are ignored

– BGPsec
• Integral part of BGP protocol
• Each hop in the AS path is protected with a signature

See RFC 6480

Still a draft
standard

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 41

Pakistan’s attack on YouTube in 2008
• YouTube service was cut off the global web for over an hour

• Pakistan Telecom received a censorship order from the
telecommunications ministry to block YouTube
– The company sent spoofed BGP messages claiming to be the best route for

YouTube’s range of IP addresses

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 42

Pakistan’s attack on YouTube in 2008

• Pakistan Telecom sent BGP advertisements that it was the correct route
for 256 addresses in YouTube’s 208.65.153.0 network

– Advertise a /24 network

• That is a more specific destination than YouTube’s broadcast, which
covered 1024 addresses

– YouTube advertised a /22 network

• Within minutes, all YouTube traffic started to flow to Pakistan

• YouTube immediately tried countermeasures

– Narrowed its broadcast to 256 addresses … but too late

– Then tried an even more specific group: 64 addresses
Advertise a /26 network ⇒ priority over /24 routes

• Routes for more specific addresses overrule more general ones

– Route updates finally fixed after 2 hours

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 43

Domain Name System

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 44

Domain Name System

• Hierarchical service to map domain names to IP addresses

• How do you find the DNS Server for rutgers.edu?
– That’s what the domain registry keeps track of
– When you register a domain,

• You supply the addresses of at least two DNS servers that can answer
queries for your zone

• You give this to the domain registrar, who updates the database at the
domain registry

• So how do you find the right DNS server?
– Start at the root

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 45

Root name servers
• The root name servers provide lists of authoritative name servers for

top-level domains

• 13 root name servers
– A.ROOT-SERVERS.NET, B.ROOT-SERVERS.NET, …
– Each has redundancy (via anycast routing or load balancing)

• Each server is really a set of machines

Download the latest list at http://www.internic.net/domain/named.root

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 46

DNS Resolvers in action

app

app

DNS stub
resolver

cache

/etc/hosts

DNS
resolver

cache

zone info

Local server ISP

Local stub resolver:
- check local cache
- check local hosts file
- send request to external resolver

E.g., on Linux: resolver is configured via
the /etc/resolv.conf file

External resolver
- Running at ISP, Google Public DNS,

OpenDNS, etc.

root
DNS server

edu
DNS server

rutgers.edu
DNS server

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 47

DNS Vulnerabilities

• We trust the host-address mapping
– This is the basis for some security policies

• Browser same-origin policy, URL address bar

• Each DNS query contains a Query ID (QID)
– Response must have a matching QID

• Responses can be intercepted & modified
– Malicious responses can direct messages to different hosts

• Solution: DNSsec
– Secure extension to DNS that provide authenticated requests &

responses
– Few use it

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 48

DNS Cache Poisoning

JavaScript on a website may launch a DNS attacker

browser Local DNS
resolver

.com DNS
server

DNS query

a.bank.com
QID = x1

a.bank.com

attacker256 responses
Random QIDs: y1, y2, …
NS bank.com = ns.bank.com
A ns.bank.com = attacker_IP_addr

If there is some j such that x1 = yj then the response is cached
All future DNS queries for anything at bank.com will go to attacker_IP_addr
If it doesn’t work … try again with b.bank.com
April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 49

Defenses against DNS cache poisoning

• Randomize source port # – where DNS queries originate
– Attack will take several hours instead of a few minutes

• Issue double DNS queries
– Attacker will have to guess the Query ID twice (32 bits)

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 50

DNS Rebinding
• Same-origin policy

– Web application security model
– Client web browser scripts can only access data from other web pages only if

they have the same origin
– Origin { URI, host name, port number }

• The policy relies on comparing domain names

• If we can change the underlying address:
– We can access private machines in the user's local area network
– Send results to attacker

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 51

DNS Rebinding

• Attacker
– Registers a domain (attacker.com)

– Sets up a DNS server

– DNS server responds with very short TTL values – response won’t be cached

• Client (browser)

– Script on page causes access to malicious domain

– Attacker’s DNS server responds with IP address of a server hosting malicious
client-side code

– Malicious client-side code makes additional references to the domain

• Permitted under same-origin policy
– A browser permits scripts in one page to access data in another only if both pages have the

same origin & protocol

• The script causes the browser to issue a new DNS request

• Attacker replies with a new IP address
(e.g., a target somewhere else on the Internet)

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 52

Defending against DNS rebinding
• Force minimum TTL values

– This may affect some legitimate dynamic DNS services

• DNS pinning: refuse to switch the IP address for a domain name
– This is similar to forcing minimum TTL values

• Make sure DNS responses don’t contain private IP addresses

• Server-side defense
– Reject HTTP requests with unrecognized Host headers
– Authenticate users

April 19, 2018 CS 419 © 2018 Paul Krzyzanowski 53

Computer Security
12. Firewalls & VPNs

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Conversation Isolation: Network Layer
Virtual Private Networks (VPNs)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 2

Fundamental Layer 2 & 3 Problems

• IP relies on store-and-forward networking
– Network data passes through untrusted hosts
– Routes may be altered to pass data through malicious hosts

• Packets can be sniffed and examined

• TCP session state can be examined or guessed …
… and TCP sessions can be hijacked

• No source authentication on IP packets

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 3

Solution: Use private networks

Connect multiple geographically-separated private
subnetworks together

Private network line

Gateway
Router

Internal subnet

Gateway
Router

Internal subnet

192.168.1.0/24 192.168.2.0/24

But this is expensive … and not feasible in many cases (e.g., cloud servers)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 4

Tunneling

Tunnel = Packet encapsulation
Treat an entire IP datagram as payload on the public network

Internet

Gateway
Router

Internal subnet

Gateway
Router

Internal subnet

192.168.1.0/24 192.168.2.0/24

Src: 192.168.1.11
Dest: 192.168.2.22
Data: [--------]

Src: 192.168.1.11
Dest: 192.168.2.22
Data: [--------]Src: 68.36.210.57

Dest: 128.6.4.2
Data: From: 192.168.1.11

To: 192.168.2.22
Data: [--------]

68
.3

6.
21

0.
57

12
8.

6.
4.

2

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 5

Tunnel mode vs. transport mode

• Tunnel mode
– Communication between gateways: network-to-network
– Or host-to-network
– Entire datagram is encapsulated

• Transport mode
– Communication between hosts
– IP header is not modified

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 6

Virtual Private Networks

Take the concept of tunneling

… and safeguard the encapsulated data

• Add a MAC
– Ensure that outsiders don't modify the data

• Encrypt it
– Ensure that outsiders can't read the contents

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 7

IPsec

• Internet Protocol Security

• End-to-end solution at the IP layer

• Two protocols:
– IP Authentication Header Protocol (AH)

• Authentication & integrity of payload and header
– Encapsulating Security Payload (ESP)

• AH + Confidentiality of payload

Application

Transport (TCP, UDP)

Network (IP)

Data Link

Physical1

2

3

4

5

6

7

IPSec

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 8

IPsec Authentication Header (AH)
Guarantees integrity & authenticity of IP packets

– MAC for the contents of the entire IP packet
– Over unchangeable IP datagram fields (e.g., not TTL or fragmentation fields)

Protects from:
– Tampering
– Forging addresses
– Replay attacks (signed sequence number in AH)

Layered directly on top of IP (protocol 51) - not UDP or TCP

ApplicationTCP/UDPIP AH

ApplicationTCP/UDPNew IP AH IP

original IP packet

Tunnel
mode

Transport
mode

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 9

IPsec Encapsulating Security Payload (ESP)
Encrypts entire payload

– Plus authentication of payload + IP header (everything AH does)
(may be optionally disabled – but you don’t want to)

Directly on top of IP (protocol 51) - not UDP or TCP

ApplicationTCP/UDPIP ESP
header

ESP
trailer

ESP
auth

Encrypted

ApplicationTCP/UDPNew IP ESP
header

ESP
trailer

ESP
auth

Authenticated

IP

Encrypted

Authenticated

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 10

IPsec algorithms

• Integrity protection & authenticity
– HMAC-SHA1
– HMAC-SHA2

• Confidentiality
– 3DES-CBC
– AES-CBC

• Authentication
– Kerberos, certificates, or pre-shared key authentication

• Key generation
– Diffie-Hellman to exchange keying material for key generation
– Key lifetimes determine when new keys are regenerated

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 11

Conversation Isolation: Transport Layer
SSL/TLS

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 12

We can't count on the security of the Internet
• Core IP protocols were not designed with security in mind

• Traffic can be redirected
– For interception for modification or logging
– For deception: adversary masquerades as the server

• What can we do … without changing the way IP works?
– Use virtual private networks – VPNs

• Provide an authenticated, and optionally encrypted, message stream between two
networks
– Treat entire IP packets as data
– This data is sent via IP and has an authentication header (MAC) to ensure that it has not been

modified … and is optionally encrypted
– Transport mode: form of VPN that communicates between one host and a network

