CS 417 - DISTRIBUTED SYSTEMS

Part 3: Other Remote File Systems

©,2022 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl ’ whole or in part in any manner without the

permission of the copyright owner.

AFS
Andrew File System

Carnegie Mellon University

c. 1986(v2), 1989(v3)

CS 417 © 2023 Paul Krzyzanowski

AFS

* Design Goal

— Support information sharing on a large scale
e.g., 10,000+ clients

* History
— Developed at CMU
— Became a commercial spin-off: Transarc
— IBM acquired Transarc
— Open source under IBM Public License
— OpenAFS (openafs.org)

CS 417 © 2023 Paul Krzyzanowski 3

AFS Design Assumptions

* Most files are small
* Reads are more common than writes
* Most files are accessed by one user at a time

* Files are referenced in bursts (locality)
— Once referenced, a file is likely to be referenced again

CS 417 © 2023 Paul Krzyzanowski 4

AFS Design Decisions

Whole file serving
— Send the entire file on open

Long-term whole file caching
— Client caches entire file on local disk

— Client writes the file back to server on close
* if modified
» Keeps cached copy for future accesses

CS 417 © 2023 Paul Krzyzanowski 5

AFS Server: cells

Servers are grouped into administrative entities called cells

» Cell: collection of
— Servers
— Administrators
— Users
— Clients

» Each cell is autonomous, but cells may cooperate and present users with
one uniform name space

CS 417 © 2023 Paul Krzyzanowski 6

AFS Server: volumes

Disk partition contains

file and directories
ﬂ

Grouped into volumes

Volume

— Administrative unit of organization
E.g., user’s home directory, local source, etc.

— Each volume is a directory tree (one root)
— Assigned a name and ID number
— A server will often have 100s of volumes

CS 417 © 2023 Paul Krzyzanowski 7

Namespace management

Clients get information via cell directory server (Volume Location
Server) that hosts the Volume Location Database (VLDB)

Goal:
everyone sees the same namespace
/afs/cellname/path

/afs/mit.edu/home/paul/src/try.c

CS 417 © 2023 Paul Krzyzanowski 8

Files, Directories, Volumes, Cells

(Cell mit.edu)
{ Cell cs.princeton.edu
[CoiDiccion |
Cell cs.rutgers.edu 5 /W
e
Cell D|rectory _ W\ \
Server e2 Volume 3 Volume 4)
Volume 1 Volume 2 Volume 3 Volume 4
Server A Server B

AFS provides a uniform namespace from anywhere

/afs/cellname/path
/afs/mit.edu/home/paul/src/try.c

CS 417 © 2023 Paul Krzyzanowski 9

Communication with the server

« Communication is via RPC over UDP

» Access control lists used for protection
— Directory granularity
— UNIX permissions ignored (except execute)

CS 417 © 2023 Paul Krzyzanowski 10

AFS cache coherence

On open:
The server sends entire file to client and provides a callback promise:
It will notify the client when any other process modifies the file

If a client modified a file:
— Contents are written to the server on close

Callbacks: when a server gets an update:
— it notifies all clients that have been issued the callback promise
— Clients invalidate those cached files

CS 417 © 2023 Paul Krzyzanowski 11

AFS cache coherence

If a client was down

— On startup, contact server with timestamps of all cached files to decide
whether to invalidate

If a process has a file open
— It continues accessing it even if it has been invalidated
— Upon close, contents will be propagated to server

AFS: Session Semantics
(vs. sequential semantics)

CS 417 © 2023 Paul Krzyzanowski 12

AFS replication and caching

 Limited replication
— Read-only volumes may be replicated on multiple servers

« Advisory locking supported
— Query server to see if there is a lock

* Referrals
— An administrator may move a volume to another server
— If a client accesses the old server, it gets a referral to the new one

CS 417 © 2023 Paul Krzyzanowski 13

AFS key concepts

* Single global namespace
— Built from a collection of volumes across cells
— Referrals for moved volumes
— Replication of read-only volumes

* Whole-file caching
— Offers dramatically reduced load on servers

 Callback promise
— Keeps clients from having to poll the server to invalidate cache

CS 417 © 2023 Paul Krzyzanowski 14

AFS summary

AFS benefits
— AFS scales well
— Uniform name space
— Read-only replication
— Security model supports mutual authentication, data encryption

