CS 417 - DISTRIBUTED SYSTEMS

Week 3: Hybrid Logical Clocks

Discussion

© 2026 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.

Hybrid Logical Clocks

Goal of Hybrid Logical Clocks:

Combine the advantages of
physical clocks (tracking real time)
with logical clocks (track causality)

Weaknesses of Physical clocks Weakness of Logical clocks

» Time may drift or jump backward « Lamport clocks track causality

- Lack of perfect synchronization can (A happened before B), but have no
hide the order of events relation to real-world time

* (Clock resolution can hide the order
of events

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 2

Benefits of Hybrid Logical Clocks

« Capture causal relationships
If a—b (event a caused event b), then the timestamp of event a is less than b

» Keep proximity to physical time
Keep the logical clock value close to physical time (NTP), allowing it to be used for time-based queries
in databases

* Improve data consistency at scale

HLCs provide total ordering of events, which is crucial for distributed databases to ensure data
consistency without relying on perfectly synchronized clocks

* Resilient to jumps and drift
The logical clock handles ordering even when physical clocks are inaccurate or jump backwards

* Low overhead solution
Unlike vector clocks, the size is a timestamp + a small counter

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 3

Hybrid Logical Clocks (HLC) Structure

* Assumptions

— Every system has a physical clock , P, that is coarsely synchronized to the real time
(via NTP, for example)

— Every process will maintain an HLC = (L, C)

* L (logical clock): a timestamp that will be close to the physical clock

« C: asmall counter
— Events are timestamped with the HLC HLC = (L, C)
— Every message contains the HLC

» Comparing timestamps: HLC, < HLGC, if (Clggg‘foagﬁ';’;iﬁab

— HLC4.L < HLC,.L

— or HLC,4.L == HLC,.L and HLC4.C < HLC,.C Counter
(Sequence within L)

© 2022 Paul Krzyzanowski 4

Example: Local Events

HLC = (L, O)
L will never be smaller than the physical timestamp

1. If the physical time advances, set L to the new time

2. If it doesn’t, increment the counter to keep event sequences consistent

* Suppose L=1000, C=5
P =1001, HLC = (1000, 0)

- Steps:
1. Read physical time P New event timestamp:
2. if(P>L) Is (P >L)? Yes.
L=P — Set L =1001
C=0 - SetC=0

New timestamp: HLC = (1001, 0)

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 5

Example: Receive message with larger timestamp

We need to preserve the relationship a—b where a=msg sent, b=msg received
L should never be smaller than the received timestamp

1. If the physical timestamp is greater than any L, new time = (P, 0)

2. If the L in the received timestamp is greater:

a. Set L =received L P = 1001, HLC = (1 000, 0)
b. Set C =received C + 1 Receive (1005, 4)

3. IfLinthe received message is the oy event timestamp:
same, C should reflect the order Is(P>Land P>Ly)? No.
— Set C = max(C, received C) + 1 Is (Lnsg > L)? Yes.
— SetL =1005
— Set C =4+1
New timestamp: HLC = (1005, 5)

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski

Example

Here’s an example of how HLCs can look for a set of events.
+ We have two processes, Py and P,, that generate events and exchange messages.
» Each event will be shown with its (L, C) timestamp.
» The vertical bars represent the ticking (and resolution) of the physical clock on each system.

* Physical clocks are closely synchronized but not perfectly, since they drift.

1000 1001

C increments if the
clock didn’t change

1000 1001

New clock
value; reset C

February 11, 2026

1002 1003

Same L;
increment C

CS 417 © 2026 Paul Krzyzanowski

1003

Received higher
L; update ours

v

Who uses HLCs?

« HLCs are useful for applications that need wall time (real-world time)
... AND a Lamport-style causality guarantee

... without the space cost of adding vector clocks or using specialized hardware to
ensure ultra-synchronized, high-resolution clocks

» Main applications are:
— Database versioning, time-to-live values, time-based queries

« Some places where it’s used:

— CockroachDB: transaction timestamps, object versions, ordering
— YugabyteDB: transaction timestamps, coordination
— MongoDB: consistency, queries

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 8

When to use which clocks?

* Cristian/NTP:
Keep system clocks close enough to UTC for timeouts, logs, leases, and
expirations.

 Lamport
reserve causal ordering cheaply, but cannot detect concurrency.

 Vector clocks
Detect concurrency, good for conflict detection, but can get large.

* HLC
Practical middle ground: causal ordering plus near-physical timestamps.
Preserves causality but does NOT prove concurrency.

February 11, 2026 CS 417 © 2026 Paul Krzyzanowski 9

The End

February 11, 2026

CS 417 © 2026 Paul Krzyzanowski

10

