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Amazon Dynamo

* Not exposed as a web service
— Used to power parts of Amazon Web Services and internal services
— Highly available, key-value storage system

* |In an infrastructure with millions of components, something is always failing!
— Failure is the normal case

» A lot of services within Amazon only need primary-key access to data
— Best seller lists, shopping carts, preferences, session management, sales rank, product catalog
— No need for complex querying or management offered by an RDBMS
 Full relational database is overkill: limits scale and availability
« Still not efficient to scale or load balance RDBMS on a large scale

CS 417 © 2023 Paul Krzyzanowski 2



Core Assumptions & Design Decisions

Two operations: get and put
— Binary objects (data) identified by a unique key
— Objects tend to be small (typically < 1MB)

Strongly consistent distributed databases provide poor availability
— Use weaker consistency for higher availability

Apps should be able to configure Dynamo for desired latency & throughput
— Balance performance, cost, availability, and durability guarantees

At least 99.9% of read/write operations must be performed within a few hundred
milliseconds:

— Avoid routing requests through multiple nodes

Dynamo can be thought of as a zero-hop DHT
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Core Assumptions & Design Decisions

* Incremental scalability
— System should be able to grow by adding a storage host (node) at a time

* Symmetry
— Every node has the same set of responsibilities

* Decentralization
— Favor decentralized techniques over central coordinators

» Heterogeneity (mix of slow and fast systems)
— Workload partitioning should be proportional to capabilities of servers
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Consistency & Availability

Strong consistency & high availability cannot be achieved simultaneously

» Optimistic replication techniques — eventually consistent model
— Propagate changes to replicas in the background — they will eventually be updated
— This can lead to conflicting changes that have to be detected & resolved

* When do you resolve conflicts?
— During writes: the traditional approach

Reject write if cannot reach all (or majority) of replicas — but don't deal with conflicts

— Resolve conflicts during reads: Dynamo approach

Design for an "always writable" data store - highly available

read/write operations can continue even during network partitions

Rejecting customer updates won't be a good experience

— Example: a customer should always be able to add or remove items in a shopping cart
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Consistency & Availability

Who resolves conflicts?
Choices: the data store system or the application?

» Data store
— Application-unaware, so choices limited
— Simple policy, such as "last write wins”

» Application
— App is aware of the meaning of the data
— Can do application-aware conflict resolution
— E.g., merge shopping cart versions to get a unified shopping cart.

Fall back on "last write wins" if app doesn't want to bother
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Reads & Writes

Two operations:

get(key) returns
1. object or list of objects with conflicting versions
2. context (resultant version per object)

put(key, context, value)
— stores replicas
— context: ignored by the application but includes the version of the object

— key is hashed with MD5 to create a 128-bit identifier that is used to determine
the storage nodes that serve the key:

hash(key) identifies node
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Partitioning the data

» Break up the database into chunks distributed over all nodes
— Key to scalability

* Relies on consistent hashing
— On average, K/n keys need to be remapped, K = # keys, n = # slots

* Logical ring of nodes: just like Chord
— Each node is assigned a random value in the hash space: position in ring
— Responsible for all hash values between its value and predecessor’s value
— Hash(key); then walk ring clockwise to find the first node with position>hash
— Adding/removing nodes affects only immediate neighbors
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Partitioning: Dynamo virtual nodes

A physical node holds contents of multiple virtual nodes at multiple points in the ring
In this example: 2 physical nodes running 5 virtual nodes

Virtual Node 14: keys 11, 12, 13, 14 Virtual Node 1: keys 15, 0, 1

Virtual Node 3: keys 2, 3

Virtual Node 10: keys 9, 10 o

Virtual Node 8: keys 4, 5,6, 7, 8
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Partitioning: virtual nodes

Advantage: balanced load distribution

— If a node becomes unavailable, the load is evenly dispersed among
available nodes

— If a node is added, it accepts an equivalent amount of load from other
available nodes

— # of virtual nodes per system can be based on the capacity of that node

« Makes it easy to support changing technology and addition of new, faster
systems
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Replication

 Storing/reading key-value data
— Key is assigned a coordinator node (via hashing) = main node

» Replication
— Data replicated on N hosts (N is configurable)
— Coordinator oversees replication
— Coordinator replicates keys at the N-1 clockwise successor nodes in the ring
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Dynamo Replication

Coordinator replicates keys at the N-7 clockwise successor nodes in the ring

Example: N=3
Node 14 holds replicas for
Nodes 8 and 10

Node 10 holds replicas
for Node 3 and 8

Replica #1

Main copy
6
* 7 ® Node 8 holds replicas for

8 Nodes 1 and 3
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Availability & Consistency

« Configurable values
— R: minimum # of nodes that must participate in a successful read operation

— W: minimum # of nodes that must participate in a successful write operation

* Metadata to remember original destination
— If a node was unreachable, the data is sent to another node in the ring
— Metadata sent with the data states the original desired destination
— Periodically, a node checks if the originally targeted node is alive
« if so, it will transfer the object and may delete it locally to keep # of replicas in the system
consistent

« Data center failure
— System must handle the failure of a data center

— Each object is replicated across multiple data centers
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Versioning

* Not all updates may arrive at all replicas
— Clients may modify or read stale data

» Application-based reconciliation
— Each modification of data is treated as a new version

 Vector clocks are used for versioning
— Capture causality between different versions of the same object

— Vector clock is a set of (node, counter) pairs
— Returned as a context from a get () operation and sent via put ()
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Dynamo Storage Nodes

Each node has three components

1. Request coordination
— Node coordinator determined by hash(key)
— Coordinator executes get/put requests on behalf of requesting clients

— State machine contains all logic for identifying nodes responsible for a key, sending requests,
waiting for responses, retries, processing retries, packaging response

— Each state machine instance handles one request
2. Membership and failure detection

3. Local persistent storage
— Different storage engines may be used depending on application needs
» Berkeley Database (BDB) Transactional Data Store (most popular)
- BDB Java Edition
« MySQL (for large objects)
* In-memory buffer with persistent backing store
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Amazon S3 (Simple Storage Service)

Commercial service that implements many of Dynamo’s features

« Storage via web services interfaces (REST, SOAP, BitTorrent)
— Stores more than 449 billion objects
— 99.9% uptime guarantee (43 minutes downtime per month)
— Proprietary design
— Stores arbitrary objects up to 5 TB in size

Objects are organized into buckets and within a bucket identified by a unique user-assigned key

Buckets & objects can be created, listed, and retrieved via REST or SOAP
— http://s3.amazonaws/bucket/key

objects can be downloaded via HTTP GET or BitTorrent protocol
— S8 acts as a seed host and any BitTorrent client can retrieve the file
— reduces bandwidth costs

S3 can also host static websites
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The End
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