
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 3: RPC & Web Services
 Part 3: Web Services

© 2026 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Web Limitations
Web browser:
– Dominant model for user interaction on the Internet

But not good for programmatic access to data or manipulating data
– UI is a major component of the content
– Data and presentation are not separated
– Site scraping is a pain (and unreliable)!

We needed
– Remotely hosted services – that programs can use
– Machine-to-machine communication

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

RPC Had Problems on the Internet

Interoperability • RPC frameworks were often dependent on specific languages, OSes, platforms
• RPyC is not even compatible between Python 2 & 3

Transparency • We try to pretend remote calls are “just like local”
• Reality: Have to handle errors and uncertainty

Firewalls • Most RPC frameworks used random ports (assigned by OS)
• Firewalls would block them

State • Distributed objects require state (object memory)
• This makes load balancing and failover difficult

Non-RPC
Interactions

• RPC gave us a functional interface
• But we also want streaming data, notification of delays, and publish-subscribe

Distributed objects mostly ended up used in intranets
of homogenous systems and low latency networks

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 3

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

This led to the idea of web services
Goal:
Create a way to expose functions and data over the web
Benefits of using a web infrastructure and HTTP for communication:
– Authentication mechanisms provided via TLS (https, digital certificates)
– Secure communication via TLS (https)
– Load balancing
– Human-friendly naming (URLs) vs. port numbers
– Firewalls can allow HTTP traffic (and many can allow/block specific URLs)

Two widely-used interaction models for web services: RPC and REST

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 4

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Web Services

What is a web service?

Set of protocols by which services can be published,
discovered, and used in a technology neutral form
– Language & architecture independent

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 5

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Service Oriented Architecture (SOA)
SOA = Programming model

• Applications will typically invoke multiple remote services

• An app is the integration of network-accessible services (components)

• Each service has a well-defined interface

• Services are autonomous & loosely coupled

Neither service depends on the
other: all are mutually

independent

Neither service needs to know
about the internal structure of the

others

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 6

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Benefits of SOA
• Autonomous services
– Each service module does one thing well
– Supports reuse of services across applications

• Loose coupling
– Isolation: No need to know the implementation of services, just interfaces
– Migration: Services can be located and relocated on any servers
– Scalability: new services can be added/removed on demand

 … and on different servers – or load balanced
– Updates: Individual services can be replaced without interruption

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 7

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

General Principles of Web Services

Coarse-grained • Prefer fewer operations with large messages
• Amortize the overhead of latency (avoid lots of small interactions)

Platform neutral • Messages don’t rely on the underlying language, OS, or hardware
• Standardized protocols & data formats
• Payloads are text (usually XML or JSON)

Message-oriented • Communicate by exchanging messages
• This could be RPC request-response but also streaming reads

HTTP • Use existing infrastructure: web servers, authentication, encryption,
firewalls, load-balancers

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 8

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

XML RPC

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 9

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

XML RPC Goals & Properties
• Data marshaled into XML messages
– All request and responses are human-readable XML

• Explicit typing

• Transport over HTTP protocol: solves firewall issues

• No IDL compiler support for most languages or robust ecosystem

• Not widely used. Popular deployments:
– WordPress traditionally used XML-RPC for remote publishing
– It’s the only RPC that ships with Python (xmlrpc.client, xmlrpc.server)

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 10

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Sample XML-RPC Python Code

from xmlrpc.server import. \
SimpleXMLRPCServer

def add(a, b):
 return a + b

def hello(name):
 return f"Hello, {name}!"

with SimpleXMLRPCServer(("localhost", 8000),
 allow_none=True) as server:
 server.register_function(add, "add")
 server.register_function(hello, "hello")
 print("XML-RPC server listening on " \
 "http://localhost:8000")
 server.serve_forever()

from xmlrpc.client \
import ServerProxy

srv =
ServerProxy("http://localhost:8000",
 allow_none=True)

print("add(2, 3) ->", srv.add(2, 3))
print('hello("students") ->’,
 srv.hello("students"))

server.py client.py

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 11

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

XML-RPC example (from the previous progam)

<?xml version='1.0'?>
<methodCall>
 <methodName>add</methodName>
 <params>
 <param><value><int>2</int></value></param>
 <param><value><int>3</int></value></param>
 </params>
 </methodCall>

<?xml version='1.0'?>
<methodResponse>
 <params>
 <param><value><int>5</int></value></param>
 </params>
</methodResponse>

Request (not showing HTTP headers)

Response (not showing HTTP headers)

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 12

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

XML-RPC ⇒ SOAP
• Extended XML-RPC
– Standardized message structure: envelope with header + body
– Added extensible headers: authentication, correlation IDs, transactions, …
– Defined fault handling

• Supports different interaction types
– Request-response (traditional RPC)
– Request-multiple-response
– Asynchronous notification
– Publish-subscribe (through extensions)