• VPNs were designed to operate at the network layer
– Connect networks together

– Or we can provide this type of security at the transport layer
• Application-to-application communication

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Transport Layer Security
• Goal: provide a transport layer security protocol

• After setup, applications feel like they are using TCP sockets

SSL: Secure Socket Layer

• Created with HTTP in mind
– Web sessions should be secure
– Mutual authentication is usually not needed

• Client needs to identify the server but the server won’t know all clients
• Rely on password authentication after the secure channel is set up

• SSL evolved to TLS (Transport Layer Security)
– SSL 3.0 was the last version of SSL … and is considered insecure
– We use TLS now … but often still call it SSL

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 14

TLS Protocol
• Goal

– Provide authentication (usually one-way), privacy, & data integrity between
two applications

• Principles
– Data encryption

• Use symmetric cryptography to encrypt data
• Keys generated uniquely at the start of each session

– Data integrity
• Include a MAC with transmitted data to ensure message integrity

– Authentication
• Use public key cryptography & X.509 certificates for authentication
• Optional – can authenticate 0, 1, or both parties

– Interoperability & evolution
• Support many different key exchange, encryption, integrity, & authentication

protocols – negotiate what to use at the start of a session

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 15

TLS Protocol & Ciphers

Two sub-protocols

1. Authenticate & establish key

2. Communicate

• HMAC used for message authentication

• Key exchange

– Public keys (RSA or Elliptic Curve)

– Diffie Hellman keys

– Ephemeral Diffie-Hellman keys (generated for each session)

– Pre-shared key

• Data encryption

– AES GCM, AES CBC, ARIA (GCM/CBC), ChaCha20-Poly1305, …

• Data integrity

– HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384, …

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 16

TLS Protocol
(1) Client hello

Version & crypto information

(2) Server hello

Server certificate
[client certificate request](3) Verify server

certificate

(4) Client key exchange

Send encrypted session key

[(5) Send client certificate]
[(6) Verify server
certificate]

(7) Client done

(8) Server done

(9) Communicate

Symmetric encryption + HMAC

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 17

Benefits of TLS

• Benefits
– Protects integrity of communications
– Protects the privacy of communications
– Validates the authenticity of the server (if you trust the CA)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 18

Attacks on TLS

• Man-in-the-middle: BEAST attack in TLS 1.0
– Attacker was able to see Initialization Vector (IV) for CBC and deduce

plaintext (because of known HTML headers & cookies)
– Fixed by using explicit IVs for each new block

• Man-in-the-middle: crypto renegotiation
– Attacker can renegotiate the handshake protocol during the session to

disable encryption
– Proposed fix: have client & server verify info about previous

handshakes

• THC-SSL-DoS attack
– Attacker initiates a TLS handshake & requests a renegotiation of the

encryption key – repeat over & over, using up server resources

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 19

Other problems with TLS

• Client authentication Problem
– Client authentication is almost never used

• Generating keys & obtaining certificates is not an easy process for users
• Any site can request the certificate

– User will be unaware their anonymity is lost
• Moving private keys around can be difficult

– What about public computers?

– We usually rely on other authentication mechanisms
• Usually user name and password
• But no danger of eavesdropping since the session is encrypted
• May use one-time passwords or two-factor authentication if worried about

eavesdroppers at physical premises

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 20

Firewalls

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 21

Network Security Goals

• Confidentiality: sensitive data & systems not accessible

• Integrity: data not modified during transmission

• Availability: systems should remain accessible

22

Internet

Gateway Router

Internal subnet

Dragon artwork by Jim Nelson. © 2012 Paizo Publishing, LLC. Used with permission.

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Firewall

• Separate your local network from the Internet
– Protect the border between trusted internal networks and the

untrusted Internet

• Approaches
– Packet filters
– Application proxies
– Intrusion detection / intrusion protection systems

23April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Screening router

• Border router (gateway router)
– Router between the internal network(s) and external network(s)
– Any traffic between internal & external networks passes through the

border router

Instead of just routing the packet, decide whether to route it

• Screening router = Packet filter
Allow or deny packets based on
– Incoming interface, outgoing interface
– Source IP address, destination IP address
– Source TCP/UDP port, destination TCP/UDP port, ICMP command
– Protocol (e.g., TCP, UDP, ICMP, IGMP, RSVP, etc.)

24CS 419 © 2018 Paul KrzyzanowskiApril 15, 2018

Filter chaining

• An IP packet entering a router is matched against a set of
rules: access control list (ACL) or chain

• Each rule contains criteria and an action
– Criteria: packet screening rule
– Actions

• Accept – and stop processing additional rules
• Drop – discard the packet and stop processing additional rules
• Reject – and send an error to the sender (ICMP Destination Unreachable)

– Also
• Route – rereoute packets
• Nat – perform network address translation
• Log – record the activity

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 25

Filter structure is vendor specific

Examples
– Windows

• Allow, Block
• Options such as

– Discard all traffic except packets allowed by filters (default deny)
– Pass through all traffic except packets prohibited by filters (default allow)

– OpenBSD
• Pass (allow), Block

– Linux nftables (netfilter)
• Chain types: filter, route, nat
• Chain control

– Return – stop traversing a chain
– Jump – jump to another chain (goto = same but no return)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 26

Network Ingress Filtering: incoming packets
Basic firewalling principle

Never have a direct inbound connection from the originating host from the
Internet to an internal host – all traffic must flow through a firewall and be
inspected

• Determine which services you want to expose to the Internet
– e.g., HTTP & HTTPS: TCP ports 80 and 443

• Create a list of services and allow only those inbound ports and
protocols to the machines hosting the services.

• Default Deny model - by default, "deny all”
– Anything not specifically permitted is dropped
– May want to log denies to identify who is attempting access

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 27

Network Ingress Filtering

• Disallow IP source address spoofing

– Restrict forged traffic (RFC 2827)

• At the ISP

– Filter upstream traffic - prohibit an attacker from sending traffic from forged IP

addresses

– Attacker must use a valid, reachable source address

• Disallow incoming/outgoing traffic from private, non-routable IP

addresses

– Helps with DDoS attacks such as SYN flooding from lots of invalid addresses

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 28

access-list 199 deny ip 192.168.0.0 0.0.255.255 any log
access-list 199 deny ip 224.0.0.0 0.0.0.255 any log

....
access-list 199 permit ip any any

Network Egress Filtering (outbound)

• Usually we don’t worry about outbound traffic.
– Communication from a higher security network (internal) to a lower security

network (Internet) is usually fine

• Why might we want to restrict it?
– Consider: if a web server is compromised & all outbound traffic is allowed, it

can connect to an external server and download more malicious code
... or launch a DoS attack on the internal network

– Also, log which servers are trying to access external addresses

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 29

Stateful Inspection

• Retain state information about a stream of related packets

• Examples

– TCP connection tracking
• Disallow TCP data packets unless a connection is set up

– ICMP echo-reply
• Allow ICMP echo-reply only if a corresponding echo request was sent.

– Related traffic
• Identify & allow traffic that is related to a connection
• Example: related ports in FTP

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 30

Network Design: DMZ

31

Internal subnet

Internet

Security Appliance

(screening router)

DMZ subnet

Dragon artwork by Jim Nelson. © 2012 Paizo Publishing, LLC. Used with permission.

CS 419 © 2018 Paul KrzyzanowskiApril 15, 2018

Network Design: DMZ

32

DMZ subnet

Internet

Security Appliance

(screening router)

Internal subnet

Clients from the Internet:

• Can access allowed services

in the DMZ

• Cannot access internal hosts

The router:

• Blocks impersonated packets

Dragon artwork by Jim Nelson. © 2012 Paizo Publishing, LLC. Used with permission.

?

CS 419 © 2018 Paul KrzyzanowskiApril 15, 2018

Network Design: DMZ

33

DMZ subnet

Internet

Security Appliance
(screening router)

Internal subnet

Clients in the internal subnet:
• Can access the Internet
• Can access allowed services

in the DMZ
• May access extra services in

the DMZ

Dragon artwork by Jim Nelson. © 2012 Paizo Publishing, LLC. Used with permission.

CS 419 © 2018 Paul KrzyzanowskiApril 15, 2018

Network Design: DMZ

34

DMZ subnet

Internet

Security Appliance

(screening router)

Internal subnet

Clients in the DMZ:

• Can access Internet services

only to the extent required

• Can access internal services

only to the extent required

Goal:
Limit possible damage if DMZ
machines are compromised

Dragon artwork by Jim Nelson. © 2012 Paizo Publishing, LLC. Used with permission.

??

