
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 3: Synchronization
 Part 1: Clock Synchronization

© 2026 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Synchronization
Synchronization covers coordinating interactions among distributed
processes

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 2

All of these are easy in non-distributed systems
All of these have challenges in distributed systems

Clocks Identify when something happened

Logical clocks Identify the sequence of events

Mutual exclusion Only one entity can do an operation at a time

Leader election Who coordinates activity? Who takes over?

Consistency/Agreement Does everyone have the same view of events?

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Why do we care?
Distributed systems don’t share a clock – each computer has its own

Clock Synchronization:
– Enable process to identify “now” consistent with other processes on other

systems … and the real world

Why do we care?
– Logging messages
– Checking deadlines and cache expirations
– Applications where time-based billing or access control is needed
– Checking expiration on certificates, authentication tokens, web cookies

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 3

Wall time refers
to the actual,
real-world time.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

UTC: Temps Universel Coordonné
The world’s time standard

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 4

UTC(k): Collection of
Atomic Clocks:
(national labs)

TAI
International Atomic Time

Earth Rotation Observations
(national labs) UT1

UTC
Universal Coordinated Time

Continuous time International Earth Rotation
and Reference Systems Service

Not uniform

Leap Second
|UT1 – UTC| < 0.9s

Average of 450+ clocks

Continuous time scale

Leap seconds are announced by the International Earth
Rotation and Reference Systems Service (IERS)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

How Computers Keep Time
• Battery-Backed Real-Time Clock
– Quartz oscillator, typically 32,768 Hz
– Keeps time across power-off
– Used to initialize the system clock at boot

• System Clock
– The operating system maintains a software system clock
– High-resolution counter (e.g., TSC on x86, ARM Generic Timer)
– OS converts counter ticks to seconds/nanoseconds
– CPU driven by a fixed crystal clock (e.g., 38.4 MHz for a Core Ultra Series 3)

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 5

https://amzn.to/4kqUmF3

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The Epoch
Epoch: fixed reference point

• Timestamps count elapsed time since epoch

• Unix epoch: 1970-01-01 00:00:00 UTC

• Windows epoch: 1601-01-01 00:00:00 UTC
– Used by Windows FILETIME and NTFS, 100 ns intervals

• Why use an epoch?
– Avoids time zone and DST ambiguity
– Easy arithmetic and ordering: sorting, adding time, comparisons

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 6

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Clock Imperfections
• Quartz time imperfections
– Quartz oscillator frequency varies with tolerances, temperature, aging,

environment
– This makes time deviate from “true time”

• Typical PC quartz: about 50 ppm → about 4.32 s/day

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 7

Without sync, two machines drifting oppositely
can differ by almost 9 seconds after one day

ppm = parts per million
50 ppm=50×10−6

Seconds per day: 24×60×60=86,400 s
Daily drift: 86,400×50×10−6 = 4.32 s/day

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Offset & Drift

•Offset: current difference from reference:
– offset = our_time – utc_time

•Drift: rate error
– clock runs slightly fast/slow, often expressed in ppm

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 8

Offset is the how off our time is right now
Drift is why the offset grows after a sync

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Compensation
• Synchronize
– Contact a server to find what the time should be
– Now you have to set it

• Adjust
– Slew: Gradually adjust clock rate without time going backward
– Step: Jump clock for large offsets – but can break software assumptions
– Apply ongoing adjustment to the clock frequency to limit drift

• Repeat:
– Do this periodically to keep the offset minimal

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 9

See the Linux adjtimex system call

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Accuracy, Precision, and Resolution
• Accuracy
– Closeness to true UTC (absolute error)

• Precision
– Consistency (low jitter)
– A clock can be precise but offset from UTC

• Resolution
– Smallest representable increment
– High resolution does not imply accuracy/precision

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 10

Note that the NTP spec uses “precision” to refer to resolution.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Synchronization Algorithms

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 11

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Why Not Attach a GNSS Receiver to Each System?
• Not practical for most systems
– Antenna needs a view of the sky
– Receivers need to wait for a fix
– Accuracy gets worse near buildings, bridges, trees, …
– Deployment cost scales poorly (installation, cabling, antenna placement)
– Another dependency that can fail and can be attacked
– Power hungry: Android & iOS use NTP, even with a GPS

• Chip-scale atomic clock
– Nice, but around $2,000+
– Most computers won’t have this either
– And even if you have it, you still need to set it

to give you the right time

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 12

GNSS = Global Navigation Satellite System
 {GPS, GLONASS, Galileo, and BeiDou}

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

A Simple Request-Response Approach
Simplest synchronization technique
– Send a network request to obtain the time
– Set the time to the returned value

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 13

Does not account for network or processing latency

what’s the time?

