CS 417 - DISTRIBUTED SYSTEMS

Week 7: Distributed Lookup
Part 2: Amazon Dynamo

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.



Amazon Dynamo

* Not exposed as a web service
— Used to power parts of Amazon Web Services and internal services
— Highly available, key-value storage system

* |In an infrastructure with millions of components, something is always failing!
— Failure is the normal case

» A lot of services within Amazon only need primary-key access to data
— Best seller lists, shopping carts, preferences, session management, sales rank, product catalog
— No need for complex querying or management offered by an RDBMS
 Full relational database is overkill: limits scale and availability
« Still not efficient to scale or load balance RDBMS on a large scale

CS 417 © 2023 Paul Krzyzanowski 2



Core Assumptions & Design Decisions

Two operations: get and put
— Binary objects (data) identified by a unique key
— Objects tend to be small (typically < 1MB)

Strongly consistent distributed databases provide poor availability
— Use weaker consistency for higher availability

Apps should be able to configure Dynamo for desired latency & throughput
— Balance performance, cost, availability, and durability guarantees

At least 99.9% of read/write operations must be performed within a few hundred
milliseconds:

— Avoid routing requests through multiple nodes

Dynamo can be thought of as a zero-hop DHT

CS 417 © 2023 Paul Krzyzanowski



Core Assumptions & Design Decisions

* Incremental scalability
— System should be able to grow by adding a storage host (node) at a time

* Symmetry
— Every node has the same set of responsibilities

* Decentralization
— Favor decentralized techniques over central coordinators

» Heterogeneity (mix of slow and fast systems)
— Workload partitioning should be proportional to capabilities of servers

CS 417 © 2023 Paul Krzyzanowski 4



Consistency & Availability

Strong consistency & high availability cannot be achieved simultaneously

» Optimistic replication techniques — eventually consistent model
— Propagate changes to replicas in the background — they will eventually be updated
— This can lead to conflicting changes that have to be detected & resolved

* When do you resolve conflicts?
— During writes: the traditional approach

Reject write if cannot reach all (or majority) of replicas — but don't deal with conflicts

— Resolve conflicts during reads: Dynamo approach

Design for an "always writable" data store - highly available

read/write operations can continue even during network partitions

Rejecting customer updates won't be a good experience

— Example: a customer should always be able to add or remove items in a shopping cart

CS 417 © 2023 Paul Krzyzanowski 5



Consistency & Availability

Who resolves conflicts?
Choices: the data store system or the application?

» Data store
— Application-unaware, so choices limited
— Simple policy, such as "last write wins”

» Application
— App is aware of the meaning of the data
— Can do application-aware conflict resolution
— E.g., merge shopping cart versions to get a unified shopping cart.

Fall back on "last write wins" if app doesn't want to bother

CS 417 © 2023 Paul Krzyzanowski 6



Reads & Writes

Two operations:

get(key) returns
1. object or list of objects with conflicting versions
2. context (resultant version per object)

put(key, context, value)
— stores replicas
— context: ignored by the application but includes the version of the object

— key is hashed with MD5 to create a 128-bit identifier that is used to determine
the storage nodes that serve the key:

hash(key) identifies node

CS 417 © 2023 Paul Krzyzanowski 7



Partitioning the data

» Break up the database into chunks distributed over all nodes
— Key to scalability

* Relies on consistent hashing
— On average, K/n keys need to be remapped, K = # keys, n = # slots

* Logical ring of nodes: just like Chord
— Each node is assigned a random value in the hash space: position in ring
— Responsible for all hash values between its value and predecessor’s value
— Hash(key); then walk ring clockwise to find the first node with position>hash
— Adding/removing nodes affects only immediate neighbors

CS 417 © 2023 Paul Krzyzanowski 8



Partitioning: Dynamo virtual nodes

A physical node holds contents of multiple virtual nodes at multiple points in the ring
In this example: 2 physical nodes running 5 virtual nodes

