
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 3: Hybrid Logical Clocks
 Discussion

© 2026 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hybrid Logical Clocks
Goal of Hybrid Logical Clocks:
Combine the advantages of 
 physical clocks (tracking real time)
 with logical clocks (track causality)

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 2

Weaknesses of Physical clocks
• Time may drift or jump backward
• Lack of perfect synchronization can 

hide the order of events
• Clock resolution can hide the order 

of events

Weakness of Logical clocks
• Lamport clocks track causality

(A happened before B), but have no 
relation to real-world time



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Benefits of Hybrid Logical Clocks
• Capture causal relationships

If a→b (event a caused event b), then the timestamp of event a is less than b

• Keep proximity to physical time
Keep the logical clock value close to physical time (NTP), allowing it to be used for time-based queries 
in databases

• Improve data consistency at scale
HLCs provide total ordering of events, which is crucial for distributed databases to ensure data 
consistency without relying on perfectly synchronized clocks

• Resilient to jumps and drift
The logical clock handles ordering even when physical clocks are inaccurate or jump backwards

• Low overhead solution
Unlike vector clocks, the size is a timestamp + a small counter

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 3



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hybrid Logical Clocks (HLC) Structure
• Assumptions
– Every system has a physical clock , P, that is coarsely synchronized to the real time 

(via NTP, for example)
– Every process will maintain an HLC = (L, C) 
• L (logical clock): a timestamp that will be close to the physical clock
• C: a small counter

– Events are timestamped with the HLC
– Every message contains the HLC

• Comparing timestamps: HLC1 < HLC2 if
– HLC1.L < HLC2.L
– or HLC1.L == HLC2.L and HLC1.C < HLC2.C

© 2022 Paul Krzyzanowski 4

HLC = (L, C)

Logical clock
(close to physical)

Counter
(Sequence within L)



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example: Local Events
HLC = (L, C)
L will never be smaller than the physical timestamp

1. If the physical time advances, set L to the new time

2. If it doesn’t, increment the counter to keep event sequences consistent

• Suppose L=1000, C=5

• Steps:
1. Read physical time P
2. if (P > L)

 L = P
 C = 0

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 5

P = 1001, HLC = (1000, 0)

New event timestamp:
Is (P > L)?   Yes.

– Set L = 1001
– Set C = 0

New timestamp: HLC = (1001, 0)



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example: Receive message with larger timestamp
We need to preserve the relationship a→b where a=msg sent, b=msg received
L should never be smaller than the received timestamp

1. If the physical timestamp is greater than any L, new time = (P, 0)

2. If the L in the received timestamp is greater:
a. Set L = received L
b. Set C = received C + 1

3. If L in the received message is the 
same, C should reflect the order
– Set C = max(C, received C) + 1

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 6

P = 1001, HLC = (1000, 0)
Receive (1005, 4)

New event timestamp:
Is (P > L and P > Lmsg)?  No.
Is (Lmsg > L)? Yes.

– Set L = 1005
– Set C = 4+1

New timestamp: HLC = (1005, 5)



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example 

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 7

Here’s an example of how HLCs can look for a set of events.
• We have two processes, P1 and P2, that generate events and exchange messages.
• Each event will be shown with its (L, C) timestamp. 
• The vertical bars represent the ticking (and resolution) of the physical clock on each system.
• Physical clocks are closely synchronized but not perfectly, since they drift.

P1

P2

1000 1001 1002 1003 1004

1000 1001 1002 1003 1004 1005

1000, 
0

1000, 
1

1000, 
2

1000, 
0

1000, 
1

1001, 
0

1001, 
1

1002, 
0

1002, 
1

1002, 
2

1002, 
3

1003, 
0

1003, 
0

1003, 
1

1003, 
2

1004, 
0

1004, 
2

1004, 
1

1004, 
3

C increments if the 
clock didn’t change

New clock 
value; reset C 

Same L; 
increment C

Received higher 
L; update ours



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Who uses HLCs?
• HLCs are useful for applications that need wall time (real-world time) 

… AND a Lamport-style causality guarantee
… without the space cost of adding vector clocks or using specialized hardware to 
ensure ultra-synchronized, high-resolution clocks

• Main applications are:
– Database versioning, time-to-live values, time-based queries

• Some places where it’s used:
– CockroachDB: transaction timestamps, object versions, ordering
– YugabyteDB: transaction timestamps, coordination
– MongoDB: consistency, queries

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 8



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

When to use which clocks?
• Cristian/NTP:

Keep system clocks close enough to UTC for timeouts, logs, leases, and 
expirations.

• Lamport
reserve causal ordering cheaply, but cannot detect concurrency.

• Vector clocks
Detect concurrency, good for conflict detection, but can get large.

• HLC
Practical middle ground: causal ordering plus near-physical timestamps.
Preserves causality but does NOT prove concurrency.

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 9



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

February 11, 2026 10CS 417 © 2026 Paul Krzyzanowski