AFS drawbacks
— Session semantics
— Directory based permissions
— Uniform name space

CS 417 © 2023 Paul Krzyzanowski 15

DFS (based on AFS v3)
Distributed File System

DFES

AFS: provided scalable performance but session semantics were hard to live with

» Goal
— Create a file service similar to AFS but with a strong consistency model

* History
— Part of Open Group’s Distributed Computing Environment (DCE)
— Descendant of AFS - AFS version 3.x

* Assume (like AFS):
— Most file accesses are sequential
— Most file lifetimes are short
— Majority of accesses are whole file transfers
— Most accesses are to small files

CS 417 © 2023 Paul Krzyzanowski 17

Caching and Server Communication

* Increase effective performance with

— Caching data that you read
- Safe if multiple clients reading, nobody writing

— Prefetch data: read-ahead
 Safe if multiple clients reading, nobody writing

— write-behind (delaying writes to the server)
- Safe if only one client is accessing file

Goal:

Minimize # of times a client informs the server of changes —
but do so in a way that allows all clients to have valid data

CS 417 © 2023 Paul Krzyzanowski 18

DFS Tokens

Cache consistency maintained Open tokens
by tokens — Allow token holder to open a file

— Token specifies access
(read, write, execute, exclusive-write)

Data tokens

Token ’
— Applies to a byte range
— Guarantee from the server that a _ read token - can use cached data
client can perform certain — write token - write access, cached writes

operations on a cached file

Status tokens
— read: can cache file attributes

— Server grants & revokes tokens — write: can cache modified attributes

Lock tokens
— Holder can lock a byte range of a file

CS 417 © 2023 Paul Krzyzanowski 19

Living with tokens

» Server grants and revokes tokens
— Multiple read tokens OK

— Multiple read and a write token or multiple write tokens
* Not OK if byte ranges overlap
* Revoke all other read and write tokens
» Block new request and send revocation to other token holders

CS 417 © 2023 Paul Krzyzanowski 20

DFS key points

 Caching
— Token granting mechanism

 Allows for long term caching and strong consistency
— Caching sizes: 8K — 256K bytes

— Read-ahead (like NFS)
+ Don’t have to wait for entire file before using it as with AFS

* File protection via access control lists (ACLS)
« Communication via authenticated RPCs

 Essentially AFS v3 with server-based token granting
— Server keeps track of who is reading and who is writing files
— Server must be contacted on each open and close operation to request token

CS 417 © 2023 Paul Krzyzanowski 21

Coda
COnstant Data Availability

Carnegie-Mellon University

c. 1990-1992

CS 417 © 2023 Paul Krzyzanowski

22

Coda Goals

Originated from AFS

1. Provide better support for replication than AFS
— Support shared read/write files

2. Support mobility of PCs
— Provide constant data availability in disconnected environments

— Use hoarding (user-directed caching)

— Log updates on client
* Reintegrate on connection to network (server)

CS 417 © 2023 Paul Krzyzanowski 23

Modifications to AFS

Support replicated file volumes

» A volume can be replicated on a group of servers
— Volume Storage Group (VSG)

* Replicated volumes
— Volume ID used to identify files is a Replicated Volume ID
— One-time lookup

* Replicated volume ID — list of servers and local volume IDs
— Read files from any server

— Write to all available servers

CS 417 © 2023 Paul Krzyzanowski 24

Disconnected volume servers

AVSG: Accessible Volume Storage Group
— Subset of VSG

On first download, contact everyone you can and get a version
timestamp of the file

If the client detects that some servers have old versions

— Client initiates a resolution process
* Notifies server of stale data
+ Resolution handled entirely by servers
« Administrative intervention may be required if there are conflicts

CS 417 © 2023 Paul Krzyzanowski 25

AVSG = I

* If no servers are accessible
— Client goes to disconnected operation mode

* If file is not in cache
— Nothing can be done... fail

* Do not report failure of update to server
— Log update locally in Client Modification Log (CML)
— User does not notice