Virtual Node 14: keys 11, 12, 13, 14 Virtual Node 1: keys 15, 0, 1

Virtual Node 3: keys 2, 3

Virtual Node 10: keys 9, 10 o

Virtual Node 8: keys 4, 5,6, 7, 8

CS 417 © 2023 Paul Krzyzanowski



Partitioning: virtual nodes

Advantage: balanced load distribution

— If a node becomes unavailable, the load is evenly dispersed among
available nodes

— If a node is added, it accepts an equivalent amount of load from other
available nodes

— # of virtual nodes per system can be based on the capacity of that node

« Makes it easy to support changing technology and addition of new, faster
systems

CS 417 © 2023 Paul Krzyzanowski 10



Replication

 Storing/reading key-value data
— Key is assigned a coordinator node (via hashing) = main node

» Replication
— Data replicated on N hosts (N is configurable)
— Coordinator oversees replication
— Coordinator replicates keys at the N-1 clockwise successor nodes in the ring

CS 417 © 2023 Paul Krzyzanowski 11



Dynamo Replication

Coordinator replicates keys at the N-7 clockwise successor nodes in the ring

Example: N=3
Node 14 holds replicas for
Nodes 8 and 10

Node 10 holds replicas
for Node 3 and 8

Replica #1

Main copy
6
* 7 ® Node 8 holds replicas for

8 Nodes 1 and 3

CS 417 © 2023 Paul Krzyzanowski 12




Availability & Consistency

« Configurable values
— R: minimum # of nodes that must participate in a successful read operation

— W: minimum # of nodes that must participate in a successful write operation

* Metadata to remember original destination
— If a node was unreachable, the data is sent to another node in the ring
— Metadata sent with the data states the original desired destination
— Periodically, a node checks if the originally targeted node is alive
« if so, it will transfer the object and may delete it locally to keep # of replicas in the system
consistent

« Data center failure
— System must handle the failure of a data center

— Each object is replicated across multiple data centers

CS 417 © 2023 Paul Krzyzanowski 13



Versioning

* Not all updates may arrive at all replicas
— Clients may modify or read stale data

» Application-based reconciliation
— Each modification of data is treated as a new version

 Vector clocks are used for versioning
— Capture causality between different versions of the same object

— Vector clock is a set of (node, counter) pairs
— Returned as a context from a get () operation and sent via put ()

CS 417 © 2023 Paul Krzyzanowski 14



Dynamo Storage Nodes

Each node has three components

1. Request coordination
— Node coordinator determined by hash(key)
— Coordinator executes get/put requests on behalf of requesting clients

— State machine contains all logic for identifying nodes responsible for a key, sending requests,
waiting for responses, retries, processing retries, packaging response

— Each state machine instance handles one request
2. Membership and failure detection

3. Local persistent storage
— Different storage engines may be used depending on application needs
» Berkeley Database (BDB) Transactional Data Store (most popular)
- BDB Java Edition
« MySQL (for large objects)
* In-memory buffer with persistent backing store

CS 417 © 2023 Paul Krzyzanowski 15



Amazon S3 (Simple Storage Service)

Commercial service that implements many of Dynamo’s features

« Storage via web services interfaces (REST, SOAP, BitTorrent)
— Stores more than 449 billion objects
— 99.9% uptime guarantee (43 minutes downtime per month)
— Proprietary design
— Stores arbitrary objects up to 5 TB in size

Objects are organized into buckets and within a bucket identified by a unique user-assigned key

Buckets & objects can be created, listed, and retrieved via REST or SOAP
— http://s3.amazonaws/bucket/key

objects can be downloaded via HTTP GET or BitTorrent protocol
— S8 acts as a seed host and any BitTorrent client can retrieve the file
— reduces bandwidth costs

S3 can also host static websites

CS 417 © 2023 Paul Krzyzanowski 16



The End

CS 417 © 2023 Paul Krzyzanowski

17



