CS 417 - DISTRIBUTED SYSTEMS

Week 3: Synchronization
Part 1: Clock Synchronization

© 2026 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.

Synchronization

Synchronization covers coordinating interactions among distributed

processes
Clocks Identify when something happened
Logical clocks Identify the sequence of events
Mutual exclusion Only one entity can do an operation at a time
Leader election Who coordinates activity? Who takes over?
Consistency/Agreement Does everyone have the same view of events?

All of these are easy in non-distributed systems
All of these have challenges in distributed systems

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 2

Why do we care”?

Distributed systems don’t share a clock — each computer has its own

Clock Synchronization:

— Enable process to identify “now” consistent with other processes on other
systems ... and the real world

Wall time refers
Why do we care? to the actual,

_ Logging messages real-world time.
— Checking deadlines and cache expirations

— Applications where time-based billing or access control is needed

— Checking expiration on certificates, authentication tokens, web cookies

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 3

UTC: Temps Universel Coordonné

The world’s time standard

Continuous time scale

UTC(k): Collection of
Atomic Clocks: — TAI
(national labs) International Atomic Time

Average of 450+ clocks UTC

Universal Coordinated Time

—

.
(national labs) Leap Second

JUT1 - UTC| < 0.9s
Continuous time International Earth Rotation .
and Reference Systems Service Leap seconds are announced by the International Earth

Rotation and Reference Systems Service (IERS)

Earth Rotation Observations UT1

Not uniform

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski

How Computers Keep Time

- Battery-Backed Real-Time Clock
— Quartz oscillator, typically 32,768 Hz
— Keeps time across power-off
— Used to initialize the system clock at boot

« System Clock
— The operating system maintains a software system clock https://amzn.to/4kqUmF3
— High-resolution counter (e.g., TSC on x86, ARM Generic Timer)
— OS converts counter ticks to seconds/nanoseconds
— CPU driven by a fixed crystal clock (e.g., 38.4 MHz for a Core Ultra Series 3)

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 5

The Epoch

Epoch: fixed reference point
» Timestamps count elapsed time since epoch
* Unix epoch: 1970-01-01 00:00:00 UTC

* Windows epoch: 1601-01-01 00:00:00 UTC
— Used by Windows FILETIME and NTFS, 100 ns intervals

* Why use an epoch?
— Avoids time zone and DST ambiguity
— Easy arithmetic and ordering: sorting, adding time, comparisons

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 6

Clock Imperfections

 Quartz time imperfections
— Quartz oscillator frequency varies with tolerances, temperature, aging,

environment
— This makes time deviate from “true time”

* Typical PC quartz: about 50 ppm — about 4.32 s/day

Without sync, two machines drifting oppositely
can differ by almost 9 seconds after one day

ppm = parts per million

50 ppm=50x10-°

Seconds per day: 24x60x60=86,400 s
Daily drift: 86,400x50x107¢ = 4.32 s/day

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski

Offset & Drift

» Offset: current difference from reference:
— offset = our time - utc_time

* Drift: rate error
— clock runs slightly fast/slow, often expressed in ppm

Offset is the how off our time is right now
Drift is why the offset grows after a sync

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 8

» Synchronize
— Contact a server to find what the time should be
— Now you have to set it

* Adjust
— Slew: Gradually adjust clock rate without time going backward
— Step: Jump clock for large offsets — but can break software assumptions
— Apply ongoing adjustment to the clock frequency to limit drift

* Repeat:
— Do this periodically to keep the offset minimal

See the Linux adjtimex system call

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 9

Accuracy, Precision, and Resolution

* Accuracy
— Closeness to true UTC (absolute error)

* Precision
— Consistency (low jitter)
— A clock can be precise but offset from UTC

* Resolution
— Smallest representable increment
— High resolution does not imply accuracy/precision

Note that the NTP spec uses “precision” to refer to resolution.

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 10

Synchronization Algorithms

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski

11

Why Not Attach a GNSS Receiver to Each System?