CS 419 © 2018 Paul KrzyzanowskiApril 15, 2018

Network Address Translation

• Most organizations use private IP addresses

• External traffic goes through a NAT router
– Network Address Translation

• NAT is an implicit firewall (sort of)
– Arbitrary hosts and services on them (ports) cannot be accessed

unless
• They are specifically mapped to a specific host/port by the administrator
• Internal services have initiated outgoing traffic

– Return traffic from the same address/port will be accepted

35CS 419 © 2018 Paul KrzyzanowskiApril 15, 2018

Application-Layer Filtering
• Firewalls don’t work well when everything is a web service

• Deep packet inspection
– Look beyond layer 3 & 4 headers
– Need to know something about application protocols & formats

• Example
– URL filtering

• Normal source/destination host/port filtering +
URL pattern/keywords, rewrite/truncate rules, protocol content filters

• Detect ActiveX and Java applets; configure specific applets as trusted
– Remove others from the HTML code

– Keyword detection
• Prevent classified material from leaving the organization
• Prevent banned content from leaving or entering an organization

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 36

IDS/IPS

• Intrusion Detection/Prevention Systems
– Identify threats and attacks

• Types of IDS
1. Protocol-based
2. Signature-based

• We know what is bad; anything else is good
3. Anomaly-based

• We know what is good; anything else is bad

37April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Protocol-Based IDS

Reject packets that do not follow a prescribed protocol

• Permit return traffic as a function of incoming traffic

• Define traffic of interest (filter), filter on traffic-specific
protocol/patterns

• Examples
– DNS inspection: prevent spoofing DNS replies: make sure they

match IDs of sent DNS requests
– SMTP inspection: restrict SMTP command set (and command count,

arguments, addresses)
– FTP inspection: restrict FTP command set (and file sizes and file

names)

Signature-based IDS

Don't search for protocol
violations but for possible data attacks

• Match patterns of known “bad” behavior
– Viruses
– Malformed URLs
– Buffer overflow code

Anomaly-based IDS

Search for statistical deviations from normal behavior

• Establish baseline behavior first

• Examples:
– Port scanning
– Imbalance in protocol distribution
– Imbalance in service access

Application proxies

Proxy servers
– Intermediaries between clients and servers
– Stateful inspection and protocol validation

Proxy serverExternal client Real server

• Dual-homed host
• Bastion host

Deperimiterization

Boundaries & access between internal & external systems
are harder to identify

– Mobile systems
– Cloud-based computing
– USB flash memory
– Web-based applications

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 42

Host-based firewalls

• Run on the user’s systems, not as dedicated firewalls

• Manage network-facing effects of malware
– Allow only approved applications to send or receive data over the

network

• Problem
– If malware gets elevated privileges, it can reconfigure or disable the

firewall

• Personal IDS
– E.g., fail2ban on Linux

• Scan log files to detect & ban suspicious IP addresses
• High number of failed logins, probes, URLs that try to target exploits

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 43

Intrusion detection & prevention problems

• There’s a lot of stuff going on

– People visit random websites with varying frequencies

– Software accesses varying services

– Buggy software may create bad packets

– How do you detect what is hostile?

• Attack rates is miniscule … compared to legitimate traffic

– Even a small % of false positives can be annoying and hide true

threats

• Environments are dynamic

– Content from CDNs or other large server farms has a broad range of

IP addresses

– Malicious actors can coexist with legitimate ones

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 44

Intrusion detection & prevention problems

• Encrypted traffic cannot be easily inspected
– Just because you visit a web site using HTTPS doesn’t mean the site

is secure … or hasn’t been compromised

• Packet inspection is limiting
– You may need to reconstruct sessions, which is time consuming

• Threats & services change
– Rules have to be updated

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 45

Summary
Firewall (screening router) 1st generation packet filter that filters packets between

networks. Blocks/accepts traffic based on IP addresses,
ports, protocols

Stateful inspection firewall Like a screening router but also takes into account TCP
connection state and information from previous
connections (e.g., related ports for TCP)

Application proxy Gateway between two networks for a specific application.
Prevents direct connections to the application from outside
the network. Responsible for validating the protocol.

IDS/IPS Can usually do what a stateful inspection firewall does +
examine application-layer data for protocol attacks or
malicious content

Host-based firewall Typically screening router with per-application awareness.
Sometimes includes anti-virus software for application-
layer signature checking

Host-based IPS Typically allows real-time blocking of remote hosts
performing suspicious operations (port scanning, ssh
logins)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 46

DDoS

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 47

DDoS: Distributed Denial of Service

• Compromise machines (create a botnet)
– Use amplification techniques to generate a lot of traffic for targets

• Exploit services that generate a lot of traffic to a small query
• DNS amplification:

Small UDP query with forged source address results in large response

• Some targets were too huge to hurt with traffic
– Amazon, Google, sites using CDNs such as Akamai

• Vast quantities of compromised systems reduce need for
amplification
– Create a botnet of millions of systems

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 48

Dealing with DDoS

Really difficult in general

• Bandwidth management routers

– Either in data center or ISP

– Limit outbound or inbound traffic on a per-IP basis

• Detect DNS attack and set null routing

– Traffic to attacked DNS goes nowhere

• Egress filtering by ISPs

– Attempt to find malicious hosts participating in DDoS or sending spam

• Identify incoming attackers & block traffic at firewall

– Difficult with a truly distributed DDoS attack

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 49

Computer Security
10r. Recitation – assignment & concept review

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 3, 2018 CS 419 © 2018 Paul Krzyzanowski

Conversation Isolation: Transport Layer
SSL/TLS

We can't count on the security of the Internet
• Core IP protocols were not designed with security in mind

• Traffic can be redirected
– For interception for modification or logging
– For deception: adversary masquerades as the server

• What can we do … without changing the way IP works?
– Use virtual private networks – VPNs

• Provide an authenticated, and optionally encrypted, message stream between two
networks
– Treat entire IP packets as data
– This data is sent via IP and has an authentication header (MAC) to ensure that it has not been

modified … and is optionally encrypted
– Transport mode: form of VPN that communicates between one host and a network

• VPNs were designed to operate at the network layer
– Connect networks together

– Or provide this type of security at the transport layer

April 4, 2018 CS 419 © 2018 Paul Krzyzanowski 16

Transport Layer Security
• Goal: provide a transport layer security protocol

• After setup, applications feel like they are using TCP sockets

SSL: Secure Socket Layer

• Created with HTTP in mind
– Web sessions should be secure
– Mutual authentication is usually not needed

• Client needs to identify the server but the server won’t know all clients
• Rely on password authentication after the secure channel is set up

• SSL evolved to TLS (Transport Layer Security)
– SSL 3.0 was the last version of SSL … and is considered insecure
– We use TLS now … but often still call it SSL

TLS Protocol
• Goal

– Provide authentication (usually one-way), privacy, & data integrity between
two applications

• Principles
– Data encryption

• Use symmetric cryptography to encrypt data
• Keys generated uniquely at the start of each session

– Data integrity
• Include a MAC with transmitted data to ensure message integrity

– Authentication
• Use public key cryptography & X.509 certificates for authentication
• Optional – can authenticate 0, 1, or both parties

– Interoperability & evolution
• Support many different key exchange, encryption, integrity, & authentication

protocols – negotiate what to use at the start of a session

TLS Protocol & Ciphers

Two sub-protocols

1. Authenticate & establish key

2. Communicate

• HMAC used for message authentication

• Key exchange

– Public keys (RSA or Elliptic Curve)

– Diffie Hellman keys

– Ephemeral Diffie-Hellman keys (generated for each session)

– Pre-shared key

• Data encryption

– AES GCM, AES CBC, ARIA (GCM/CBC), ChaCha20-Poly1305, …

• Data integrity

– HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384, …

TLS Protocol
(1) Client hello

Version & crypto information

(2) Server hello

Server certificate
[client certificate request](3) Verify server

certificate

(4) Client key exchange

Send encrypted session key

[(5) Send client certificate]
[(6) Verify client
certificate]

(7) Client done

(8) Server done

(9) Communicate

Symmetric encryption + HMAC

Benefits of TLS

• Benefits
– Protects integrity of communications
– Protects the privacy of communications
– Validates the authenticity of the server (if you trust the CA)

Attacks on TLS

• Man-in-the-middle: BEAST attack in TLS 1.0
– Attacker was able to see Initialization Vector (IV) for CBC and deduce

plaintext (because of known HTML headers & cookies)
– Fixed by using explicit IVs for each new block

• Man-in-the-middle: crypto renegotiation
– Attacker can renegotiate the handshake protocol during the session to

disable encryption
– Proposed fix: have client & server verify info about previous

handshakes

• THC-SSL-DoS attack
– Attacker initiates a TLS handshake & requests a renegotiation of the

encryption key – repeat over & over, using up server resources

Other problems with TLS

• Client authentication Problem
– Client authentication is almost never used

• Generating keys & obtaining certificates is not an easy process for users
• Any site can request the certificate

– User will be unaware their anonymity is lost
• Moving private keys around can be difficult

– What about public computers?

