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Client-server file systems

« Network Attached Storage is built on a central server architecture
— Point of congestion, single point of failure

* Alleviate performance somewhat with replication and client caching

— E.g., Coda, tokens (aka leases, oplocks)
— Limited replication can lead to congestion

» But file data is still centralized
— A file server stores all data from a file — not split across servers
— Even if replication is in place, a client downloads all data for a file from one server

* File sizes are limited to the capacity available on a server
— What if you need a 1,000 TB file?
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What is a parallel file system??

» Conventional file systems
— Store data & metadata on the same storage device
— Example:

 Linux directories are just files that contain lists of names & inodes

* inodes are data structures placed in well-defined areas of the disk that contain information about
the file

 Parallel file systems
— File data can span multiple servers
— Metadata can be on separate servers from the data
— Metadata = information about the file

* Includes name, access permissions, timestamps, file size, & locations of data blocks
— Data = actual file contents
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Google File System (GFS)

(= Apache Hadoop Distributed File System)
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GFS Goals

 Scalable distributed file system
* Designed for large data-intensive applications
 Fault-tolerant; runs on commodity hardware

* Delivers high performance to a large number of clients
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Design Assumptions

« Assumptions for conventional file systems don’t work
— E.g., “most files are small”, “lots have short lifetimes”

« Component failures are the norm, not an exception
— File system = thousands of storage machines
— Some % not working at any given time

* Files are huge. Multi-TB files are the norm
— |t doesn’t make sense to work with billions of nKB-sized files

— 1/0 operations and block size choices are also affected
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Design Assumptions

* File access:

— Most files are appended, not overwritten
* Random writes within a file are almost never done
» Once created, files are mostly read; often sequentially

— Workload is mostly:
* Reads: large streaming reads, small random reads - these dominate
* Large appends
* Hundreds of processes may append to a file concurrently
* GFS will store a modest number of files for its scale
— approx. a few million

 Designing the GFS API together with the design of apps
— Apps can handle a relaxed consistency model
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Basic Design Principles

» Use separate servers to store metadata
— Metadata includes lists of (server, block_number) sets that identify which blocks on
which servers hold file data
— We need more bandwidth for data access than metadata access
* Metadata is small; file data can be huge

» Use large logical blocks
— Most "normal” file systems are optimized for small files

* A Dblock size is typically 4KB
— Expect huge files, so use huge blocks ... >1,000x larger
» The list of blocks that makes up a file becomes easier to manage

* Replicate data
— EXxpect some servers to be down
— Store copies of data blocks on multiple servers
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File System Interface

* GFS does not have a standard OS-level API
— No POSIX system call level APl — no kernel/VFS implementation
— User-level API for accessing files
— GFS servers are implemented in user space using native Linux FS

* Files organized hierarchically in directories

» Operations
— Basic operations
» Create, delete, open, close, read, write

— Additional operations
» Snapshot: create a copy of a file or directory tree at low cost
« Append: allow multiple clients to append atomically without locking
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GFS Master & Chunkservers

GFS cluster
— Multiple chunkservers

Thousands of

» Data storage: fixed-size chunks chunkservers
« Chunks replicated on several systems

— One master

 Stores file system metadata (names, attributes)

* Maps files to chunks

chunkserver

chunkserver chunkserver

chunkserver chunkserver

chunkserver
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“directories & inodes”

data blocks
metadata

GFS Master &
Chunkservers
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GFS Files
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image log
master

namespace:
names and name—{chunk list} mappings

CS 417 © 2023 Paul Krzyzanowski

In-memory FS metadata

12



Chunks and Chunkservers

» Chunk size = 64 MB (default)

— Chunkserver stores a 32-bit checksum with each chunk
* In memory & logged to disk: allows it to detect data corruption

» Chunk Handle: identifies a chunk
— Globally unique 64-bit number
— Assigned by the master when the chunk is created

 Chunkservers store chunks on local disks as Linux files

« Each chunk is replicated on multiple chunkservers
— Three replicas (different levels can be specified)
— Popular files may need more replicas to avoid hotspots
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Master

Maintains all file system metadata
— Namespace

— Access control info

— Filename to chunks mappings

— Current locations of chunks

Manages

— Chunk leases (locks)

