CS 417 — DISTRIBUTED SYSTEMS

Week 11: Content Deli;\i“‘e‘ry
Part 1. Event Streaming — Kafka

©12023 Paul Krzyzanowski. No part of this

Paul Krzyzanowskl / ; content may be reproduced orreposted in

y whole or in part in any manner withoutthe
/\ X permission ofthe copyright owner.
_ - . v

Message Processing

How do we design a computing cluster to process huge, never-ending streams of

processing

messages from multiple sources?

System logs

llll

Sensor data

processmg
processmg

CS 417 © 2023 Paul Krzyzanowski 2

User activity

Apache Kafka

Kafka is

* Open-source 'qu

A distributed streaming platform

High-performance

Distributed

Durable

Fault-tolerant
» Publish-subscribe messaging system

Messages may be anything:
loT (Internet of Things) reports, logs, alerts, user activity, data pipelines, ...

CS 417 © 2023 Paul Krzyzanowski 3

Publish-Subscribe Messaging

Publishers send streams of messages = producers

Subscribers receive messages = consumers

Message broker = messaging system
— A service that provides a loose coupling between producers & consumers

K ==
e RSN
IR ==
o B

Producers

Message broker

CS 417 © 2023 Paul Krzyzanowski

o suscrber
o g suseiber
) (BT

=) [ETD
=) [ETD

consumers

Publish-Subscribe Messaging: Message broker

Message broker stores messages in a queue (log)

— Subscribersretrieve messages from the queue

— First-in, First-out (FIFO) ordering

— Producers & consumers do not have to be synchronized: read & write at differentrates
— Producers & consumers do not have to know about each other

) EER

e TS
mas) B

o
-

Publisher -m

Publisher -m -m
=)

Consumers

CS 417 © 2023 Paul Krzyzanowski 5

Message broker
Producers g

Publish-Subscribe Messaging: Multiple topics

We will often have various message streams
— Differentpurposes —e.g., loT temperature reports, error logs, page views, ...
— Differentconsumers will be interested in different streams

Streams are identified by a topic
— Publishers send messages to a topic and subscribers subscribe to a topic

(o Topic o) D
Publisher m %: &
) D
Publisher «

TR T | e gers ool] Subsciber
e |
oo [6 g)

=) (ET

Consumers

Message broker
Producers J

CS 417 © 2023 Paul Krzyzanowski

Publish-Subscribe Messaging: Brokers

Kafka runs as a cluster on one or more servers

Each server is called a broker
— A Kafka deploymentmay have anywhere from 1 to 1000s of brokers

Kafka can feed messages to
— Real-time systems: e.g., Spark Streaming
— Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark

(o Toic o) B2
Publisher “ ﬁ: &
) (D
Publisher «

TR T | e gers o Lo g Suscrber
e [
2 o)) (B

ad
Message broker

Producers Consumers
CS 417 © 2023 Paul Krzyzanowski 7

Scaling: Partitions

Each topic is stored as a partitioned log
— One message logis broken up (partitioned) into multiple smaller logs
— Each chunk is a partition and can be stored on a differentserver

A partitioned log enables messages for a topic to scale beyond the capacity of a single

server

Topic X

Paiond = — — mDOOD
Partition 1 = == == = o= o= - - - m
Partition 2 =~ == == == e e e - - - -

- 00) €0 (3 00 D

Server

Server

Consumers

Server

Latest Earliest message

CS 417 © 2023 Paul Krzyzanowski

Scaling: Partitions

Partition = ordered, immutable sequence of messages that is continually
appendedto

Each message record contains a sequential ID # to identify
the message in its partition

Topic X

Server

Paiond = — — mDOOD
Partition 1 = == == = o= o= - - - m

Server

=l
‘ Partition 2
— D00

Consumers

Latest ¢ Earliest

CS 417 © 2023 Paul Krzyzanowski 9

Fault Tolerance & Replication

Messages in a partition are durable: written to disk
— Persist for a configurable time period — then erased

Consensus-based state machine replication (similar to Raft)
— One server is elected to be the leader for a partition

— 0 or more other servers are followers

— Replication amount is configurable

— Leader handles all eader

read/write requests Partition 0 m .
- Data propagated to followers - wsensus—based replication
]] Follower 0
* Clients do not communicate o m - -
with followers FEITI
wsensus—based replication
Follower 1

CS 417 © 2023 Paul Krzyzanowski 10

Read messages Write messages

Fault Tolerance & Replication

What if the leader dies after receiving a message but before replicating it to
followers?