CS 417 © 2023 Paul Krzyzanowski 26

Reintegration

Upon reconnection
— Commence reintegration

Bring server up to date with CML log playback
— Optimized to send latest changes

Try to resolve conflicts automatically
— Not always possible

CS 417 © 2023 Paul Krzyzanowski 27

Support for disconnection

Keep important files up to date
— Ask server to send updates if necessary

Hoard database
— Automatically constructed by monitoring the user’s activity
— And user-directed pre-fetch

CS 417 © 2023 Paul Krzyzanowski 28

» Session semantics as with AFS

* Replication of read/write volumes
— Clients do the work of writing replicas (extra bandwidth)
— Client-detected reintegration

* Disconnected operation
— Client modification log

— Hoard database for needed files
« User-directed pre-fetch

— Log replay on reintegration

CS 417 © 2023 Paul Krzyzanowski 29

SMB
Server Message Block Protocol

Microsoft

c. 1987

CS 417 © 2023 Paul Krzyzanowski

30

SMB Goals

* File sharing protocol for Windows 9x-Windows 11, Window NT-20xx

* Protocol for sharing
— Files, devices, communication abstractions (named pipes), mailboxes

» Servers: make file system and other resources available to clients

* Clients: access shared file systems, printers, etc. from servers

Design Priority: locking and consistency over client caching

CS 417 © 2023 Paul Krzyzanowski 31

SMB Design

* Request-response protocol — similar to RPC

— Send and receive message blocks
* name from old DOS system call structure
— Send request to server — the PC with the resource you want

— Server sends response

« Connection-oriented protocol
— Persistent connection - “session”

« Each message contains:
— Fixed-size header
— Command string (based on message) or reply string

CS 417 © 2023 Paul Krzyzanowski 32

Message Block

* Header: [fixed size]
— Protocol ID
— Command code (0..FF)
— Error class, error code
— Tree ID — unique ID for resource in use by client (handle)
— Caller process ID
— User ID
— Multiplex ID (to route requests in a process)

« Command: [variable size]
— Param count, params, #bytes data, data

CS 417 © 2023 Paul Krzyzanowski 33

SMB commands

* Files * Print-related
— Get disk attributes — Open/close spool file
— create/delete directories — write to spool
— search for file(s) — Query print queue

— create/delete/rename file
— lock/unlock file area . User-related

— open/ co'mmlt/ c.;lose file — Discover home system
— get/set file attributes for user

— Send message to user
— Broadcast to all users
— Receive messages

CS 417 © 2023 Paul Krzyzanowski 34

Protocol Steps

* Establish connection

CS 417 © 2023 Paul Krzyzanowski 35

Protocol Steps

» Establish connection

* Negotiate protocol
— negprot SMB
— Responds with version number of protocol

CS 417 © 2023 Paul Krzyzanowski 36

Protocol Steps

» Establish connection
* Negotiate protocol

» Authenticate/set session parameters
— Send sesssetupX SMB with username, password
— Receive NACK or UID of logged-on user
— UID must be submitted in future requests

CS 417 © 2023 Paul Krzyzanowski 37

Protocol Steps

» Establish connection
* Negotiate protocol - negprot
» Authenticate - sesssetupX

» Make a connection to a resource (similar to mount)
— Send tcon (tree connect) SMB with name of shared resource

— Server responds with a tree ID (TID) that the client will use in future requests
for the resource

CS 417 © 2023 Paul Krzyzanowski 38

Protocol Steps

 Establish connection

* Negotiate protocol - negprot

» Authenticate - sesssetupX

» Make a connection to a resource — tcon

» Send open/read/write/close/... SMBs

CS 417 © 2023 Paul Krzyzanowski 39

SMB Evolves
Common Internet File System (1996)
SMB 2 (2006)
SMB 3 (2012)

SMB Evolves

* History
— SMB was reverse-engineered for non-Microsoft platforms

« samba.org
* E.g., Linux & macOS use Samba to access file shares from Windows

— Microsoft released SMB protocol to X/Open in 1992

— Common Internet File System (CIFS): 1996 - large files, symlinks, hardlinks
— SMB 2.0: 2006 - less chatty

— SMB 3.0: 2012 - end-to-end encryption, failover

— SMB 3.1: 2016 - 128-big AES encryption

— SMB 3.1.1: 2021 - 256-bit AES encryption

CS 417 © 2023 Paul Krzyzanowski 41

Caching and Server Communication

Increase effective performance with
— Caching
- Safe if multiple clients reading, nobody writing

