CS 417 - DISTRIBUTED SYSTEMS

Week 4: Part3 S J
Virtual Synchrony

'

P A ©2023 Paul Krzyzanowski. No part of this

PaU| KrzyzanOWSkl ’ /N e 4 content may be reproduced orreposted in

Y, ) whole or in partin any manner withoutthe
/\ &% : permission ofthe copyright owner.



Replication

We want scalability and high availability in distributed systems

» High availability
Components can break — replicated functioning components will take place of ones that stop working

« Scalability
In many cases, we achieve this by load balancing requests among replicated services

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 2



State machine replication

We can model a system as a sequence of states

— An input produces deterministic output and a transition to a new state

+ “State” represents data storage or computing operations that we want to replicate

— To ensure correctexecution & high availability

« Each process mustsee & process the same inputs in the same sequence

Replica 1

Replica 2

October 7, 2023

State

State

wot 2

vt ?
State State
2 N
ot ?
State , State
2 N

CS 417 © 2023 Paul Krzyzanowski

ot ©

State
N+1

State
N+1




State machine replication

» Replicas = group of machines = process group

— Load balancing (queries can go to any replica)
— Fault tolerance (OK if some dies; they all do the same thing)

 Important for replicas to stay consistent
— Need to receive the same messages [usually] in the same order

* What if one of the replicas dies?

— Then it will not get updates

— When it comes up, it will be in a state prior to the updates = stale state
* Notgood — getting new updates will putitin an inconsistent state

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 4



Faults & Delays

» Faults may be
— Falil-silent (fail-stop)
— Byzantine (corrupted data)

* Network transmission may be asynchronous vs. synchronous

Synchronous = system responds to a message in a bounded time

Asynchronous = a system that doesn’t
— E.g., IP packet versus serial port transmission

With Internet communication, we assume
— An asynchronous network

— Non-Byzantine faults
(assume integrity checks and, if needed, cryptographic authentication & integrity checks)

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 5



Agreement in faulty systems

Two armies problem*
— Good processors
— Asynchronous & unreliable communication lines
— Challenge: agree on an attack — be certain both sides have the message
= Infinite acknowledgment problem

Let’s attack at dawn

OK

A

| got your “OK”

| got your “I got your ‘OK”

A

| got your [l got your “I got your ‘OK”]

*Also called the Two Generals Problem
October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 6



Agreement in faulty systems

The two armies problem demonstrates it is impossible to achieve consensus with
asynchronous unreliable communication lines

— There is no way to check whether a process failed or is alive but the communications
failed (or it's not communicating quickly enough)

We must live with this
» We cannot reliably detect a failed process

« But we can propagate our knowledge that we think it failed
— Take it out of the group

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski



Virtual Synchrony: Definition

Avirtually synchronous system is one where

1. Even though messages are sent asynchronously, they appear to be processed
in a synchronous mannetr.

2. The system provides guarantees about the delivery order of messages.

3. Nodes in the system have a consistent view of the group membership (i.e.,
which nodes are part of the system).

Even though the underlying communication between nodes is asynchronous
(messages can be delayed, reordered, or lost), the system provides an abstraction
layer that gives the illusion of reliable, synchronous operation.

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 8



Virtual Synchrony

Virtual Synchrony —implements atomic multicast

A message must be delivered to every group member
... even if the sender dies

Programmers have the abstraction that
message delivery is synchronous & atomic

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 9



Group View = set of processes currently in the group
« A multicast message is associated with a group view

 Every process in the group should have the same knowledge
of the group view

View change
— When a process joins or leaves the group, the group view changes
— View change: Multicast message announcing the joining or leaving of a process

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 10



Virtual Synchrony

What if a message is being multicast to a group G during a view change?
— Two multicast messages in transit at the same time:

) Recall the distinction between
* view change (vc)

receiving amessage and
* message (m) delivering it to the application

* Need to guarantee
— m is delivered to all processes inG before any processis delivered the vc
— ORm is delivered all processesin G after every process is delivered the vc
— OR else m is not delivered to any processin G

« Reliable multicasts with this property are virtually synchronous
— All multicasts must take place between view changes
— Aview changeis a barrier