— Garbage collection (freeing unused chunks)
— Chunk migration (copying/moving chunks)

Fault tolerance
— Operation log replicated on multiple machines
— New master can be started if the master fails

Periodically communicates with all chunkservers
— Via heartbeat messages to get state and send commands
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Client Interaction Model

* GFS client code linked into each app
— No OS-level API — you have to use a library
— Interacts with master for metadata-related operations

— Interacts directly with chunkservers for file data
* All reads & writes go directly to chunkservers
« Master is not a point of congestion

* Neither clients nor chunkservers cache data
— Except for the caching by the OS system buffer cache

— Clients cache metadata - e.g., location of a file’s chunks
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One master = simplified design

All metadata stored in master’s memory
— Super-fast access

Namespaces and name-to-chunk_list maps
— Stored in memory
— Also persist in an operation log on the disk

* Replicated onto remote machines for backup

Operation log

— Similar to a journal

— All operations are logged

— Periodic checkpoints (stored in a B-tree) to avoid playing back entire log

Master does not store chunk locations persistently
— This is queried from all the chunkservers: avoids consistency problems
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Why Large Chunks?

 Default chunk size = 64MB
(Linux ext4 block sizes: typically, 4 KB and up to 1 MB)

* Reduces need for frequent communication with master to get chunk location
info — one query can give info on location of lots of bytes of data

* Clients can easily cache info to refer to all data of large files
— Cached data has timeouts to reduce possibility of reading stale data

» Large chunk makes it feasible to keep a TCP connection open to a chunkserver
for an extended time

» Master stores <64 bytes of metadata for each 64MB chunk
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Reading Files

1. Contact the master
2. Get file’s metadata: list chunk handles

3. Get the location of each of the chunk handles
— Multiple replicated chunkservers per chunk

4. Contact any available chunkserver for chunk data
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Writing to files

* Less frequent than reading

* Master grants a chunk lease to one of the replicas
— This replica will be the primary replica chunkserver
— Primary can request lease extensions, if needed
— Master increases the chunk version number and informs replicas
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Writing to files: two phases

Phase 1: Send data
Deliver data but don’t write to the file
— Client asks the master for a list of chunkservers with replicas: primary & secondaries
— Client writes to the closest replica chunkserver that has not received the data
* Replica forwards the data to another replica chunkserver
* That chunkserver forwards to another replica chunkserver ...

— Chunkservers store this data in a cache — it’s not part of the file yet

Goal: Maximize bandwidth via pipelining
Minimize latency by forwarding data while it is being received

client a chunk1$erver 5 chunk23erver 5 chunl;server
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Writing to files: two phases

Phase 2: Write data
Add it to the file (commit)

— Client waits for replicas to acknowledge receiving the data

— Sends a write request to the primary, identifying the data that was sent

— The primary is responsible for serialization of writes
« Assigns consecutive serial numbers to all writes that it received

» Applies writes in serial-number order and forwards write requests in that order to secondaries

— Once all acknowledgments have been received,
the primary acknowledges the client chunkserver

2
primary

chunkserver —__ _ chunkserver
3

client
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Writing to files: separate data flow & control flow

Data Flow (phase 1) is different from Control Flow (phase 2)

» Data Flow (upload):
— Client to chunkserver to chunkserver to chunkserver...
— Order does not matter

» Control Flow (write):
— Client to primary; primary to all secondaries
— Locking used; Order maintained

Chunk version numbers are used to detect if any replica has stale data
(was not updated because it was down)
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Namespace

* No per-directory data structure like most file systems
— E.g., directory file contains names of all files in the directory

* No aliases (hard or symbolic links)

 Namespace is a single lookup table
— Maps pathnames to metadata
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Google Cluster Environment
— Core services: GFS + cluster scheduling system
— Typically, 100s to 1000s of active jobs

— 200+ clusters, many with 1000s of machines

— Pools of 1000s of clients
— 4+ PB file systems, 40 GB/s read/write loads

Job Job Job
1 2 n

Chunk Scheduling
Server Slave

Linux

Commodity HW

Machine 1

Job Job Job
1 2 ]

Chunk Scheduling
Server Slave

Linux

Commodity HW

Machine n
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Chubby Lease (lock)
Lock Service . manager
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HDFS: Hadoop Distributed File System

* Primary storage system for Hadoop applications

» Apache Hadoop

— Framework for distributed processing of large data sets across clusters of
computers

« Hadoop includes:

— MapReduce™: software framework for distributed processing of large data sets on compute clusters.
— Avro™: A data serialization system.