— read-ahead
 Safe if multiple clients reading, nobody writing

— write-behind
- Safe if only one client is accessing file

Goal: minimize times client informs server of changes

CS 417 © 2023 Paul Krzyzanowski 42

Oplocks

Server grants opportunistic locks (oplocks) to client
— Clients request oplocks from a server so they can cache data
— Oplock tells client how/if it may cache data
— Similar to DFS tokens (but more limited)

Client must request an oplock

— The oplock may be
- Granted

« Revoked by the server at some future time
« Changed by server at some future time

CS 417 © 2023 Paul Krzyzanowski 43

Level 1 oplock (exclusive access)

— Client can open file for exclusive access
— Arbitrary caching

— Cache lock information

— Read-ahead

— Write-behind

If another client opens the file, the server has the other client break its oplock:

— Client must send any lock data and pending writes to the server and
acknowledge that it does not have the oplock

— Purge any read-aheads

CS 417 © 2023 Paul Krzyzanowski

44

Level 2 oplock (multiple readers, no writers)

* Level 1 oplock is replaced with a Level 2 oplock if another process
tries to read the file

* Multiple clients may have the same file open as long as none are
writing

« Cache reads, file attributes
— Send other requests to server

* Level 2 oplock revoked if any client opens the file for writing

CS 417 © 2023 Paul Krzyzanowski 45

Batch oplock (remote open even if local closed)

* Client can keep file open on server even if a local process that was
using it has closed the file

« Client requests batch oplock if it expects programs may behave in a
way that generates a lot of traffic by opening & closing same files over
and over

— Designed for Windows batch files, which repeatedly opened and closed files

- Batch oplock is exclusive: one client only
— revoked if another client opens the file

CS 417 © 2023 Paul Krzyzanowski 46

Filter oplock (allow preemption)

* Allow apps to look through file data but be notified if someone else
wants access

* Allow clients with filter oplock to be suspended while another process
preempted file access
— Indexing service can run and open files without causing programs to get an
error when they need to open the file
* Indexing service is notified that another process wants to access the file

* |t can abort its work on the file and close it or finish its indexing and then close the
file

CS 417 © 2023 Paul Krzyzanowski 47

No oplock

» A server can break an oplock — tell a client it no longer has the oplock
 All requests must be sent to the server

« Can work from cache only if byte range was locked by client

CS 417 © 2023 Paul Krzyzanowski 48

SMB Leases (svB = 2.1; Windows = 7)

Update (cleanup) to oplocks — same purpose as oplock: control caching

 Lease types
— Read-cache (R) lease: cache results of read; can be shared
— Write-cache (W) lease: cache results of write; exclusive

— Handle-cache (H) lease: cache file handles; can be shared
* Optimizes re-opening files

* Leases can be combined: R, RW, RH, RWH

» Leases define oplocks:
— Read oplock (R) — essentially same as Level 2
— Read-handle (RH) — essentially same as Batch
— Read-write (RW) — essentially the same as Level 1

See https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/oplock-overview

https://blogs.msdn.microsoft.com/openspecification/2009/05/22/client-caching-features-oplock-vs-lease/

CS 417 © 2023 Paul Krzyzanowski 49

Microsoft DFS Namespaces

“Distributed File System”: Service in Windows Server
— Shared folders from different servers can be organized into one file system view
— Provide location transparency

Replicate read-only volumes for load balancing

Namespace server organizes the volumes Computers share one or more volumes

\ Namespace Folder Targets /

Namespace root i \\Rutgers\Public — """ \\LCSR\X-Source

Folder Peurce j """ \\NB-CS\Project Info
Folder with target Project X | —

S > """ \\ScarletHub\Info
Folder with target _i Documents N

DFS = SMB + naming/ability to mount server shares on other server shares

CS 417 © 2023 Paul Krzyzanowski 50

SMB Summary

- Stateful model with strong consistency
* Oplocks/leases offer flexible control for distributed consistency

* DFS adds namespace management to create a common hierarchy

CS 417 © 2023 Paul Krzyzanowski 51

SMB2 and SMB3

 Original SMB was...
— Chatty: common tasks often required multiple round-trip messages
— Not designed for WANs