– We usually rely on other authentication mechanisms
• Usually user name and password
• But no danger of eavesdropping since the session is encrypted
• May use one-time passwords or two-factor authentication if worried about

eavesdroppers at physical premises

Computer Security
13. Blockchain & Bitcoin

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 18, 2018 CS 419 © 2018 Paul Krzyzanowski

Bitcoin & Blockchain

Bitcoin cryptocurrency system
– Introduced in 2009 – anonymously by Satoshi Nakamoto
– First blockchain
– Designed to be public – anyone can participate in the system & use it

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 2

Traditional Payments

• Suppose Alice wants to pay Charles

• Send a message to the bank:
– Transfer $500 from Alice to Charles

• Bank is a trusted third party
– Owns register of activity
– Only the bank can manipulate it
– Also – controls supply of money

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 3

Alice Charles

BankRequest

Transaction Log

Alice: $500 to Bob

You've got money!

ledger

Centralized systems

• Transactions are simply modifications to the bank's
database

• We can simply
– Subtract $500 from Alice's account
– Add $500 to Charles' account
– The log is just nice for auditing but not necessary

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 4

Problems?

This is a centralized system

• What if the bank disappears?

• What if the banker makes a mistake?

• What if the banker is corrupt?

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 5

Double spending problem

We can create a decentralized solution

• Use hash pointers to track the movement of money

• Problem: double spending

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 6

Alice: $500

Alice to Charles: $500 Alice to David: $500 HP

HP

HP

Decentralized system

Can we create a payment system
that does not need a trusted third party (a bank)?

• Goal of the blockchain
– No trusted third party

• A group of systems: each keeps a copy of the ledger
– Everyone has information about all account activity
– This will allow anyone to detect double spending
– The bitcoin ledger is over 100 GB

• User identities are anonymous
– Public key = user's identity (called an "address")
– Transactions are associated with a specific user

• Signed by that user's private key

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 7

The Distributed Ledger: the Block
• Block = partial list of transactions

• Group of participating systems that accepts transactions

• Start with an empty block

• If Alice (e.g., #1111) wants to pay Charles (e.g., #2222) $500
– She tells everyone she wants to transfer $500 to #2222
– Everyone checks their ledger to make sure Alice has enough money
– Then they add the transaction to the block
– And keep listening for more transactions

• When the block is full … or some time expires (10 minutes in Bitcoin)
– We're ready to add it to the ledger
– To do this, we need

• Agreement on contents
• Assurance that the contents will not be changed later

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 8

Securing the block
Hash functions are the key to tracking the integrity of the block

• One way functions

• Output gives us no clue of what the input is

• Efficient to compute & validate

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 9

Let's make in challenging: create a puzzle

Suppose we want a hash output with a specific property?
– Example, starting with "0000"?
– No algorithmic way to do this
– Must try lots of variations of the input
– But once found – it is easy for anyone to verify that the data hashes to the

result

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 10

Mining
• Solving this "puzzle" is called mining

– Have a number (bit field) in the block where we can set bit patterns
– Try to get the block to hash to a desired output
– The resulting number is called the Proof of Work

We demonstrate that work has been put into figuring out what the value
should be to create the desired hash

• Everyone in the network participates in this
– The first system that finds it announces it to everyone else in the network
– Upon receiving an announcement

• Each system validates the Proof of Work number against the block
• A majority of systems must grant approval
• If they do, the block (with the Proof of Work) is made part of the blockchain

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 11

What's the puzzle?
• Bitcoin uses hashcash (created in 1997)

– Hashcash searched for a hash(message, random #, N) where the leading k
bits are 0
• Random # - 128-bit starting value to make it unlikely that two systems start tat the

same point
• N – the number we vary until we get the hash we need
• Choice of k sets the difficulty of the problem

• Ensure that one node doesn't take credit for another's work
– 256-bit SHA-1 hash of

• B, transaction block, which includes hash pointer to previous block
• A, recipient's reward address (public key of who gets credit)
• N – the number we vary until we get the hash we need

• Bitcoin uses a floating-point k to scale the work more precisely
hash(B, A, N) < 2n-k

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 12

How much work is going on?
Currently (April 2018), around 28-31x1018 hashes per second

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 13

See blochain.info/charts/hash-rate

H
as

h
ra

te
 in

 1
012

ha
sh

es
 p

er
 s

ec
on

d

The blockchain
Blockchain = sequence of blocks linked with hash pointers

– Hash pointer = { block ID, PoW }
– PoW = Proof of Work for that block = hash(block)

• Hard to compute
• Easy to verify

• There is no authoritative copy of the blockchain
– Every participating node keeps a copy

• Some participants may be faulty
– A participant may have missed some transactions – data can get lost
– There might have been errors on the system
– A participant might be dishonest

• To remain a participant
– You need to discard bad blocks and retrieve them from someone else

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 14

Competing chains
What if a malicious participants wants to modify an old transaction?

– Need to modify an old block
– Recompute the Proof of Work (which takes a lot of effort)

for the block and each successive block (tons of work)
– This participant will be creating another chain in the blockchain

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 15

Competing chains
• BUT

– One malicious participant will not be able to catch up with the cumulative work
of all the others

– It is expected that some nodes will occasionally have different versions
– Length of chain = score

• If we observe two states of the blockchain, we select the one that was
the hardest to generate (= longest chain)
– Blockchain rules state that

The longest chain in the network is the correct one
Keep the highest-scoring (longest) version of the database

– If a participant receives a higher-scoring version
It overwrites its blockchain with the better data & transmits updates to peers

Producing a longer ledger than the current one requires computing power that
competes with the rest of the entire network

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 16

Confirming transactions

• A transaction is confirmed after N
number of additional blocks are added
to the blockchain
– Large values of N are recommended

for high-value transactions

• The more blocks are added after a
transaction, the more difficult it is to
modify it

• Higher values of N mean that an attacker will need to
recompute N+1 Proof of Work values to modify the blockchain
– Computationally not feasible

April 18, 2018 CS 419 © 2017 Paul Krzyzanowski 17

Bitcoin Confirmation
Recommendations

1: Small payments <$1,000
3: Deposits and payments of

$1,000-$10,000
6: Large payments $10k-$1M
60: Payments >$1M

https://www.buybitcoinworldwide.com/confirmations/

51% Attack
If the majority of participants decide to cheat, the protocol will fail

• Blockchain works only because of the assumption that the majority of
participants are honest.

• To double-spend a bitcoin
– You would need to rewrite the blockchain (change past transactions)
– An attacker would need to control more than 50% of computing capacity

• This is a lot: as of 12/17, The Economist estimates
"bitcoin miners now have 13,000 times more combined number- crunching power
than the world’s 500 biggest supercomputers"

• Even if someone tried to do this attack, they'd likely only modify transactions in the
past few blocks

– Keeping history of all transactions among all participants allows anyone to
check for double spending

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 18

Incentives

Computing the Proof of Work takes a lot of work – why do it?

• For bitcoin:

– First participant to compute the Proof of Work gets rewarded with bitcoin

– BUT … only after another 99 blocks have been added to the ledger

– This gives miners an incentive to participate & validate transactions

• Reward is decreasing (assumption: bitcoins will be more valuable)

– 50 bitcoins for the first 4 years since 2008

– 25 bitcoins from 2012-2015

– 12.5 bitcoins from 2016-2019

• Eventually there will be a maximum of ~21 million bitcoins

• There are also transaction fees

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 19

Centralization
• Anyone can run a bitcoin node

– Requires a good chunk of disk space but is accessible
– Highly decentralized

• Mining
– Anyone can mine but requires a lot of computing power
– Not as decentralized as we'd like

• Software development/support
– Open but there's a core set of trusted developers – not really decentralized

• In theory
– Teams of sneaky developers may be able to mount an attack
– Mining pools may try to mount a 51% attack
– Both scenarios highly unlikely today

April 18, 2018 CS 419 © 2018 Paul Krzyzanowski 20

Computer Security
14. Web Security

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Original Browser

• Static content on clients

• Servers were responsible for dynamic parts

• Security attacks were focused on servers
– Malformed URLs, buffer overflows, root paths, unicode attacks

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 2

Today’s Browsers
Complex!