* Not practical for most systems
— Antenna needs a view of the sky
— Receivers need to wait for a fix
— Accuracy gets worse near buildings, bridges, trees, ...
— Deployment cost scales poorly (installation, cabling, antenna placement)
— Another dependency that can fail and can be attacked
— Power hungry: Android & iOS use NTP, even with a GPS

GNSS = Global Navigation Satellite System
{GPS, GLONASS, Galileo, and BeiDou}

« Chip-scale atomic clock
— Nice, but around $2,000+
— Most computers won’t have this either

— And even if you have it, you still need to set it
to give you the right time

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 12

A Simple Request-Response Approach

Simplest synchronization technique ping time.google.com
— Send a network request to obtain the time 10.8 - 29.9 ms response
— Set the time to the returned value Average ping time = 17.52 ms

what’s the time? - :
client i time
< server
3:42:19

Does not account for network or processing latency

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 13

Cristian’s Algorithm

Compensate for delays

— Request sent: T

— Reply received: T,

— Timestamp from server: Teeper

— Assume network delays are symmetric

T

¢ server
server >
reques/ \eply
client >
T T, time

Assume the server creates Tgoner in the
middle of the time interval

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 14

Cristian’s Algorithm

Client sets time to: .

¢ server

server >
reques/ reply
>

client X X :
TO Y Y T, time
T1 - TO — estimated overhead
2 in each direction
7 = 7; — 7:)
new server 2

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 15

¢ server
server >
reCIues eply
client : :
To v — T,
Tmin Tmin

Earliest time message arrives Latest time message leaves

uncertainty range = T, - To- 2T s

7. =T
accuracy of result = = ’2 °o_T

min

© 2022 Paul Krzyzanowski 16

Cristian’s algorithm: example

» Send request at 5:08:15.100 (7)) Not
ote.

. 1,000 ms = 1
» Receive response at 5:08:15.900 (T,) 1,000,?030 us i 1s

* Response contains 5:09:25.300 (Tserver)
Elapsed timeis T;-Tp = 5:08:15.900 - 5:08:15.100 = 800 ms

Best guess: timestamp was generated 400 ms ago

Set time to Tyene+ elapsed time = 5:09:25.300 + 0.400 = 5:09.25.700

© 2022 Paul Krzyzanowski 17

Cristian’s algorithm: example

If best-case message time=200 ms

Tserver

L T, = 5:08:15.100

T;=5:08:15.900
T, =5:09:25:300
T min=200 ms

* Total elapsed time is 800ms
* At LEAST 200ms was used by the network in each direction
* At LEAST 400ms will always be used in the network
» \We have 800-400, or 400ms that we’re not sure about
» Since the timestamp is set to the middle, that’s +200ms uncertainty

900-100

Error = + — 200 = iST 200 = +200 ms

Note: errors are additive

© 2022 Paul Krzyzanowski 18

Network Time Protocol, NTP

Enable clients across Internet to be accurately synchronized to UTC despite
message delays

— Use statistical techniques to filter data and gauge quality of results

* Provide reliable service
— Survive lengthy losses of connectivity — redundant paths, redundant servers

 Provide scalable service
— Enable huge numbers of clients to synchronize frequently
— Offset effects of clock drift

 Provide protection against interference
— Authenticate source of data

© 2022 Paul Krzyzanowski 19

: 0

Arranged in strata

— Stratum 0 = master clock 1

— Stratum 1: systems connected 2
directly to accurate time source

— Stratum 2: systems synchronized 3
from 1st stratum systems

— 4

— Stratum 15: systems synchronized
from 14t stratum systems

Synchronization Subnet

© 2022 Paul Krzyzanowski 20

NTP Messages

T, T,
server >
reques/ \‘rep/y
client >
'|'1 T4 time
Round-trip network delay: Time offset:

_ (T,—T1) + (T3 — Ta)
2

0= (T, —T)— (T3 —T3) t

Collect many (6, 0) pairs — prefer low delay and low jitter

© 2022 Paul Krzyzanowski 21

NTP: Getting and Setting the Time

* Query multiple servers
— Reject outliers (faulty or bad time)

UDP, not

* Favor sources with lower jitter and dispersion TCP!
— Create a weighted average of the remaining offsets

* Discipline local clock

— Slew for small offsets (typically < 128 ms)

. Why?
— Slew for large offsets (typically > 128 ms)

» TCP delays transmission

* Processing overhead

» Retransmissions destroy
symmetric latency!

