CS 417 - DISTRIBUTED SYSTEMS

Week 3: RPC & Web Services
Part 3: Web Services

© 2026 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.



Web Limitations

Web browser:
— Dominant model for user interaction on the Internet

But not good for programmatic access to data or manipulating data
— Ul is a major component of the content
— Data and presentation are not separated
— Site scraping is a pain (and unreliable)!

We needed

— Remotely hosted services - that programs can use
— Machine-to-machine communication

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 2



RPC Had Problems on the Internet

Interoperability

RPC frameworks were often dependent on specific languages, OSes, platforms
RPyC is not even compatible between Python 2 & 3

Transparency

We try to pretend remote calls are “just like local”
Reality: Have to handle errors and uncertainty

Most RPC frameworks used random ports (assigned by OS)

Firewalls Firewalls would block them
State Distributed objects require state (object memory)
This makes load balancing and failover difficult
Non-RPC RPC gave us a functional interface

Interactions

But we also want streaming data, notification of delays, and publish-subscribe

Distributed objects mostly ended up used in intranets
of homogenous systems and low latency networks

February 9, 2026

CS 417 © 2026 Paul Krzyzanowski



This led to the idea of web services

Goal:
Create a way to expose functions and data over the web

Benefits of using a web infrastructure and HT TP for communication:
— Authentication mechanisms provided via TLS (https, digital certificates)
— Secure communication via TLS (https)
— Load balancing
— Human-friendly naming (URLs) vs. port numbers
— Firewalls can allow HTTP traffic (and many can allow/block specific URLS)

Two widely-used interaction models for web services: RPC and REST

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 4



What is a web service?

Set of protocols by which services can be published,
discovered, and used in a technology neutral form

— Language & architecture independent

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 5



Service Oriented Architecture (SOA)

SOA = Programming model

* Applications will typically invoke multiple remote services
* An app is the integration of network-accessible services (components)
» Each service has a well-defined interface

* Services are autonomous & loosely coupled

Neither service depends on the Neither service needs to know
other: all are mutually about the internal structure of the
independent others

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 6



Benefits of SOA

- Autonomous services
— Each service module does one thing well
— Supports reuse of services across applications

* Loose coupling
— Isolation: No need to know the implementation of services, just interfaces
— Migration: Services can be located and relocated on any servers

— Scalability: new services can be added/removed on demand
... and on different servers — or load balanced

— Updates: Individual services can be replaced without interruption

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 7



General Principles of Web Services

Coarse-grained ° Prefer fewer operations with large messages
» Amortize the overhead of latency (avoid lots of small interactions)

Platform neutral ° Messages don’t rely on the underlying language, OS, or hardware
» Standardized protocols & data formats
+ Payloads are text (usually XML or JSON)

Message-oriented ° Communicate by exchanging messages
» This could be RPC request-response but also streaming reads

Use existing infrastructure: web servers, authentication, encryption,
firewalls, load-balancers

HTTP

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 8



XML RPC

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski



XML RPC Goals & Properties

« Data marshaled into XML messages
— All request and responses are human-readable XML

* Explicit typing
 Transport over HTTP protocol: solves firewall issues
* No IDL compiler support for most languages or robust ecosystem

* Not widely used. Popular deployments:

— WordPress traditionally used XML-RPC for remote publishing
— It’s the only RPC that ships with Python (xmlrpc.client, xmlrpc.server)

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 10



Sample XML-RPC Python Code

client.py

server.py

from xmlrpc.server import. \
SimpleXMLRPCServer

def add(a, b):
return a + b

def hello(name):
return f"Hello, {name}!"

with SimpleXMLRPCServer(("localhost", 8000),
allow _none=True) as server:
server.register_ function(add, "add")
server.register_ function(hello, "hello")
print("XML-RPC server listening on " \
"http://localhost:8000")
server.serve_forever()

from xmlrpc.client \
import ServerProxy

SYrv =
ServerProxy("http://localhost:8000",
allow_none=True)

print("add(2, 3) ->", srv.add(2, 3))
print('hello("students") ->',
srv.hello("students"))

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 11



XML-RPC example (from the previous progam)

Request (not showing HTTP headers)

<?xml version='1.0'?>
<methodCall>
<methodName>add</methodName>
<params>
<param><value><int>2</int></value></param>
<param><value><int>3</int></value></param>
</params>
</methodCall>

Response (not showing HTTP headers)

<?xml version='1.0"'?>
<methodResponse>
<params>
<param><value><int>5</int></value></param>
</params>
</methodResponse>

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 12



XML-RPC = SOAP

» Extended XML-RPC
— Standardized message structure: envelope with header + body
— Added extensible headers: authentication, correlation IDs, transactions, ...
— Defined fault handling

» Supports different interaction types
— Request-response (traditional RPC)
— Request-multiple-response
— Asynchronous notification
— Publish-subscribe (through extensions)