• JavaScript – allows code execution

• Document Object Model (DOM) – change appearance of page

• XMLHttpRequest (AJAX) – asynchronously fetch content

• WebSockets – open interactive communication session between
JavaScript on a browser and a server

• Multimedia support - <audio>, <video>, <track>
– MediaStream recording (audio and video), speech recognition & synthesis

• Geolocation

• NaCl – run native code inside a browser (sandboxed)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 3

Complexity creates a huge threat surface
• More features → more bugs

• Browsers experienced a rapid introduction of features

• Browser vendors don’t necessarily conform to all specs

• Check out
quirksmode.org

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 4

Multiple sources
• Most desktop & mobile apps come from one place

– They may use external libraries, but those are linked in and tested

• Web apps usually have components from different places

• E.g., www.cnn.com has
– Fonts from cdn.cnn.com
– Images from turner.com, outbrain.com, bleacherreport.net, chartbeat.net
– Scripts from amazon-adsystem.com, rubiconproject.com, bing.com, krxd.net,

gigya.com, krxd.net, livefyre.com, fyre.co, optimizely.com, facebook.net,
cnn.com, criteo.com, outbrain.com, sharethrough.com, doubleclick.net,
googletagservices.com, ugdturner.com

– XMLHttpRequests from zone-manager.izi, optimizely.com, chartbeat.com,
cnn.io, rubiconproject.com

– Other content from scorecardresearch.com, imnworldwide.com,
facebook.com

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 5

What should code on a page have access to?

• Can analytics code access JavaScript state from a script from
jQuery.com on the same page?
– Scripts are from different places … but the page author selected them

• Can analytics scripts interact with event handlers?

• How about embedded frames?

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 6

Same-origin Policy
Web application security model: same-origin policy

A browser permits scripts in one page to access data
in a second page only if both pages have the same origin

Origin = { URI scheme, hostname, port number }

• Same origin
– http://www.poopybrain.com/419/test.html
– http://www.poopybrain.com/index.html

• Different origin
– https://www.poopybrain.com/index.html – different URI scheme (https)
– http://www.poopybrain.com:8080/index.html – different port
– http://poopybrain.com/index.html – different host

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 7

Ideas behind the same-origin policy

• Each origin has client-side resources
– Cookies: simple way to implement state

• Browser sends cookies associated with the origin

– DOM storage: key-value storage per origin
– JavaScript namespace: functions & variables
– DOM tree: JavaScript version of the HTML structure

• Each frame is assigned the origin of its URL

• JavaScript code executes with the authority of its frame’s origin
– If cnn.com loads JavaScript from jQuery.com, the script runs with the authority

of cnn.com

• Passive content (CSS files, images) has no authority
– It doesn’t (and shouldn’t) contain executable code

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 8

Can two different frames communicate?
• Generally, no – they’re isolated if they’re not the same origin

• But postMessage() allows two independent frames to communicate

• Both sides have to opt in

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 9

Passive content has no authority
Makes sense … but why does it matter?

Usually no … but …

MIME sniffing attack
– Chance of security problems if browser parses object incorrectly
– Old versions of IE would examine leading bytes of object to fix wrong file

types provided by the user
– Suppose a page contained passive content from an untrusted site
– Attacker could add HTML & JavaScript to the content

• IE would reclassify the content

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 10

Cross-origin weirdness
• Images

– A frame can load images from anywhere
– Same-origin policy does not allow it to inspect the image
– However, it can infer the size of the rendered image

• CSS
– A frame can embed CSS from any origin but cannot inspect the text inside the

file
– But:

It can discover what the CSS does by creating DOM nodes and seeing how
styling changes

• JavaScript
– A frame can fetch JavaScript and execute it … but not inspect it
– But … you can call myfunction.toString() to get the source
– Or … just download the source via a curl command and look at it

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 11

Cross-Origin Resource Sharing (CORS)

• A page can contain content from multiple origins
– Images, CSS, scripts, iframes, videos

• XMLHttpRequests are not permitted
– CORS – allows servers to define allowable origins

– Example, a server at service.example.com may respond with
Access-Control-Allow-Origin: http://www.example.com

– Stating that it will allow treating www.example.com as the same origin

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 12

Cookies

• Cookies are identified with a domain & a path
pk.org/419

All paths in the domain have access to the cookie

• Whoever sets the cookie chooses what domain & paths looks like

– JavaScript can set
document.cookie = “username=paul”;

– Server can set cookies by sending them in the HTTP header
Set-Cookie: username=paul

When a browser generates an HTTP request
it sends all matching cookies

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Cookies

• Cookies are often used to track server sessions
– If malicious code can modify the cookie or give it to someone else, an

attacker may be able to
• View your shopping cart
• Get or use your login credentials
• Have your web documents or email get stored into a different account

• HttpOnly flag: disallows scripts from accessing the cookie
– Sent in a Set-Cookie HTTP response header

• Secure flag: send the cookie only over https
Set-Cookie: username=paul; path=/; HttpOnly; Secure

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 14

Cross-Site Request Forgery (XSRF)

• A browser sends cookies for a site along with a request

• If an attacker gets a user to access a site
… the user’s cookies will be sent with that request

• If the cookies contain the user’s identity or session state
– The attacker can create actions on behalf of the user

• Planting the link
– Forums or spam

http://mybank.com/?action=transfer&amount=100000&to=attacker_account

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 15

Cross-Site Request Forgery (XSRF)

Defenses
– Validate the referrer header at the server

– Require unique tokens per request

• Add randomness to the URL that attackers will not be able to guess

• E.g., legitimate server can set tokens via hidden fields instead of cookies

– Default-deny browser policy for cross-site requests (but may interfere with

legitimate uses)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 16

Clickjacking

• Attacker overlays an image to trick a user to clicking a button or link

• User sees this

• Not realizing there’s an invisible frame over the image

• Clicking there could generate a Facebook like
… or download malware

… or change security settings for the Flash plugin

• Defense

– JavaScript in the legitimate code to check that it’s the top layer

window.self == window.top
– Set X-Frame-Options to not allow frames from other domains

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 17

Screen sharing attack

• HTML5 added a screen sharing API

• Normally: no cross-origin communication from client to server

• This is violated with the screen sharing API
– If a frame is granted permission to take a screenshot, it can get a screenshot

of the entire display (monitor, windows, browser)
– Can also get screenshots within the user’s browser without consent

• User might not be aware of the scope of screen sharing

http://dl.acm.org/citation.cfm?id=2650789

http://mews.sv.cmu.edu/papers/oakland-14.pdf

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 18

Input sanitization

• Remember SQL injection attacks?

• Any user input must be parsed carefully

<script> var x = “untrusted_data”; </script>

• Attacker can set untrusted_data to something like:

hi”; </script> <h1> Hey, some text! </h1> <script> malicious code… </script>

• Sanitization should be used with any user input that may be part of
– HTML
– URL
– JavaScript
– CSS

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 19

Shellshock attack

• Discovered in 2014 …. Existed since 1989!

• Privilege escalation vulnerability in bash
– Function export feature is buggy, allowing functions defined in one instance of

bash to be available to other instances via environment variable lists

• Web servers using CGI scripts (Common Gateway Interface)
– HTTP headers get converted to environment variables
– Command gets executed by the shell via system()

• Bogus function definition in bash
– Bash gets confused while parsing function definitions and executes the

second part (“echo vulnerable”), which could invoke any operation

env x='() { :;}; echo vulnerable' bash -c "echo this is a test"

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 20

Cross-Site Scripting (XSS)

Code injection attack

• Allows attacker to execute JavaScript in a user’s browser

• Exploit vulnerability in a website the victim visits

– Possible if the website includes user input in its pages

– Example: user content in forums (feedback, postings)

• What’s the harm?

– Access cookies related to that website

– Hijack a session

– Create arbitrary HTTP requests with arbitrary content via XMLHtttpRequest

– Make arbitrary modifications to the HTML document by modifying the DOM

– Install keyloggers

– Download malware – or run JavaScript ransomware

– Try phishing by manipulating the DOM and adding a fake login page

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 21

Types of XSS attacks
• Reflected XSS

– Malicious code is not stored anywhere
• It is returned as part of the HTTP response
• Only impacts users who open a malicious link or third-party web page
• Attack string is part of the link

– Web application passes unvalidated input back to the client
• The script is in the link and is returned in its original form & executed

• Persistent XSS
– Website stores user input and serves it back to other users at a later stage
– Victims do not have to click on a malicious link to run the payload
– Example: forum comments

www.mysite.com/login.asp?user=<script>malicious_code(…) </script>

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 22

XSS Defense

• One of the problems in preventing XSS is character encoding

– Filters might check for ”<script>” but not ”%3cscript%3e”

• Key defense is sanitizing ALL user input
– E.g., Django templates: hello, {{name}}

• Use a less-expressive markup language for user input

– E.g., markdown

• Privilege separation

– Use a different domain for untrusted content

• E.g., googleusercontent.com for static and semi-static content

• Limits damage to main domain

• Content Security Policy (CSP)

– Designed to prevent XSS & clickjacking

– Allows website owners to identify approved origins of content & types of content

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 23

SQL Injection & pathnames
We examined these earlier

SQL Injection

• Many web sites use a back-end database

• Links contain queries mixed with user input

query = “select * from table where user=” + username

Pathnames

• Escape the HTML directory

//mysite/images/../../../etc/shadow

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 24

GIFAR attack

• Java applets are sent as JAR files
– This is just a zip format

– Header is stored at the end of the file

• GIF files are images
– Header is stored at the beginning of the file

• We can combine the two files: gif + jar

• GIFAR attack
– Submit a GIFAR file (myimage.gif) to a site that only allows image uploads

