
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 7: Distributed Lookup
 Part 2: Amazon Dynamo

© 2023 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Amazon Dynamo
• Not exposed as a web service
– Used to power parts of Amazon Web Services and internal services
– Highly available, key-value storage system

• In an infrastructure with millions of components, something is always failing!
– Failure is the normal case

• A lot of services within Amazon only need primary-key access to data
– Best seller lists, shopping carts, preferences, session management, sales rank, product catalog
– No need for complex querying or management offered by an RDBMS
• Full relational database is overkill: limits scale and availability
• Still not efficient to scale or load balance RDBMS on a large scale

2CS 417 © 2023 Paul Krzyzanowski



Core Assumptions & Design Decisions
• Two operations: get and put
– Binary objects (data) identified by a unique key
– Objects tend to be small (typically < 1MB)

• Strongly consistent distributed databases provide poor availability
– Use weaker consistency for higher availability

• Apps should be able to configure Dynamo for desired latency & throughput
–  Balance performance, cost, availability, and durability guarantees

• At least 99.9% of read/write operations must be performed within a few hundred 
milliseconds:
– Avoid routing requests through multiple nodes

• Dynamo can be thought of as a zero-hop DHT

3CS 417 © 2023 Paul Krzyzanowski



Core Assumptions & Design Decisions
• Incremental scalability
– System should be able to grow by adding a storage host (node) at a time

• Symmetry
– Every node has the same set of responsibilities

• Decentralization
– Favor decentralized techniques over central coordinators

• Heterogeneity (mix of slow and fast systems)
– Workload partitioning should be proportional to capabilities of servers

CS 417 © 2023 Paul Krzyzanowski 4



Consistency & Availability
Strong consistency & high availability cannot be achieved simultaneously

• Optimistic replication techniques – eventually consistent model
– Propagate changes to replicas in the background – they will eventually be updated
– This can lead to conflicting changes that have to be detected & resolved

• When do you resolve conflicts?
– During writes: the traditional approach
• Reject write if cannot reach all (or majority) of replicas – but don't deal with conflicts

– Resolve conflicts during reads: Dynamo approach
• Design for an "always writable" data store - highly available
• read/write operations can continue even during network partitions
• Rejecting customer updates won't be a good experience
– Example: a customer should always be able to add or remove items in a shopping cart

5CS 417 © 2023 Paul Krzyzanowski



Consistency & Availability
Who resolves conflicts?

Choices: the data store system or the application?

• Data store 
– Application-unaware, so choices limited
– Simple policy, such as "last write wins”

• Application
– App is aware of the meaning of the data
– Can do application-aware conflict resolution
– E.g., merge shopping cart versions to get a unified shopping cart.

Fall back on "last write wins" if app doesn't want to bother

CS 417 © 2023 Paul Krzyzanowski 6



Reads & Writes
Two operations:

get(key) returns
1. object or list of objects with conflicting versions
2. context (resultant version per object)

put(key, context, value)
– stores replicas
– context: ignored by the application but includes the version of the object
– key is hashed with MD5 to create a 128-bit identifier that is used to determine 

the storage nodes that serve the key: 
  hash(key) identifies node

7CS 417 © 2023 Paul Krzyzanowski



Partitioning the data
• Break up the database into chunks distributed over all nodes
– Key to scalability

• Relies on consistent hashing
– On average, K/n keys need to be remapped, K = # keys, n = # slots

• Logical ring of nodes: just like Chord
– Each node is assigned a random value in the hash space: position in ring
– Responsible for all hash values between its value and predecessor’s value
– Hash(key); then walk ring clockwise to find the first node with position>hash
– Adding/removing nodes affects only immediate neighbors

CS 417 © 2023 Paul Krzyzanowski 8



Partitioning: Dynamo virtual nodes
A physical node holds contents of multiple virtual nodes at multiple points in the ring