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski

22

Precision Time Protocol (PTP)

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski

23

More accurate clock synchronization

Sometimes NTP isn’t good enough
— 5G networks (phase sync)
— Industrial process control: synchronizing actuators/sensors
— Financial trading timestamps
— Power-grid synchrophasors (voltage, frequency, current, phase angle)
— Audio/video sync

* NTP issues
— NTP timestamps are captured after OS/network delays — vary with load

© 2022 Paul Krzyzanowski 24

PTP: IEEE 1588 Precision Time Protocol

 Designed to synchronize clocks on a LAN to sub-microsecond precision
— Designed for LANs, not global: low jitter, low latency

— Timestamps generated at the network card to minimize delay and jitter
* Reduces jitter to nanosecond scale

» Determine master clock (called the Grandmaster)
— Use a Best Master Clock algorithm to determine which clock is most precise
— The Grandmaster sends periodic synchronization messages to others (slave devices)

* Two phases in synchronization
1. Offset correction
2. Delay correction

© 2022 Paul Krzyzanowski 25

PTP: Choose the “best” clock - BMCA

Best Master Clock Algorithm

* Distributed election based on properties of clocks

* Criteria from highest to lowest:
— Priority 1 (admin-defined hint)
— Clock class
— Clock accuracy
— Clock variance: estimate of stability based on past syncs
— Priority 2 (admin-defined hint #2)
— Unique ID (tie-breaker)

© 2022 Paul Krzyzanowski 26

PTP: Send delay request

Follow_Up sends T4 because some hardware

T T cannot do it with the Sync message
master ' 1 4 -
time
&
o\ Offset + Delay =T, - T,

A\

&
slave S
T3 time

Slave needs to figure out the network delay. Send a delay request

Note the time it was sent ,
PTP assumes network delays are symmetric!

© 2022 Paul Krzyzanowski 27

PTP: Receive delay response

T
master "1 S
time
Offset + Delay =T, - T,
slave

time

Master marks the time of arrival and returns it in a delay response

Delay response = Delay - Offset =T, — T3

© 2022 Paul Krzyzanowski 28

PTP: Slave computes offset

master T7

>
time

Delay + Offset =T, - T,
Delay - Offset =T, - T,

slave

N
-

time

The messages give us)
2 equations with 2 master_slave_difference = T, — T; = delay + offset

unknowns: delay & offset — slave_master_difference = T, - T3 = delay — offset

master_slave_difference — slave_master_difference = 2(offset)
(T2 - T1) - (T4 - T3) = T2 - T1 - T4 + T3 = 2(Offset)
OffSGt=(T2—T1—T4+T3)+2

© 2022 Paul Krzyzanowski 29

PTP: Example

82|5 865

925950 990 *— Time at the master

master | T4 >
. time
T,=825 i
T2 = 1 1 00 : delay = 40
| offset = 235
$3 = ;;go : ... but we don’t know this yet
4= i
! tim:e
Offset = 235 1060 1100 1120 1160 1185 1225
Set time to T>,—T; =1100-825 = 275 = delay + offset

T4-offset = 990

Offsel‘=(T2—T1—T4+T3)+2

T4— T3 =925-1120 = -195 = delay - offset
275 - (-195) = 470 = 2(offset)
offset = 470/2 = 235

Time is set to 1225 - offset

=1225-235 =990
when we receive last msg

© 2022 Paul Krzyzanowski 30

White Rabbit

The Large Hadron Collider at CERN

— Timestamps data from thousands of detectors
— Needed higher precision than PTP

White Rabbit

— Extension to PTP

— Uses Synchronous Ethernet for ultra-low, predictable latency
— Sub-nanosecond accuracy

February 10, 2026 CS 417 © 2026 Paul Krzyzanowski 31

The End

February 10, 2026

CS 417 © 2026 Paul Krzyzanowski

32