– Use XSS to inject <applet archive:”myimage.gif”>

– Code will run in the context of the server
• Attacker gets to run with the authority of the origin (server)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 25

Network addresses
• A frame can send http & https requests to hosts that match the origin

• The security of same origin is tied to the security of DNS
– Recall the DNS rebinding attack

• Register attacker.com; get user to visit attacker.com
• Browser generates request for attacker.com
• DNS response contains a really short TTL
• After the first access, attacker reconfigures the DNS server

– Binds attacker.com to the victim’s IP address

– Web site can now fetch a new object via AJAX
• Web browser thinks request goes to an external site
• Really, it goes to a server in the victim’s network

– The attacker is now accessing data within the victim’s servers and can send
data back to an attacker’s site

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 26

Network addresses
• Solution – no foolproof solutions

– Don’t allow DNS resolutions to return internal addresses
– Force longer TTL

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 27

The situation is not good
• HTML, JavaScript, and CSS continue to evolve

• All have become incredibly complex

• Web apps themselves can be incredibly complex, hence buggy

• Web browsers are forgiving
– You don’t see errors
– They try to correct syntax problems and guess what the author meant
– Usually, something gets rendered

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 28

Computer Security
14a. More Web Security

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 16, 2018 CS 419 © 2018 Paul Krzyzanowski

HTML image tags

• Images are static content with no authority

• Any problems with images?

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 2

HTML image tags

• URL may pass arguments
– Communicate with other sites

• Hide resulting image

• Social engineering: add logos to fool a user

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 3

<img src="http://evil.com/images/balloons.jpg?extra_information"
height="300" width="400"/>

Common way for a sender to
force HTML-formatted email
to provide read notifications

HTML image tags

Social engineering: add logos to fool a user
– Impersonate site

– Impersonate credentials

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 4

Background: Frames and iFrames

• Browser window may contain frames from different sources
– Frame = rigid division as part of frameset
– iFrame = floating inline frame

• Why use them?
– Delegate screen area to content from another source
– Browser provides isolation based on frames
– Parent can continue to function even if frame is broken

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 5

Web security policy goals

• Safe to visit an evil web site

• Safe to visit two pages at one time
– Address bar distinguishes them

• Allow safe delegation
– Frame inside a frame
– Each frame = origin of the content within it

• Enforce same-origin policy

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 6

a.com

b.coma.com

a.com

b.com

Same-origin Policy
Web application security model: same-origin policy

A browser permits scripts in one page to access data
in a second page only if both pages have the same origin

origin = { URI scheme, hostname, port number }

• Same origin
– http://www.poopybrain.com/419/test.html
– http://www.poopybrain.com/index.html

• Different origin
– https://www.poopybrain.com/index.html – different URI scheme (https)
– http://www.poopybrain.com:8080/index.html – different port
– http://poopybrain.com/index.html – different host

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski 7

Ideas behind the same-origin policy

• Each origin has client-side resources
– Cookies: simple way to implement state

• Browser sends cookies associated with the origin

– DOM storage: key-value storage per origin
– JavaScript namespace: functions & variables
– DOM tree: JavaScript version of the HTML structure

• Each frame is assigned the origin of its URL

• JavaScript code executes with the authority of its frame’s origin
– If cnn.com loads JavaScript from jQuery.com, the script runs with the authority

of cnn.com

• Passive content (CSS files, images) has no authority
– It doesn’t (and shouldn’t) contain executable code

April 16, 2018 CS 419 © 2018 Paul Krzyzanowski 8

Mixed content: http & https
• HTTPS page may contain HTTP content:

<script src="http://www.mysite.com/script.js"> </script>
– Active network attacker may now hijack the session
– Content over the network is plain text

• Safer approach
<script src="//www.mysite.com/script.js"> </script>
– Served over the same protocol as the embedding page (frame)

• Some browsers warn you of mixed content
– Some warning may be unclear to the user

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 9

Extended Validation Certificates
For SSL/TLS authentication to be meaningful, the server's X.509
certificate must belong to the party the user believes it belongs to

• Domain validated certificates
– Only require proof of domain control
– Do not prove that a legal entity has a relationship with the domain

• Extended validation (EV) certificates
– Belong to the legal entity controlling the domain (or software)
– Certificate Authority must validate the entity's identity

• More stringent validation: check company incorporation, domain registration, position
of applicant, etc.

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 10

Extended Validation Certificates

EV certificate will contain

– Government-registered serial
number

– Physical address

– + the usual stuff: name,
location, issuer, …

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 11

Extended Validation Certificates

• Browsers would show a lock icon for any SSL/TLS connection

• This led to a false sense of security
– Fraud sites would use TLS to let users think they are legitimate

• Modern browsers
– Identify & validate EV certificates
– Present a security indicator that identifies the certificate owner

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 12

Browser Status Bar

Mouseover shows link target

Trivial to spoof with JavaScript

<a href="http://www.paypal.com/signin"

onclick="this.href = 'http://www.evil.com/';">

PayPal

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 13

Computer Security
15. Mobile Device Security

Paul Krzyzanowski

Rutgers University

Spring 2017

1April 16, 2018 CS 419 © 2017 Paul Krzyzanowski

Mobile Devices: Users
• Users don't think of phones as computers

– Social engineering may work more easily on phones

• Small form factor
– Users may miss security indicators (such as an EV cert indicator)
– Easy to lose/steal a device

• Users tend to pick bad PINs/passwords

• Users may grant app permission requests without thinking

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 2

Mobile Devices: Interfaces

• Phones have lots of sensors
– GSM – Wi-Fi – Bluetooth – GPS – NFC – Microphone
– Cameras – 6-axis Gyroscope and Accelerometer – Barometer

• Sensors enable attackers to monitor the world around you
– Where you are & whether you are moving
– Conversations
– Video
– Sensing vibrations due to neighboring keyboard activity led to a word

recovery rate of 80%

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 3

Mobile Devices: Apps

• Lots of apps
– 2.8 million Android apps and 2.2 million iOS apps

• Most written by untrusted parties
– We'd be wary of downloading these on our PCs
– Rely on

• Testing & approval by Google (automated) and Apple (automated + manual)
• Sandboxing
• Explicit granting of permissions for resource access

• Apps often ask for more permissions than they use
– Most users ignore permission screens

• Most apps do not get security updates

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 4

Mobile Devices: Platform

• Mobile phones are comparable to desktop systems in
complexity
– The OS & libraries will have bugs

• Single user environment

• Malicious apps may be able to get root privileges
– Attacker can install rootkits, enabling long-term control while

concealing their presence

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 5

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 6

https://www.theregister.co.uk/2017/07/20/ios_security_skycure/

https://www.skycure.com/pr/report-finds-rate-ios-malware-increasing-faster-android-malware-iphone-ten-year-anniversary/

Threats
• Privacy

– Data leakage
– Identifier leakage
– Location privacy
– Microphone/camera access

• Security
– Phishing
– Malware
– Malicious Android intents
– Broad access to resources (more than the app needs)

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 7

OWASP Top 10 Mobile Risks – 2016

OWASP = Open Web Application Security Project

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 8

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks

M1 Improper Platform Usage

M2 Insecure Data Storage

M3 Insecure Communication

M4 Insecure Authentication

M5 Insufficient Cryptography

M6 Insecure Authorization

M7 Client Code Quality

M8 Code Tampering

M9 Reverse Engineering

M10 Extraneous Functionality

https://www.apriorit.com/dev-blog/435-owasp-mobile-top-10-2017#p1

Sample iOS bugs
• May 2015: "Unicode of Death"

– Single string in a text message could crash an iPhone

• Again in Jan 2018: "ChaiOS"
– Receiving a link causes the messages app to go blank & crash instantly after opening;

possible crashes
– Malformatted characters in the message causes the Webkit HTML engine to crash.
– The target file contains multiple such characters, so CoreText spends a lot of CPU time

trying to match fonts for them

• Again in Feb 2018
– A specific character in an Indian language (Telugu) causes Apple's iOS Springboard to

crash when the message is received
– Messages will no longer open as it fails to load the character
– Affects third-party messaging apps too

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 9

Sample iOS malware

• 2015: XcodeGhost: affected over 4000 apps
– Infected Xcode developer software hosted on the Baidu file sharing service
– Developers who downloaded this version of Xcode would create apps with

malware
• Remote control via commands from a command web server
• Send information: time, app's name/ID, network time
• Ability to hijack apps that support iOS's Inter-App Communication URL mechanism

– Whatsapp, Facebook, iTunes
• Access clipboard

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 10

Sample Android malware
• 2016: HummingBad – affected over 10 million devices

– Developed by a Chinese advertising company
– Can take control of devices, forcing users to click ads and download apps