In this example: 2 physical nodes running 5 virtual nodes

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Virtual Node 3: keys 2, 3

Virtual Node 8: keys 4, 5, 6, 7, 8

Virtual Node 10: keys 9, 10

Virtual Node 14: keys 11, 12, 13, 14

Node A

Node B

Virtual Node 1: keys 15, 0, 1

9CS 417 © 2023 Paul Krzyzanowski



Partitioning: virtual nodes
Advantage: balanced load distribution
– If a node becomes unavailable, the load is evenly dispersed among 

available nodes

– If a node is added, it accepts an equivalent amount of load from other 
available nodes

– # of virtual nodes per system can be based on the capacity of that node
• Makes it easy to support changing technology and addition of new, faster 

systems

CS 417 © 2023 Paul Krzyzanowski 10



Replication
• Storing/reading key-value data
– Key is assigned a coordinator node (via hashing) ⇒ main node

• Replication
– Data replicated on N hosts (N is configurable)
– Coordinator oversees replication
– Coordinator replicates keys at the N-1 clockwise successor nodes in the ring

11CS 417 © 2023 Paul Krzyzanowski



Dynamo Replication
Coordinator replicates keys at the N-1 clockwise successor nodes in the ring

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15

Node 8 holds replicas for
Nodes 1 and 3

Node 10 holds replicas 
for Node 3 and 8

Node 14 holds replicas for 
Nodes 8 and 10

Example: N=3

12CS 417 © 2023 Paul Krzyzanowski

Main copy
Replica #1

Replica #2



Availability & Consistency
• Configurable values
– R: minimum # of nodes that must participate in a successful read operation
– W: minimum # of nodes that must participate in a successful write operation

• Metadata to remember original destination
– If a node was unreachable, the data is sent to another node in the ring
– Metadata sent with the data states the original desired destination
– Periodically, a node checks if the originally targeted node is alive
• if so, it will transfer the object and may delete it locally to keep # of replicas in the system 

consistent

• Data center failure
– System must handle the failure of a data center
– Each object is replicated across multiple data centers

13CS 417 © 2023 Paul Krzyzanowski



Versioning
• Not all updates may arrive at all replicas
– Clients may modify or read stale data

• Application-based reconciliation
– Each modification of data is treated as a new version

• Vector clocks are used for versioning
– Capture causality between different versions of the same object
– Vector clock is a set of (node, counter) pairs
– Returned as a context from a get() operation and sent via put()

14CS 417 © 2023 Paul Krzyzanowski



Dynamo Storage Nodes
Each node has three components
1. Request coordination

– Node coordinator determined by hash(key)
– Coordinator executes get/put requests on behalf of requesting clients
– State machine contains all logic for identifying nodes responsible for a key, sending requests, 

waiting for responses, retries, processing retries, packaging response
– Each state machine instance handles one request

2. Membership and failure detection

3. Local persistent storage
– Different storage engines may be used depending on application needs
• Berkeley Database (BDB) Transactional Data Store (most popular)
• BDB Java Edition
• MySQL (for large objects)
• In-memory buffer with persistent backing store 

15CS 417 © 2023 Paul Krzyzanowski



Amazon S3 (Simple Storage Service)
Commercial service that implements many of Dynamo’s features

• Storage via web services interfaces (REST, SOAP, BitTorrent)
– Stores more than 449 billion objects
– 99.9% uptime guarantee (43 minutes downtime per month)
– Proprietary design
– Stores arbitrary objects up to 5 TB in size

• Objects are organized into buckets and within a bucket identified by a unique user-assigned key

• Buckets & objects can be created, listed, and retrieved via REST or SOAP
– http://s3.amazonaws/bucket/key

• objects can be downloaded via HTTP GET or BitTorrent protocol
– S3 acts as a seed host and any BitTorrent client can retrieve the file
– reduces bandwidth costs

• S3 can also host static websites

16CS 417 © 2023 Paul Krzyzanowski



The End

17CS 417 © 2023 Paul Krzyzanowski