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 13

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

WSDL: Web Services Description Language
• Web Services Description Language
– Analogous to an IDL

• A WSDL document describes a set of services
– Name, operations, parameters, where to send requests
– Goal is that organizations would exchange WSDL documents
• Feed WSDL document to a program to generate software to send and receive SOAP

messages
– WSDL is not meant for human consumption

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 14

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Decline of SOAP
• Still used but mostly legacy
– Enterprises liked the formal contracts and big-company support

• Requires extensive support for creating/parsing/routing messages

• Interoperability was inconsistent

• Difficult to understand

• Painfully verbose

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 15

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

REST

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 16

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

REST
REpresentational State Transfer
• The URI identifies the resource and parameters

• Four HTTP commands let you manipulate data (a resource):
– POST (create)
– GET (read)
– PUT (update/replace)
– DELETE (delete)

• And sometimes others:
– PATCH (update/modify) – modify part of a resource (PUT is expected to modify all)
– OPTIONS (query) – determine options associated with a resource

• Message body contains only the data (contents) – usually in JSON

CRUD: Create, Read, Update, Delete

Create = PUT with new URI or POST to a URI that returns a new URL

Update = PUT with existing URI

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 17

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example
Identify resources via URLs
GET /api/users # List all users
GET /api/users/123 # Get user 123

POST /api/users # Create a new user
PUT /api/users/123 # Update user 123
DELETE /api/users/123 # Delete user 123

{
 "id": 123,
 "name": "Alice Smith",
 "email": "alice@example.com",
 "created_at": "2024-01-15T10:30:00Z"
}

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 18

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

RPC approach: Define
procedures (operations) that
act on data
• getUser(123)

• createUser(name, email)

• updateUserEmail(123,
"new@example.com")

• deleteUser(123)

REST approach: Define
resources and use HTTP
methods
• GET /users/123

• POST /users

• PUT /users/123

• DELETE /users/123

REST vs. RPC Design

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 19

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

REST Wasn’t Perfect
• HTTP/1.1 overhead – text based, cookies, extra headers

• No support for streaming data

• No schema & validation – any JSON will be accepted

• Text-based data overhead – JSON parsing

• Connection overhead – One request per connection at a time

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

HTTP Evolution
The HTTP protocol evolved to make interactions more efficient
• HTTP/1.0 - Closed connection per request

• HTTP/1.1 - Introduced keep-alive – persistent connections
– Requests are processed sequentially
– Head-of-line blocking is a problem: large content holds up others

• HTTP/2 – Multiplexes concurrent streams on one connection
– Binary format for easier parsing
– Head-of-line blocking less of an issue but possible with packet loss vs. being stuck

behind a big request

• QUIC – HTTP/3 – Similar to HTTP/2
– Uses UDP to avoid head-of-line blocking

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 21

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

A Move Back to Binary-Encoded RPCs

Web services are widely used
– Great for working across organizations over the Internet

Web services are not the best choice for high-performance,
internal, or time-sensitive applications where latency,
bandwidth, and processing overhead are concerns.

Go back to the efficiency of traditional RPCs, but
• Have interactions over HTTP/2
• Add interactions beyond procedure calls, like streaming

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 22

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

gRPC
Open-source RPC framework created by Google

Runs over HTTP/2 and provides:
– Binary protocol: more efficient to parse and less bandwidth

 Uses protocol buffers for encoding data
– Multiplexing: Multiple requests can be sent in parallel over a single TCP

connection with one request not blocking another
– Header compression: HTTP/2 HPACK removes overhead of HTTP headers
– Stream prioritization: More important data can be prioritized
– Server push: Servers can send data proactively to the client's cache

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 23

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

gRPC: Key Features
High performance Uses Protocol Buffers vs. XML or JSON

Strongly typed Interface definitions, extensible format, versionsing

Bidirectional
streaming support

Traditional RPC model AND
ability to stream requests and/or responses

Deadlines/timeouts More suitable for real-time systems and handling failures

Multiplexing Single connection can handle multiple gRPC calls
concurrently

Language agnostic Supports multiple programming languages

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 24

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

There are many other RPC frameworks
• GraphQL (API style, not RPC)
– Primarily designed as a query language for UIs
– Clients can select the fields they need: you don't always need the full data structure

• Apache Thrift (developed at Facebook)
– IDL + code generation
– Multiple transports/protocols; mature ecosystems
– Similar to, but not as widely used as gRPC
– Used by Facebook, X, Evernote, Microsoft

• Connect RPC (Buf project)
– Protobuf RPC that works cleanly over HTTP/1.1 or HTTP/2
– Can use Protobuf or JSON encoding; simpler deployment than full gRPC

Common themes
– Shared schemas, deadlines/cancellation, streaming, and strong observability hooks

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 25

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

February 9, 2026 CS 417 © 2026 Paul Krzyzanowski 26

