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Synchronization

Synchronization covers coordinating interactions among distributed

processes
Clocks Identify when something happened
Logical clocks Identify the sequence of events
Mutual exclusion Only one entity can do an operation at a time
Leader election Who coordinates activity? Who takes over?
Consistency/Agreement Does everyone have the same view of events?

All of these are easy in non-distributed systems
All of these have challenges in distributed systems
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Why do we care”?

Distributed systems don’t share a clock — each computer has its own

Clock Synchronization:

— Enable process to identify “now” consistent with other processes on other
systems ... and the real world

Wall time refers
Why do we care? to the actual,

_ Logging messages real-world time.
— Checking deadlines and cache expirations

— Applications where time-based billing or access control is needed

— Checking expiration on certificates, authentication tokens, web cookies
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UTC: Temps Universel Coordonné

The world’s time standard

Continuous time scale

UTC(k): Collection of
Atomic Clocks: — TAI
(national labs) International Atomic Time

Average of 450+ clocks UTC

Universal Coordinated Time

—

.
(national labs) Leap Second

JUT1 - UTC| < 0.9s
Continuous time International Earth Rotation .
and Reference Systems Service Leap seconds are announced by the International Earth

Rotation and Reference Systems Service (IERS)

Earth Rotation Observations UT1

Not uniform

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski



How Computers Keep Time

- Battery-Backed Real-Time Clock
— Quartz oscillator, typically 32,768 Hz
— Keeps time across power-off
— Used to initialize the system clock at boot

« System Clock
— The operating system maintains a software system clock https://amzn.to/4kqUmF3
— High-resolution counter (e.g., TSC on x86, ARM Generic Timer)
— OS converts counter ticks to seconds/nanoseconds
— CPU driven by a fixed crystal clock (e.g., 38.4 MHz for a Core Ultra Series 3)
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The Epoch

Epoch: fixed reference point
» Timestamps count elapsed time since epoch
* Unix epoch: 1970-01-01 00:00:00 UTC

* Windows epoch: 1601-01-01 00:00:00 UTC
— Used by Windows FILETIME and NTFS, 100 ns intervals

* Why use an epoch?
— Avoids time zone and DST ambiguity
— Easy arithmetic and ordering: sorting, adding time, comparisons
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Clock Imperfections

 Quartz time imperfections
— Quartz oscillator frequency varies with tolerances, temperature, aging,

environment
— This makes time deviate from “true time”

* Typical PC quartz: about 50 ppm — about 4.32 s/day

Without sync, two machines drifting oppositely
can differ by almost 9 seconds after one day

ppm = parts per million

50 ppm=50x10-°

Seconds per day: 24x60x60=86,400 s
Daily drift: 86,400x50x107¢ = 4.32 s/day
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Offset & Drift

» Offset: current difference from reference:
— offset = our time - utc_time

* Drift: rate error
— clock runs slightly fast/slow, often expressed in ppm

Offset is the how off our time is right now
Drift is why the offset grows after a sync
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» Synchronize
— Contact a server to find what the time should be
— Now you have to set it

* Adjust
— Slew: Gradually adjust clock rate without time going backward
— Step: Jump clock for large offsets — but can break software assumptions
— Apply ongoing adjustment to the clock frequency to limit drift

* Repeat:
— Do this periodically to keep the offset minimal

See the Linux adjtimex system call
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Accuracy, Precision, and Resolution

* Accuracy
— Closeness to true UTC (absolute error)

* Precision
— Consistency (low jitter)
— A clock can be precise but offset from UTC

* Resolution
— Smallest representable increment
— High resolution does not imply accuracy/precision

Note that the NTP spec uses “precision” to refer to resolution.
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Synchronization Algorithms
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Why Not Attach a GNSS Receiver to Each System?

* Not practical for most systems
— Antenna needs a view of the sky
— Receivers need to wait for a fix
— Accuracy gets worse near buildings, bridges, trees, ...
— Deployment cost scales poorly (installation, cabling, antenna placement)
— Another dependency that can fail and can be attacked
— Power hungry: Android & iOS use NTP, even with a GPS

GNSS = Global Navigation Satellite System
{GPS, GLONASS, Galileo, and BeiDou}

« Chip-scale atomic clock
— Nice, but around $2,000+
— Most computers won’t have this either

— And even if you have it, you still need to set it
to give you the right time
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A Simple Request-Response Approach

Simplest synchronization technique ping time.google.com
— Send a network request to obtain the time 10.8 - 29.9 ms response
— Set the time to the returned value Average ping time = 17.52 ms

what’s the time? - :
client i time
< server
3:42:19

Does not account for network or processing latency
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Cristian’s Algorithm

Compensate for delays

— Request sent: T

— Reply received: T,

— Timestamp from server: Teeper

— Assume network delays are symmetric

T

¢ server
server >
reques/ \eply
client >
T T, time

Assume the server creates Tgoner in the
middle of the time interval
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Cristian’s Algorithm

Client sets time to: .

¢ server

server >
reques/ reply
>

client X X :
TO Y Y T, time
T1 - TO — estimated overhead
2 in each direction
7 = 7; — 7:)
new server 2
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¢ server
server >
reCIues eply
client : :
To v — T,
Tmin Tmin

Earliest time message arrives Latest time message leaves

uncertainty range = T, - To- 2T s

7. =T
accuracy of result = = ’2 °o_T

min
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Cristian’s algorithm: example

» Send request at 5:08:15.100 (7)) Not
ote.