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 11



View Changes & Virtual Synchrony

Time O 10 20 30 40 50 60 70

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 12



Virtual Synchrony: implementation example

Isis: fault-tolerant distributed system offering virtual synchrony

» Achieves high update & membership event rates
— Hundreds of thousands of events/second on commodity hardware as of 2009

« Applications can create & join groups & send multicasts
— Provides distributed consistencyin the event of failure
— Applications will see the same events in an equivalent order
— Group members can update group state in a consistent, fault-tolerant manner

Who uses it?
» Microsoft’'s Scalable Cluster Service, IBM’'s DCS system, CORBA

« Similar models influenced by virtual synchrony:
Apache Zookeeper (configuration, synchronization, and naming service)

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 13



Goals

Assume message transmission is asynchronous
« Machines may receive messages in different sequences

Virtual synchrony

* Preserve the illusion that events happenin the same order
— Use a hold-back queue & deliver messages to the application in a consistent order

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 14



Group Management

Group Membership Service (GMS)
- Failure detection service
« Keeps track of the definitive list of who’s in each group

* |f a process p reports a process q as faulty
— p tells the GMS
— GMS reports this to every process with g in its view
— ¢ Is taken out of the process group and would need to re-join

Imposes a consistent picture
of group membership for everyone

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 15



Sending & receiving messages

« Sending
— Multicasting is implemented by sending a UDP messageto each group memberor IP multicast
— TCP not used because it doesn't send acknowledgments to the user process
— Isis handles its own acknowledgments

* Receiving: hold-back & delivery
— Every processthat receives a message m holds it until it knows that all membersof G; receivedit
— Every processthat receives a message sends an acknowledgmentto the sender
— When the senderreceives all acknowledgments, mis stable

— Only stable messages can get delivered to applications
» Optimization: receivers can acknowledge groups of messages; senders can confirm groups of stable messages

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 16



Sender failure

« Asender may die before all messages are sent (or acknowledged)

— These messages are unstable and remain in the hold-back queue at each receiver that
got the message

* When the death of the sending process is detected

— The GMS issues aview change and removes the process from the group
— View change

 All unstable messages must be sent to all remaining group members
... and then delivered to the applications (since they will now be stable)

 This enforces the atomic multicasting property (all or none)

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 17



View change: G, — G,

Some process P receives a view change message

A possible failure was detected, or it received a request from a process joining or
leaving the group

« P forwards a copy of any unstable messages to every process in G;,;

* |t then marks each of these messages as stable

Pindicatesitno longer has any unstable messages

It is ready to transition to view G;,; as soon as other processes are ready
* P multicasts a flush message for G,

» Waits to receive a flush message for G,,; from every other process

* Then switches to the new view G;,;

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 18



Joining a group & state transfer

When a new member joins a group
* It will need to import the current state of the group

 State transfer:
— Contact an existing member to request a state transfer
— Initialize the replica to the latest state from its last checkpointed state
— A state transfer is treated as an atomic (instantaneous) event
* No other processing takes place until this is complete

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 19



Virtual synchrony summary

* Message delivery
— IP multicast or multiple UDP unicasts to implement multicast

* Message receipt
— Each message is acknowledged but remains unstable
— Sender informs group members when all ACKs have been received = stable

* Failure
— Take failed process out of the group; initiate a view change

View change: every process will
— Send any unstable messages to all group members
— Process received messages that are not duplicates
— Send a flush message to the group
— Wait until it receives flush messages from the entire group

October 7, 2023 CS 417 © 2023 Paul Krzyzanowski 20



The End

October 7, 2023

CS 417 © 2023 Paul Krzyzanowski

21



	Slide 1
	Slide 2: Replication
	Slide 3: State machine replication
	Slide 4: State machine replication
	Slide 5: Faults & Delays
	Slide 6: Agreement in faulty systems
	Slide 7: Agreement in faulty systems
	Slide 8: Virtual Synchrony: Definition
	Slide 9: Virtual Synchrony
	Slide 10: Group View
	Slide 11: Virtual Synchrony
	Slide 12: View Changes & Virtual Synchrony
	Slide 13: Virtual Synchrony: implementation example
	Slide 14: Goals
	Slide 15: Group Management
	Slide 16: Sending & receiving messages
	Slide 17: Sender failure
	Slide 18: View change: Gi → Gi+1
	Slide 19: Joining a group & state transfer
	Slide 20: Virtual synchrony summary
	Slide 21: The End