3:42:19
client time

server

ping time.google.com

10.8 – 29.9 ms response
Average ping time = 17.52 ms

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Cristian’s Algorithm

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 14

Compensate for delays
– Request sent: T0

– Reply received: T1

– Timestamp from server: Tserver

– Assume network delays are symmetric

server

client
time

request reply

T0 T1

Tserver

Assume the server creates Tserver in the
middle of the time interval

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Cristian’s Algorithm

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 15

Client sets time to:

server

client
time

request reply

T0 T1

Tserver

estimated overhead
in each direction

=𝑇! − 𝑇"
2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Error bounds

server

client
time

request reply

T0 T1

Tserver

Tmin Tmin
Earliest time message arrives Latest time message leaves

uncertainty range = T1 - T0 - 2Tmin

16© 2022 Paul Krzyzanowski

accuracy of result =

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Cristian’s algorithm: example
• Send request at 5:08:15.100 (T0)

• Receive response at 5:08:15.900 (T1)

• Response contains 5:09:25.300 (Tserver)

Elapsed time is T1 -T0 = 5:08:15.900 - 5:08:15.100 = 800 ms

Best guess: timestamp was generated 400 ms ago

Set time to Tserver+ elapsed time = 5:09:25.300 + 0.400 = 5:09.25.700

17© 2022 Paul Krzyzanowski

Note:
 1,000 ms = 1 s
 1,000,000 µs = 1s

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Cristian’s algorithm: example
If best-case message time=200 ms

© 2022 Paul Krzyzanowski 18

server

client
time

request reply

T0 T1

Tserver

200 200

800

T0 = 5:08:15.100
T1 = 5:08:15.900
Ts = 5:09:25:300
Tmin = 200 ms

Error = ± !""#$""
% 	− 	200	 = 	± &""

% 	− 	200	 = 	 ±200	𝑚𝑠

• Total elapsed time is 800ms
• At LEAST 200ms was used by the network in each direction
• At LEAST 400ms will always be used in the network
•We have 800-400, or 400ms that we’re not sure about
• Since the timestamp is set to the middle, that’s ±200ms uncertainty

Note: errors are additive

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Network Time Protocol, NTP

Enable clients across Internet to be accurately synchronized to UTC despite
message delays
– Use statistical techniques to filter data and gauge quality of results

• Provide reliable service
– Survive lengthy losses of connectivity – redundant paths, redundant servers

• Provide scalable service
– Enable huge numbers of clients to synchronize frequently
– Offset effects of clock drift

• Provide protection against interference
– Authenticate source of data

19© 2022 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

NTP servers
Arranged in strata
– Stratum 0 = master clock

– Stratum 1: systems connected
directly to accurate time source

– Stratum 2: systems synchronized
from 1st stratum systems

– …

– Stratum 15: systems synchronized
from 14th stratum systems

Synchronization Subnet
20

2

3

4

1

0

© 2022 Paul Krzyzanowski

clock clock

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

NTP Messages

server

client
time

request reply

T1

T2

T4

T3

21© 2022 Paul Krzyzanowski

Round-trip network delay: Time offset:

𝑡 =
(𝑇#−𝑇!) + (𝑇$ − 𝑇%)

2
𝜕 = 𝑇% − 𝑇! − (𝑇$ − 𝑇#)

Collect many (θ, δ) pairs – prefer low delay and low jitter

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

NTP: Getting and Setting the Time
• Query multiple servers
– Reject outliers (faulty or bad time)

• Favor sources with lower jitter and dispersion
– Create a weighted average of the remaining offsets

• Discipline local clock
– Slew for small offsets (typically < 128 ms)
– Slew for large offsets (typically > 128 ms)

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 22

UDP, not
TCP!