. 1,000 ms = 1
» Receive response at 5:08:15.900 (T,) 1,000,?030 us i 1s

* Response contains 5:09:25.300 (Tserver)
Elapsed timeis T;-Tp = 5:08:15.900 - 5:08:15.100 = 800 ms

Best guess: timestamp was generated 400 ms ago

Set time to Tyene+ elapsed time = 5:09:25.300 + 0.400 = 5:09.25.700
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Cristian’s algorithm: example

If best-case message time=200 ms

Tserver

L T, = 5:08:15.100

T;=5:08:15.900
T, =5:09:25:300
T min=200 ms

* Total elapsed time is 800ms
* At LEAST 200ms was used by the network in each direction
* At LEAST 400ms will always be used in the network
» \We have 800-400, or 400ms that we’re not sure about
» Since the timestamp is set to the middle, that’s +200ms uncertainty

900-100

Error = + — 200 = iST 200 = +200 ms

Note: errors are additive
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Network Time Protocol, NTP

Enable clients across Internet to be accurately synchronized to UTC despite
message delays

— Use statistical techniques to filter data and gauge quality of results

* Provide reliable service
— Survive lengthy losses of connectivity — redundant paths, redundant servers

 Provide scalable service
— Enable huge numbers of clients to synchronize frequently
— Offset effects of clock drift

 Provide protection against interference
— Authenticate source of data
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: 0

Arranged in strata

— Stratum 0 = master clock 1

— Stratum 1: systems connected 2
directly to accurate time source

— Stratum 2: systems synchronized 3
from 1st stratum systems

— 4

— Stratum 15: systems synchronized
from 14t stratum systems

Synchronization Subnet
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NTP Messages

T, T,
server >
reques/ \‘rep/y
client >
'|'1 T4 time
Round-trip network delay: Time offset:

_ (T,—T1) + (T3 — Ta)
2

0= (T, —T)— (T3 —T3) t

Collect many (6, 0) pairs — prefer low delay and low jitter
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NTP: Getting and Setting the Time

* Query multiple servers
— Reject outliers (faulty or bad time)

UDP, not

* Favor sources with lower jitter and dispersion TCP!
— Create a weighted average of the remaining offsets

* Discipline local clock

— Slew for small offsets (typically < 128 ms)

. Why?
— Slew for large offsets (typically > 128 ms)

» TCP delays transmission

* Processing overhead

» Retransmissions destroy
symmetric latency!
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Precision Time Protocol (PTP)
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More accurate clock synchronization

Sometimes NTP isn’t good enough
— 5G networks (phase sync)
— Industrial process control: synchronizing actuators/sensors
— Financial trading timestamps
— Power-grid synchrophasors (voltage, frequency, current, phase angle)
— Audio/video sync

* NTP issues
— NTP timestamps are captured after OS/network delays — vary with load
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PTP: IEEE 1588 Precision Time Protocol

 Designed to synchronize clocks on a LAN to sub-microsecond precision
— Designed for LANs, not global: low jitter, low latency

— Timestamps generated at the network card to minimize delay and jitter
* Reduces jitter to nanosecond scale

» Determine master clock (called the Grandmaster)
— Use a Best Master Clock algorithm to determine which clock is most precise
— The Grandmaster sends periodic synchronization messages to others (slave devices)

* Two phases in synchronization
1. Offset correction
2. Delay correction
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PTP: Choose the “best” clock - BMCA

Best Master Clock Algorithm

* Distributed election based on properties of clocks

* Criteria from highest to lowest:
— Priority 1 (admin-defined hint)
— Clock class
— Clock accuracy
— Clock variance: estimate of stability based on past syncs
— Priority 2 (admin-defined hint #2)
— Unique ID (tie-breaker)
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PTP: Send delay request

Follow_Up sends T4 because some hardware

T T cannot do it with the Sync message
master ' 1 4 -
time
&
o\ Offset + Delay =T, - T,

A\

&
slave S
T3 time

Slave needs to figure out the network delay. Send a delay request

Note the time it was sent ,
PTP assumes network delays are symmetric!
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PTP: Receive delay response

T
master "1 S
time
Offset + Delay =T, - T,
slave

time

Master marks the time of arrival and returns it in a delay response

Delay response = Delay - Offset =T, — T3
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PTP: Slave computes offset

master T7

>
time

Delay + Offset =T, - T,
Delay - Offset =T, - T,

slave

N
-

time

The messages give us )
2 equations with 2 master_slave_difference = T, — T; = delay + offset

unknowns: delay & offset — slave_master_difference = T, - T3 = delay — offset

master_slave_difference — slave_master_difference = 2(offset)
(T2 - T1) - (T4 - T3) = T2 - T1 - T4 + T3 = 2(Offset)
OffSGt=(T2—T1—T4+T3)+2
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PTP: Example

82|5 865

925950 990 *— Time at the master

master | T4 >
. time
T,=825 i
T2 = 1 1 00 : delay = 40
| offset = 235
$3 = ;;go : ... but we don’t know this yet
4= i
! tim:e
Offset = 235 1060 1100 1120 1160 1185 1225
Set time to T>,—T; =1100-825 = 275 = delay + offset

T4-offset = 990

Offsel‘=(T2—T1—T4+T3)+2

T4— T3 =925-1120 = -195 = delay - offset
275 - (-195) = 470 = 2(offset)
offset = 470/2 = 235

Time is set to 1225 - offset

=1225-235 =990
when we receive last msg
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White Rabbit

The Large Hadron Collider at CERN

— Timestamps data from thousands of detectors
— Needed higher precision than PTP

White Rabbit

— Extension to PTP

— Uses Synchronous Ethernet for ultra-low, predictable latency
— Sub-nanosecond accuracy
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The End
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