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Hybrid Logical Clocks
Goal of Hybrid Logical Clocks:
Combine the advantages of 
 physical clocks (tracking real time)
 with logical clocks (track causality)
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Weaknesses of Physical clocks
• Time may drift or jump backward
• Lack of perfect synchronization can 

hide the order of events
• Clock resolution can hide the order 

of events

Weakness of Logical clocks
• Lamport clocks track causality

(A happened before B), but have no 
relation to real-world time
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Benefits of Hybrid Logical Clocks
• Capture causal relationships

If a→b (event a caused event b), then the timestamp of event a is less than b

• Keep proximity to physical time
Keep the logical clock value close to physical time (NTP), allowing it to be used for time-based queries 
in databases

• Improve data consistency at scale
HLCs provide total ordering of events, which is crucial for distributed databases to ensure data 
consistency without relying on perfectly synchronized clocks

• Resilient to jumps and drift
The logical clock handles ordering even when physical clocks are inaccurate or jump backwards

• Low overhead solution
Unlike vector clocks, the size is a timestamp + a small counter
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Hybrid Logical Clocks (HLC) Structure
• Assumptions
– Every system has a physical clock , P, that is coarsely synchronized to the real time 

(via NTP, for example)
– Every process will maintain an HLC = (L, C) 
• L (logical clock): a timestamp that will be close to the physical clock
• C: a small counter

– Events are timestamped with the HLC
– Every message contains the HLC

• Comparing timestamps: HLC1 < HLC2 if
– HLC1.L < HLC2.L
– or HLC1.L == HLC2.L and HLC1.C < HLC2.C
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HLC = (L, C)

Logical clock
(close to physical)

Counter
(Sequence within L)
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Example: Local Events
HLC = (L, C)
L will never be smaller than the physical timestamp

1. If the physical time advances, set L to the new time

2. If it doesn’t, increment the counter to keep event sequences consistent

• Suppose L=1000, C=5

• Steps:
1. Read physical time P
2. if (P > L)

 L = P
 C = 0
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P = 1001, HLC = (1000, 0)

New event timestamp:
Is (P > L)?   Yes.

– Set L = 1001
– Set C = 0

New timestamp: HLC = (1001, 0)
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Example: Receive message with larger timestamp
We need to preserve the relationship a→b where a=msg sent, b=msg received
L should never be smaller than the received timestamp

1. If the physical timestamp is greater than any L, new time = (P, 0)

2. If the L in the received timestamp is greater:
a. Set L = received L
b. Set C = received C + 1

3. If L in the received message is the 
same, C should reflect the order
– Set C = max(C, received C) + 1
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P = 1001, HLC = (1000, 0)
Receive (1005, 4)

New event timestamp:
Is (P > L and P > Lmsg)?  No.
Is (Lmsg > L)? Yes.

– Set L = 1005
– Set C = 4+1

New timestamp: HLC = (1005, 5)
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Example 
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Here’s an example of how HLCs can look for a set of events.
• We have two processes, P1 and P2, that generate events and exchange messages.
• Each event will be shown with its (L, C) timestamp. 
• The vertical bars represent the ticking (and resolution) of the physical clock on each system.
• Physical clocks are closely synchronized but not perfectly, since they drift.
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Who uses HLCs?
• HLCs are useful for applications that need wall time (real-world time) 

… AND a Lamport-style causality guarantee
… without the space cost of adding vector clocks or using specialized hardware to 
ensure ultra-synchronized, high-resolution clocks

• Main applications are:
– Database versioning, time-to-live values, time-based queries

• Some places where it’s used:
– CockroachDB: transaction timestamps, object versions, ordering
– YugabyteDB: transaction timestamps, coordination
– MongoDB: consistency, queries
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When to use which clocks?
• Cristian/NTP:

Keep system clocks close enough to UTC for timeouts, logs, leases, and 
expirations.

• Lamport
reserve causal ordering cheaply, but cannot detect concurrency.

• Vector clocks
Detect concurrency, good for conflict detection, but can get large.

• HLC
Practical middle ground: causal ordering plus near-physical timestamps.
Preserves causality but does NOT prove concurrency.
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The End
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