Why?
• TCP delays transmission
• Processing overhead
• Retransmissions destroy

symmetric latency!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Precision Time Protocol (PTP)

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 23

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

More accurate clock synchronization
Sometimes NTP isn’t good enough
– 5G networks (phase sync)
– Industrial process control: synchronizing actuators/sensors
– Financial trading timestamps
– Power-grid synchrophasors (voltage, frequency, current, phase angle)
– Audio/video sync

• NTP issues
– NTP timestamps are captured after OS/network delays – vary with load

© 2022 Paul Krzyzanowski 24

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PTP: IEEE 1588 Precision Time Protocol
• Designed to synchronize clocks on a LAN to sub-microsecond precision
– Designed for LANs, not global: low jitter, low latency
– Timestamps generated at the network card to minimize delay and jitter
• Reduces jitter to nanosecond scale

• Determine master clock (called the Grandmaster)
– Use a Best Master Clock algorithm to determine which clock is most precise
– The Grandmaster sends periodic synchronization messages to others (slave devices)

• Two phases in synchronization
1. Offset correction
2. Delay correction

© 2022 Paul Krzyzanowski 25

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PTP: Choose the “best” clock - BMCA
Best Master Clock Algorithm

• Distributed election based on properties of clocks

• Criteria from highest to lowest:
– Priority 1 (admin-defined hint)
– Clock class
– Clock accuracy
– Clock variance: estimate of stability based on past syncs
– Priority 2 (admin-defined hint #2)
– Unique ID (tie-breaker)

26© 2022 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PTP: Send delay request

Slave needs to figure out the network delay. Send a delay request

Note the time it was sent

27© 2022 Paul Krzyzanowski

master

slave
time

time

T1

T2 T3

T4

Sync

de
lay

 re
qu

es
t

Offset + Delay = T2 - T1

PTP assumes network delays are symmetric!

Follow_Up

Follow_Up sends T1 because some hardware
cannot do it with the Sync message

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PTP: Receive delay response

Master marks the time of arrival and returns it in a delay response

Delay response = Delay - Offset = T4 – T3

28© 2022 Paul Krzyzanowski

master

slave
time

time

T3

T4

Sync

de
lay

 re
qu

es
t delay response

Offset + Delay = T2 - T1

Follow_Up

T1

T2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PTP: Slave computes offset

master

slave
time

time

master_slave_difference = T2 – T1 = delay + offset
 slave_master_difference = T4 – T3 = delay – offset
master_slave_difference – slave_master_difference = 2(offset)
(T2 – T1) – (T4 – T3) = T2 – T1 – T4 + T3 = 2(offset)

offset = (T2 – T1 – T4 + T3) ÷ 2

T3

T4

Sync

de
lay

 re
qu

es
t delay response

29© 2022 Paul Krzyzanowski

–

Delay + Offset = T2 - T1

Delay - Offset = T4 - T3

Follow_Up

T1

T2
The messages give us
2 equations with 2
unknowns: delay & offset

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PTP: Example

master

slave
time

time

offset = (T2 – T1 – T4 + T3) ÷ 2

T1

T2 T3

T4

sync

de
lay

 re
qu

es
t delay response

30© 2022 Paul Krzyzanowski

825 865
40 40 40

885 925 950 990

1060 1100 1120

20

1225
T2 – T1 = 1100-825 = 275 = delay + offset

T4 – T3 = 925-1120 = -195 = delay – offset

275 – (-195) = 470 = 2(offset)

offset = 470/2 = 235
Time is set to 1225 - offset
 = 1225 – 235 = 990

delay = 40
offset = 235
... but we don’t know this yet

Time at the master

1160 1185

when we receive last msg

T1 = 825
T2 = 1100
T3 = 1120
T4 = 925

Offset = 235
Set time to
 T4-offset = 990

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

White Rabbit

The Large Hadron Collider at CERN
– Timestamps data from thousands of detectors
– Needed higher precision than PTP

White Rabbit
– Extension to PTP
– Uses Synchronous Ethernet for ultra-low, predictable latency
– Sub-nanosecond accuracy

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 31

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

February 10, 2026 32CS 417 © 2026 Paul Krzyzanowski