— Cassandra™: A scalable multi-master database with no single points of failure.

— Chukwa™: A data collection system for managing large distributed systems.

— HBase™: A scalable, distributed database that supports structured data storage for large tables.

— Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.

— Mahout™: A Scalable machine learning and data mining library.

— Pig™: A high-level data-flow language and execution framework for parallel computation.

— ZooKeeper™: A high-performance coordination service for distributed applications

— and more ...
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HDFS Design Goals & Assumptions

« HDFS is an open source (Apache) implementation inspired by GFS design

 Similar goals and same basic design as GFS
— Run on commodity hardware
— Highly fault tolerant
— High throughput — designed for large data sets
— OK to relax some POSIX file access requirements

— Large scale deployments
* Instance of HDFS may comprise 1000s of servers
« Each server stores part of the file system’s data

* But
— No support for concurrent appends
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HDFS Design Goals & Assumptions

» Write-once, read-many-times file access model
— Single writer, multiple readers

A file’s contents will not change
— Simplifies data coherency
— Suitable for web crawlers and big data analytics applications
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HDFS Architecture

* Written in Java

» Single NameNode
— Master server responsible for the namespace & access control

* Multiple DataNodes
— Responsible for managing storage attached to its node

« A file is split into one or more blocks

— Typical block size = 128 MB (vs. 64 MB for GFS)
— Blocks are stored in a set of DataNodes
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GFS Files

file A file
v

L/ is made of 64 MB chunks
VYV VYV VYYYVV YV VY

. that are replicated
for fault tolerance

s
6
< |
e
é
e
e
e
e
e
e
e
e
e
e
e
e
e

Chunks live on

chunkservers
chunkserver chunkserver chunkserver chunkserver
Checkpoint ‘ Operation ‘ The master manages the file system
i I
master e o9 namespace: | |
In-memory FS metadata | names and name—{chunk list} mappings

CS 417 © 2023 Paul Krzyzanowski 29



HDFS: same stuff ... different names

file A file

L/ is made of 128 MB blocks
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RiEEs ‘ EditLog ‘ The NameNode manages the file system
NameNode namespace:

In-memory FS metadata | names and name—{block list} mappings
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NameNode (= GFS master)

* Executes metadata operations
— open, close, rename
— Maps file blocks to DataNodes
— Maintains HDFS namespace

« Transaction log (EditLog) records every change that occurs to file system metadata
— Entire file system namespace + file-block mappings is stored in memory
— ... and stored in a file (FsImage) for persistence

« NameNode receives a periodic Heartbeat and Blockreport from each DataNode
— Heartbeat = “/ am alive” message
— Blockreport = list of all blocks managed by a DataNode
+ Keep track of which DataNodes own which blocks & their replication count
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DataNode (= GFS chunkserver)

* Responsible for serving read/write requests

* Blocks are replicated for fault tolerance
— App can specify # replicas at creation time
— Can be changed later

* Blocks are stored in the local file system at the DataNode
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Rack-Aware Reads & Replica Selection

* Client sends request to NameNode
— Receives list of blocks and replica DataNodes per block

* Client tries to read from the closest replica
— Prefer same rack
— Else same data center
— Location awareness is configured by the admin

CS 417 © 2023 Paul Krzyzanowski 33



Writes

Client caches file data into a temp file

When temp file > one HDFS block size

— Client contacts NameNode

— NameNode inserts file name into file system hierarchy & allocates a data block
— Responds to client with the destination data block

— Client writes to the block at the corresponding DataNode

When a file is closed, remaining data is transferred to a DataNode
— NameNode is informed that the file is closed
— NameNode commits file creation operation into a persistent store (log)

Data writes are chained: pipelined

— Client writes to the first (closest) DataNode

— That DataNode writes the data stream to the second DataNode
— Andsoon...
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The End
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