« SMB2 (2007)
— Protocol dramatically cleaned up
— New capabilities added
— SMB2 became the default network file system in macOS Mavericks (10.9)

- SMB3 (2012)
— Added RDMA and multichannel support; end-to-end encryption

* RDMA = Remote DMA (Direct Memory Access)
— Windows 8 / Windows Server 2012: SMB 3.0
— SMB3 became the default network file system in macOS Yosemite (10.10)

CS 417 © 2023 Paul Krzyzanowski 52

SMB?2 Additions: Message Optimization

* Reduced complexity
— From >100 commands to 19

 Pipelining support
— Send additional commands before the response to a previous one is received

« Compounding support
— Avoid the need to have commands that combine operations
— Send an arbitrary set of commands in one request
— E.g., instead of RENAME:

* CREATE (create new file or open existing)
« SET_INFO
+ CLOSE

CS 417 © 2023 Paul Krzyzanowski 53

SMB2 Additions: Credit-Based Flow Control

Credit-based flow control

Goal: keep more data in flight but avoid overloading servers
— Client session starts with a small # of “credits” and scales up as needed

— Each SMB request to the server costs one credit

+ Client decrements the credit count each time it sends a message
* The server responds back with more credits

— If a server gets more loaded, it can issue fewer credits

Allows servers to control the amount of traffic from each client

CS 417 © 2023 Paul Krzyzanowski 54

More SMB2 Additions

 Larger reads/writes
» Caching of folder & file properties

 “Durable handles”
— Allow reconnection to server if there was a temporary loss of connectivity

Sample SMB2 vs. SMB benefits

Transfer 10.7 GB over 1 Gbps WAN link with 76 ms RTT
SMB: 5 hours 40 minutes: rate = 0.56 MB/s
SMBZ2: 7 minutes, 45 seconds: rate = 25 MB/s

CS 417 © 2023 Paul Krzyzanowski 55

Sl\Y=

Key features

» Multichannel support for network scaling

Transparent network failover

“SMBDirect” — support for Remote DMA in clustered environments

— Enables direct, low-latency copying of data blocks from remote memory without CPU
intervention

Direct support for virtual machine files
— Volume Shadow Copy
— Enables volume backups to be performed while apps continue to write to files.

End-to-end encryption

CS 417 © 2023 Paul Krzyzanowski 56

NFS version 4
Network File System
Sun Microsystems (now Oracle)

CS 417 © 2023 Paul Krzyzanowski

NFS version 4 enhancements

» Stateful server

« Compound RPC
— Group operations together
— Receive set of responses
— Reduce round-trip latency

» Stateful open/close operations
— Support exclusive file create operations
— Client can cache aggressively

CS 417 © 2023 Paul Krzyzanowski 58

NFS version 4 enhancements

 create, link, open, remove, rename
— Inform client if the directory changed during the operation

« Strong security
— Extensible authentication architecture

* File system read/write replication and migration
— Mirror servers can be configured

* If a client accesses a file on a replicated server, the server disables replication, and all requests go
to that server until the client is done

— Clients don’t need to know where the data is: server will send referrals

CS 417 © 2023 Paul Krzyzanowski 59

NFS version 4 enhancements

« Stateful locking
— Clients inform servers of lock requests
— Locking is lease-based; clients must renew leases

 Improved caching

— Server can delegate specific actions on a file to enable more aggressive client caching
— Close-to-open consistency

* File changes propagated to server when file is closed

+ Client checks timestamp on open to avoid accessing stale cached copy

— Similar to Windows oplocks
 Clients must disable caching to share files

 Callbacks
— Notify client when file/directory contents change

CS 417 © 2023 Paul Krzyzanowski 60

Review: Core Concepts

* NFS
— RPC-based access, stateless design (initially)

* AFS
— Long-term caching

 DFS
— AFS + tokens for consistency and efficient caching

Coda
— Read/write replication & disconnected operation

- SMB
— RPC-like access with strong consistency
— Oplocks to support caching
— DFS Namespaces: add-on to provide a consistent view of volumes (AFS-style)

CS 417 © 2023 Paul Krzyzanowski 61

The End

CS 417 © 2023 Paul Krzyzanowski

62