Producer can choose;

* Receive an acknowledgmentwhen the broker receives a message

or Read messages Write messages

Leader

» Receive an acknowledgment

. Partition O
only when the message is
replicated to followers Follower 0
Partition O'
Follower 1
Partition 0"

CS 417 © 2023 Paul Krzyzanowski 11

Achieving Scale

Producers

» Clients may choose which partition (server) to send messages
— Default: round-robin distribution to balance the load evenly across multiple brokers

» Create more partitions for a topic = more load distribution

Consumers
« Consumer group = one or more consumers

* Group members share the same message queue for the topic
— Messages to the topic get distributed among the members of the consumer group

« More consumers in a group = more processing capacity

CS 417 © 2023 Paul Krzyzanowski 12

Queuing vs. Publish-Subscribe

Queuing model

* Pool of consumers that take messages from a shared queue
* When any consumer gets a message, it is out of the queue

* Only one consumer gets each message

« Great for distributing processing among multiple subscribers

o

------ 0 B2
o

CS 417 © 2023 Paul Krzyzanowski 13

!

Consumer group

Queuing Model

Queuing vs. Publish-Subscribe

Publish-Subscribe model
« Each consumer that subscribes to a topic will get every message for that topic

» Allows multiple clients to share the same data ... but does not scale

o =3
0o 223

O B

Publish-Subscribe Model

CS 417 © 2023 Paul Krzyzanowski 14

------ DDOo

Queuing vs. Publish-Subscribe

Queuing or Publish-Subscribe model? Kafka offers both!
» With consumer groups, consumers can distribute messages among a collection of processes

« Each consumergroup provides a publish-subscribe model
— Consumers can join separate groups to receive the same set of messages

o

- DODO o
0

m Subscriber R

m SIILE Il «—— Separate consumer groups

m Subscriber R

CS 417 © 2023 Paul Krzyzanowski 15

— Oneconsumergroup

Queuing Model

- DDDD

Publish-Subscribe Model

Disk storage

Kafka provides durable message logs: all messages are written to disk
* Messages will not be lost if the system dies and restarts

But disks are slow ... even SSDs!
* Not necessarily — depends how you use them
* Huge performance difference between random block access and sequential access

/

« Kafka optimizes for large sequential writes & reads [estem g

— Sequential disk operations can be thousands of times Ul
faster than random access :

CS 417 © 2023 Paul Krzyzanowski 16

Apache Kafka is

* Open-source
— Developed by LinkedIn and donated to the Apache Software Foundation, writteb in Scala and Java

* High-performance

— Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple
servers

— Partitioned log enables the log to be larger than the capacity of any one server
— Consumer groups enable the scaling of message processing
— Low-latency disk read/writes by using sequential /O and avoiding seeks
* Distributed
— Each message queue (log) is divided among multiple servers

* Durable
— Message logs are written to disk (via large streaming writes for best performance)

* Fault-tolerant
— Support for redundancy with a leader & followers per partition

* Publish-subscribemessaging system
— Publish & subscribe to topics

CS 417 © 2023 Paul Krzyzanowski 17

Kafka Summary

 Solved the problem of dealing with continuous data streams
 Solves the scaling problem by using partitioned logs
 Supports both single queue & publish-subscribe models

« Message ordering is guaranteed per-partition only

» Well-used, proven performance

Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many
banks, ...

See https://kafka.apache.org/powered-by

CS 417 © 2023 Paul Krzyzanowski 18

https://kafka.apache.org/powered-by

The End

CS 417 © 2023 Paul Krzyzanowski

19

	Slide 1
	Slide 2: Message Processing
	Slide 3: Apache Kafka
	Slide 4: Publish-Subscribe Messaging
	Slide 5: Publish-Subscribe Messaging: Message broker
	Slide 6: Publish-Subscribe Messaging: Multiple topics
	Slide 7: Publish-Subscribe Messaging: Brokers
	Slide 8: Scaling: Partitions
	Slide 9: Scaling: Partitions
	Slide 10: Fault Tolerance & Replication
	Slide 11: Fault Tolerance & Replication
	Slide 12: Achieving Scale
	Slide 13: Queuing vs. Publish-Subscribe
	Slide 14: Queuing vs. Publish-Subscribe
	Slide 15: Queuing vs. Publish-Subscribe
	Slide 16: Disk storage
	Slide 17: Apache Kafka is
	Slide 18: Kafka Summary
	Slide 19: The End