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 13



WSDL.: Web Services Description Language

» Web Services Description Language
— Analogous to an IDL

« A WSDL document describes a set of services
— Name, operations, parameters, where to send requests

— Goal is that organizations would exchange WSDL documents

* Feed WSDL document to a program to generate software to send and receive SOAP
messages

— WSDL is not meant for human consumption

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 14



Decline of SOAP

« Still used but mostly legacy
— Enterprises liked the formal contracts and big-company support

* Requires extensive support for creating/parsing/routing messages
* Interoperability was inconsistent
« Difficult to understand

 Painfully verbose

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 15



REST

February 9, 2026

CS 417 © 2026 Paul Krzyzanowski

16



REST

REpresentational State Transfer
* The URI identifies the resource and parameters

* Four HTTP commands let you manipulate data (a resource):

— POST (create) |1 Create = PUT with new URI or POST to a URI that returns a new URL
— GET (read)
— CRUD: R Del
_ PUT (update/replace) CRUD: Create, Read, Update, Delete
— DELETE (delete) Update = PUT with existing URI

* And sometimes others:
— PATCH (update/modify) — modify part of a resource (PUT is expected to modify all)
— OPTIONS (query) — determine options associated with a resource

« Message body contains only the data (contents) — usually in JSON

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 17



|dentify resources via URLs

GET /api/users # List all users
GET /api/users/123 # Get user 123
{
"id": 123,
"name": "Alice Smith",
"email": "alicee@example.com",
"created at": "2024-01-15T10:30:00Z"
}
POST /api/users # Create a new user
PUT /api/users/123 # Update user 123

DELETE /api/users/123 # Delete user 123

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 18



REST vs. RPC Design

RPC approach: Define REST approach: Define
procedures (operations) that resources and use HTTP
act on data methods

* getUser(123) * GET /users/123

* createUser(name, email) * POST /users

* updateUserEmail (123, * PUT /users/123

"new@example.com"
@ P ) * DELETE /users/123

* deleteUser(123)

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 19



REST Wasn’t Perfect

« HTTP/1.1 overhead - text based, cookies, extra headers
* No support for streaming data

* No schema & validation — any JSON will be accepted

- Text-based data overhead — JSON parsing

- Connection overhead — One request per connection at a time



HT TP Evolution

The HTTP protocol evolved to make interactions more efficient
« HTTP/1.0 - Closed connection per request

« HTTP/1.1 - Introduced keep-alive - persistent connections
— Requests are processed sequentially
— Head-of-line blocking is a problem: large content holds up others

« HTTP/2 — Multiplexes concurrent streams on one connection
— Binary format for easier parsing

— Head-of-line blocking less of an issue but possible with packet loss vs. being stuck
behind a big request

* QUIC - HTTP/3 - Similar to HTTP/2
— Uses UDP to avoid head-of-line blocking

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 21



A Move Back to Binary-Encoded RPCs

Web services are widely used
— Great for working across organizations over the Internet

Web services are not the best choice for high-performance,
Internal, or time-sensitive applications where latency,
bandwidth, and processing overhead are concerns.

Go back to the efficiency of traditional RPCs, but
» Have interactions over HTTP/2
« Add interactions beyond procedure calls, like streaming

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 22



gRPC

Open-source RPC framework created by Google

Runs over HTTP/2 and provides:

— Binary protocol: more efficient to parse and less bandwidth
Uses protocol buffers for encoding data

— Multiplexing: Multiple requests can be sent in parallel over a single TCP
connection with one request not blocking another

— Header compression: HTTP/2 HPACK removes overhead of HTTP headers
— Stream prioritization: More important data can be prioritized

— Server push: Servers can send data proactively to the client's cache

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 23



gRPC: Key Features

High performance

Strongly typed

Bidirectional
streaming support

Deadlines/timeouts

Multiplexing

Language agnostic

February 9, 2026

Uses Protocol Buffers vs. XML or JSON

Interface definitions, extensible format, versionsing

Traditional RPC model AND
ability to stream requests and/or responses

More suitable for real-time systems and handling failures

Single connection can handle multiple gRPC calls
concurrently

Supports multiple programming languages

CS 417 © 2026 Paul Krzyzanowski 24



There are many other RPC frameworks

« GraphQL (API style, not RPC)
— Primarily designed as a query language for Uls
— Clients can select the fields they need: you don't always need the full data structure

« Apache Thrift (developed at Facebook)
— IDL + code generation
— Multiple transports/protocols; mature ecosystems
— Similar to, but not as widely used as gRPC
— Used by Facebook, X, Evernote, Microsoft

« Connect RPC (Buf project)
— Protobuf RPC that works cleanly over HTTP/1.1 or HTTP/2
— Can use Protobuf or JSON encoding; simpler deployment than full gRPC

Common themes
— Shared schemas, deadlines/cancellation, streaming, and strong observability hooks

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 25



The End

February 9, 2026

CS 417 © 2026 Paul Krzyzanowski

26