• 2016: Stagefright – latest version called Metaphor
– Tricks user into visiting a hacker's web page
– Page contains a malicious multimedia file that infects the phone
– Hacker can take control of the device to

• Gain access to personal information
• Copy data
• Use microphone & camera

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 11

Android & iOS
Pegasus espionage app

2016: iOS espionage found infecting phone of a political dissident in the UAE
2017: Companion app on Android

"example of the common feature-set that we see from nation states and nation
state-like groups"

Functions include
– Keylogging
– Screenshot capture
– Live audio & video capture
– Remote control of the malware via SMS
– Messaging data exfiltration from common apps, including WhatsApp, Skype, Facebook,

Twitter, Viber, and Kakao
– Browser history, email, contacts, and text message exfiltration

App can self-destruct when it's at risk of being discovered or compromised

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 12

https://arstechnica.com/security/2017/04/found-quite-possibly-the-most-sophisticated-android-espionage-app-ever/

Mobile Advanced Persistent Threats

• 4/16/2018 report: Mobile Advanced Persistent Threats (mAPT)
– Three mAPT apps were found in Google's Play marketplace
– Target people in the Middle East

• Malicious functionality not part of initial downloaded version
– Second stage, downloaded later, contains surveillance code

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 13

Mobile Advanced Persistent Threats
• Upload attacker-specified files to

command and control servers
• Record surrounding audio, calls, and

video
• Retrieve account information such as

email addresses
• Retrieve contacts
• Remove copies of itself if any additional

APKs are downloaded to external
storage

• Call an attacker-specified number
• Uninstall apps
• Hide its icon
• Retrieve list of files on external storage
• Encrypt some exfiltrated data

• Obtain a list of installed applications
• Get device metadata
• Inspect itself to get a list of launchable

activities
• Retrieve PDF, txt, doc, xls, xlsx, ppt,

and pptx files found in external storage
• Send SMS messages
• Retrieve text messages
• Track device location
• Handle limited attacker commands via

out-of-band text messages
• Check if a device is rooted
• If running on a Huawei device, it will

attempt to add itself to the protected list
of apps able to run with the screen off

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 14

https://arstechnica.com/information-technology/2018/04/malicious-apps-in-google-play-gave-attackers-considerable-control-of-phones/

Android Security

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 15

Android Security Features
• All app code runs under Dalvik (a variant of a JVM)

– But native code was needed too

• Isolation
– Android based on Linux, which is multi-user
– Each app normally runs as a different user

• Communication between apps
– Related apps may share the same Linux user ID

• Can share files and may share the same Linux process & Dalvik VM
– Communication via app framework

• "Intents": message with {action, data to act on, component to handle the intent}
• Apps must be granted explicit permission to access input devices & personal data

– Camera, microphone, GPS

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 16

Android Security Features
• Signed applications

– Apps must be signed. Signature validated by Google Play & package
manager on the device

• App verification
– Users can enable "verify apps" to have apps evaluated by an app verifier prior

to installation
– Will scan app against Google's database of apps

• Battery life
– Developers must conserve power
– Apps store state so they can be stopped and restarted

• Helps with DoS

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 17

App Sandbox
• Each app runs with its own UID in its own Dalvik virtual machine

– CPU protection, memory protection
– Authenticated communication with UNIX domain sockets

• Permission model
– Apps announce permission requirements
– Whitelist access: user grants access
– All questions asked at install time

• Exploit prevention
– Stack canaries
– Some heap overflow protections (check backward & forward pointers)
– ASLR

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 18

Some security issues

• Inter-app communication: intents
– Sender can verify recipient has a permission by specifying a permission with

the intent method call
– Receivers have to handle malicious intents

• Permissions re-delegation
– An app, without a permission, may gain privileges through another app
– If a public component does not explicitly have an access permission listed in

its manifest definition, Android permits any app to access it
– Example

• Power Control Widget (a default Android widget) – allows 3rd party apps to change
protected system settings without requesting permissions

• Malicious app can send a fake intent to the Power Control Widget, simulating the
pressure of the widget button to switch settings

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 19

Some security issues

Permissions avoidance

– By default, all apps have access to read from external storage
• Lots of apps store data in external storage without protection

– Android intents allow opening some system apps without requiring
permissions
• Camera, SMS, contact list, browser
• Opening a browser via an intent can be dangerous since it enables

– Data transmission, receiving remote commands, downloading files

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 20

iOS Security

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 21

iOS App Security
• Runtime protection

– System resources & kernel shielded from user apps
– App sandbox restricts access to other app's data & resources

• Each app has its own sandbox directory
• Limit access to files, preferences, network, other resources

– Inter-app communication only through iOS APIs
– Code generation prevented – memory pages cannot be made executable

• Mandatory code signing
– Must be signed using an Apple Developer certificate

• App data protection
– Apps can use built-in hardware encryption

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 22

Reading iOS files

• Metadata decrypted with the file system key
– File system key = random key created when iOS is installed

• This reveals the encrypted per-file key
& identifies which class protects it (class = user or group)

• The per-file key is unwrapped with the class key
– AES engine decrypts file as it is read from flash memory
– Per-extent keys: portions of a file can be given different keys

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 23

File contents
File metadata

File keyClass key
Passcode

key

Hardware
key

File system
key

Masque Attack
iOS app can be installed using enterprise ad-hoc provisioning

• Can replace genuine app from App Store if they have the same bundle
identifier

• iOS didn't enforce matching certificates for apps with the same bundle
identifier

• But … user gets a warning "untrusted app developer"

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 24

Web apps
• Both iOS & Android support web apps

– Fully functional web browser incorporated as an app to a specific site

• This makes web client issues relevant
– Loading untrusted content
– Leaking URLs to foreign apps
– XSS attacks, …

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 25

Web page access to sensors

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 26

"a malicious webpage could

use iPhone sensors to

detect a passcode.

The technique was so

accurate that the team had

a 100% success rate at

working out 4-digit PINs

within five attempt …

A neural network was used

to identify correlations

between motion sensor

data and tapped PINs, and

a browser Javascript exploit

was used to run the

malware.

https://9to5mac.com/2017/04/12/iphone-motion-sensors-detect-passcodes-pins/

Hardware aids to security: ARM TrustZone
• Hardware-separated secure & non-secure worlds

– Non-secure world cannot access secure resources directly
– Each CPU core has two virtual cores: secure & non-secure

• Software resides in the secure or
non-secure world

• Processor executes in one world at any
given time

• Each world has its own OS & applications

• Applications
– Secure key management & key generation
– Secure boot, digital rights management, secure payment

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 27

http://www.arm.com/products/security-on-arm/trustzone

Hardware aids to security

Apple Secure Enclave: Similar to TrustZone but a separate processor
– Coprocessor in Apple A7 and later processors

– Runs its own OS (modified L4 microkernel)

– Has its own secure boot & custom software update

– Provides
• All cryptographic operations for data protection & key management
• Random number generation
• Secure key store, including Touch ID (fingerprint) data
• Neural network for Face ID

– Maintains integrity of data protection even if kernel has been compromised

– Uses encrypted memory

– Communicates with the main processor by an interrupt-driven mailbox and
shared memory buffers

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 28

Summary

• Mobile devices are attractive targets

– Huge adoption, simple app installation by users, always with the user

• Android security model

– Isolated processes with separate UID and separate VM

– Java code (mostly, but also native): managed, no buffer overflows

– Permission model & communication via intents

• iOS security model

– App sandbox based on file isolation

– File encryption

– Apps written in Objective C and Swift

– Vendor-signed code, closed marketplace (App Store only)

• Protection efforts have generally been good

– Usually far better than on normal computers

… but often not good enough!

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 29

Computer Security
16. Content Protection & Steganography

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 16, 2018 CS 419 © 2017 Paul Krzyzanowski

Content protection

• Digital content is simple to copy and distribute
– Software, music, video, documents

• That's not always good
– How do software companies & artists make a living if their content is

freely distributed on a large scale?
– How do organizations keep their documents secure?

How can we make distribution more difficult?

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 2

Associate software with a computer

Find unique characteristics of a machine
1. CPU serial number (early microprocessors didn't have these)
2. Add a dongle (USB hardware key)
3. Create a unique ID based on PC's configuration
4. Install software in a way that cannot be copied

(e.g., mark blocks as bad)
Used on early PCs but not viable with modern operating systems

But
– You can go through the software with a debugger & remove checks

• This becomes harder as software gets bigger

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 3

Copy or execution protection

• On-device checks

– Software is configured to check a computer ID or license key when run

• Network checks

– Software must contact an on-line license server & identify itself and the

computer to run

• Timebombs

– Software ceases to function if it's found to be illegally installed

– Illegal in some places

All checks can be defeated
Goal: balance technical difficulties, user convenience, and legal
repercussions

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 4

Cloud software

Ultimate protection
– Company provides computing platform and the software

• And you don't have physical access to the platform
– If your subscription expires, you cannot use the platform

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 5

DRM

• Content industry (movies, music, documents) asked for
technical solutions to the content distribution problem

• This led to digital rights management (DRM)
– Protection of content
– Definition on how it can be played and copied

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 6

Digital Video Broadcasting
• Relies on trusted hardware

– Data stream is decrypted with smart cards containing subscriber info

• Source content is encrypted with a 48-bit secret key (key = control word)
– Control word may change several times per minute
– Control word is encrypted & sent to all subscribers as part of an Entitlement

Control Message (ECM)

• Ability to decrypt the ECM is sent to each subscriber as an Entitlement
Management Message (EMM)
– Sent at less frequent intervals (several days to several weeks)
– Encrypted per subscriber for their smart card

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 7

Decrypt with
Control Word

Encrypted
Content Content

Entitlement Control Msg (ECM) Decrypt control word with
key from ECM

Decrypt ECM with key
from EMMEntitlement Management Msg

frequent updates

infrequent updates
E(control word)

E(ECM)

CableCARD

• Card device to allow customers to access digital cable TV channels on
generic devices

• Identifies and authorizes subscriber

• Receives EMM (Entitlement Management Messages) for premium
channels

• Decodes encrypted digital cable signal

– Performs conditional access logic & decryption

– Provides an MPEG-2 media stream to the host

– Tuner and MPEG decoder are part of the host equipment

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 8

CableCARD

• CableCARD did not provide host device certification for two-way

communication

• Deployment of proprietary set-top boxes is far bigger than CableCard

• Next (possible) successor: AllVid

– Universal adapter for all types of pay TV and interactive program guides

– Can communicate to any device with a screen

– Endorsed by Google, Best Buy, Mitsubishi, Sony Electronics, TiVo

– Not endorsed by cable companies

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 9

DVD Content Scrambling System (CSS)

• Stream cipher – weak – can be broken in 225 tries

• Each player has one or more manufacturer-specific keys

• Each DVD has a disk key encrypted under each of the manufacturer's
keys
– Goal was to to produce new disks that omit a specific manufacturer's key if it

leaked
– BUT – given any key in the system, all others can be found
– Manufacturers had an incentive to keep costs down, not use tamper-resistant

hardware

• DVD players on PCs
– PCs are an open platform – only way to "protect" the code was to obfuscate it

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 10

Blu-ray: Advanced Access Control System

• Uses AES to encrypt content

– Media key encrypted with a combination of a media key and volume ID (serial

number of the disc)

• Serial number cannot be duplicated on recordable media

• CSS
– Unique encryption key for content – key is encrypted for a set of players

– All players of a model group have the same decryption key

– Disc contains several hundred encrypted keys, one for each licensed player

model

• AACS
– Unique media key for content – key is encrypted for a player

– Each individual player has a unique set of decryption keys

– Licensors can revoke keys for individual players in future content

– AACS keys compromised since 2007 – keys were found using debuggers

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 11

Content isn't really protected
People built databases of media keys – so no need to decrypt the media key

– Do a google/bing search for AACS KEYDB.cfg
• https://gist.github.com/HenkPoley/41ed899251aa771cb1d061d49a3888e5

– 18 processing keys
– 23,999 titles as of 9/3/2017

There's also the analog hole

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 12

Legal barriers: DMCA

Digital Millennium Copyright Act
Criminalizes production and dissemination of technology, devices, or services
intended to circumvent measures (DRM) that control access to copyrighted
works. It also criminalizes the act of circumventing an access control, whether or
not there is actual infringement of copyright itself.

Without DMCA, anyone would be able to build a set-top box to decode
video signals

– Just crack HDCP (High Definition Content Protection)

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 13

steganography

στεγανός

covered

γραφία

writing

The art of secret (hidden) writing

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 14

Steganography

Art and science of communicating in a way that hides the
existence of a message

signal or pattern imposed on content

– Persistent under transmission
– Not encryption – original image/file is intact
– Not fingerprinting

• Fingerprinting leaves separate file describing contents

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 15

Classic techniques

• Invisible ink (1st century AD - WW II)
• Tattooed message on head
• Overwrite select characters in printed type in pencil

– look for the gloss

• Pin punctures in type
• Microdots (WW II)
• Newspaper clippings, knitting instructions, XOXO

signatures, report cards, …

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 16

Motivation
• Steganography received little attention in computing

• Renewed interest because of industry's desire to protect copyrighted
digital work
– Audio, images, video, documents

• Detect counterfeiter, unauthorized presentation, embed key, embed
author ID

• Also useful for forensics: enemies may use steganography to conceal
their messages
– Communication, stolen data, botnet controls

Steganography ≠ Copy protection

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 17

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 18

Isis and al-Qaeda sending coded messages through eBay,
pornography and Reddit
Kashmira Gander – Monday 2 March 2015 19:29 GMT

Isis and al-Qaeda members are communicating with each other via coded messages hidden
on websites including eBay, Reddit, and inside pornographic photos, according to a new
book.

Gordon Thomas, who has sources inside Israel’s Mossad spy agency, has revealed that the
organisation’s cyber warfare department’s most skilled cryptologists mastered a technique
known as steganography, which is used to to conceal secret information within a digital file.
The spies found that al-Qaeda had used the technique to hide messages in goods offered for
sale on eBay, according to extracts from Gideon’s Spies: The Secret History of the
Mossad published by The New York Post.

Null Cipher

• Hide message among irrelevant data

• Confuse the cryptoanalyst

Big rumble in New Guinea.
The war on
celebrity acts should end soon.
Over four
big ecstatic elephants replicated.

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 19

Null Cipher

• Hide message among irrelevant data

• Confuse the cryptoanalyst

Big rumble in New Guinea.
The war on
celebrity acts should end soon.
Over four
big ecstatic elephants replicated.

Bring two cases of beer.

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 20

BBC News 27 April 2006

Judge creates own Da Vinci code

The judge who presided over the failed Da Vinci Code plagiarism case at London's High
Court hid his own secret code in his written judgement.

Seemingly random italicised letters were included in the 71-page judgement given by Mr
Justice Peter Smith, which apparently spell out a message.

Mr Justice Smith said he would confirm the code if someone broke it.

"I can't discuss the judgement, but I don't see why a judgement should not be a matter of
fun," he said.

Italicised letters in the first few pages spell out "Smithy Code", while the following pages also
contain marked out letters.

http://news.bbc.co.uk/go/pr/fr/-/1/hi/entertainment/4949488.stm

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 21

Chaffing & Winnowing

• Separate good messages from the bad ones

• Stream of unencoded messages with signatures
– Some signatures are bogus
– Need to have the key to test

M0M3 M1M2 M0M3 M1M2

Alice Bob

M0M3 M1M2

Irene

? ? ? ?

× × ×OK

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 22

Steganography in images
• Spatial domain

– Bit flipping
– Color separation

• Frequency domain
– Embed signal in select frequency bands

(e.g., high frequency areas)
– Apply FFT/DCT transform first

– Alter the least perceptible bits to avoid detection
• But these are the same bits targeted by lossy image compression software

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 23

Machine ID codes in laser printers

See http://www.eff.org/Privacy/printers/

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 24

Machine ID codes in laser printers

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 25

Machine ID codes in laser printers

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 26

Machine ID codes in laser printers

Designed by Xerox to identify counterfeit currency and help track down counterfeiters

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 27

Watermarking vs. Steganography

Both techniques hide a message in data

Goal of steganography
– Intruder cannot detect the message

– Primarily 1:1 communication

Goal of watermarking
– Intruder cannot remove or replace the message

(robustness is important)

– Doesn't have to be invisible

– Primarily 1:many communication

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 28

Watermarking applications

• Copyright protection
– Embed information about owner

• Copy protection
– Embed rights management information
– But you need a trusted player

• Content authentication
– Detect changes to the content

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 29

UV Watermarking

Also passports, amusement park re-entry,

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 30

Text
• Text lines shifted up/down

(40 lines text Þ 240 codes)

• word space coding

• character encoding - minor changes to shapes of
characters

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 31

Text
• Text lines shifted up/down

(40 lines text Þ 240 codes)

• word space coding

• character encoding - minor changes to shapes of
characters

• works only on “images” of text e.g., PDF, postscript
April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 32

Audio

Perceptual coding
– Inject signal into areas that will not be detected by humans
– May be obliterated by compression

Amazon MP3 audio

Identifies where the song was
purchased, not the user

Difference

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 33

Video

• Coding still frames - spatial or frequency

• Data encoded during refresh
– closed captioning

• Visible watermarking
– used by most networks (logo at bottom-right)

April 16, 2018 CS 419 © 2017 Paul Krzyzanowski 34

The end

35April 16, 2018 CS 419 © 2017 Paul Krzyzanowski

