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Message Processing

How do we design a computing cluster to process huge, never-ending streams of

processing

messages from multiple sources?
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Apache Kafka

Kafka is

* Open-source 'qu

A distributed streaming platform

High-performance

Distributed

Durable

Fault-tolerant
» Publish-subscribe messaging system

Messages may be anything:
loT (Internet of Things) reports, logs, alerts, user activity, data pipelines, ...
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Publish-Subscribe Messaging

Publishers send streams of messages = producers

Subscribers receive messages = consumers

Message broker = messaging system
— A service that provides a loose coupling between producers & consumers
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Publish-Subscribe Messaging: Message broker

Message broker stores messages in a queue (log)

— Subscribersretrieve messages from the queue

— First-in, First-out (FIFO) ordering

— Producers & consumers do not have to be synchronized: read & write at differentrates
— Producers & consumers do not have to know about each other
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Publish-Subscribe Messaging: Multiple topics

We will often have various message streams
— Differentpurposes —e.g., loT temperature reports, error logs, page views, ...
— Differentconsumers will be interested in different streams

Streams are identified by a topic
— Publishers send messages to a topic and subscribers subscribe to a topic
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Publish-Subscribe Messaging: Brokers

Kafka runs as a cluster on one or more servers

Each server is called a broker
— A Kafka deploymentmay have anywhere from 1 to 1000s of brokers

Kafka can feed messages to
— Real-time systems: e.g., Spark Streaming
— Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark
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Scaling: Partitions

Each topic is stored as a partitioned log
— One message logis broken up (partitioned) into multiple smaller logs
— Each chunk is a partition and can be stored on a differentserver

A partitioned log enables messages for a topic to scale beyond the capacity of a single

server
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Scaling: Partitions

Partition = ordered, immutable sequence of messages that is continually
appendedto

Each message record contains a sequential ID # to identify
the message in its partition
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Fault Tolerance & Replication

Messages in a partition are durable: written to disk
— Persist for a configurable time period — then erased

Consensus-based state machine replication (similar to Raft)
— One server is elected to be the leader for a partition

— 0 or more other servers are followers

— Replication amount is configurable

— Leader handles all eader

read/write requests Partition 0 m .
- Data propagated to followers - wsensus—based replication
] ] Follower 0
* Clients do not communicate o m - -
with followers FEITI
wsensus—based replication
Follower 1
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Fault Tolerance & Replication

What if the leader dies after receiving a message but before replicating it to
followers?

Producer can choose;

* Receive an acknowledgmentwhen the broker receives a message

or Read messages Write messages

Leader

» Receive an acknowledgment

. Partition O
only when the message is
replicated to followers Follower 0
Partition O'
Follower 1
Partition 0"
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Achieving Scale

Producers

» Clients may choose which partition (server) to send messages
— Default: round-robin distribution to balance the load evenly across multiple brokers

» Create more partitions for a topic = more load distribution

Consumers
« Consumer group = one or more consumers

* Group members share the same message queue for the topic
— Messages to the topic get distributed among the members of the consumer group

« More consumers in a group = more processing capacity
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Queuing vs. Publish-Subscribe

Queuing model

* Pool of consumers that take messages from a shared queue
* When any consumer gets a message, it is out of the queue

* Only one consumer gets each message

« Great for distributing processing among multiple subscribers
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Queuing vs. Publish-Subscribe

Publish-Subscribe model
« Each consumer that subscribes to a topic will get every message for that topic

» Allows multiple clients to share the same data ... but does not scale
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Queuing vs. Publish-Subscribe

Queuing or Publish-Subscribe model? Kafka offers both!
» With consumer groups, consumers can distribute messages among a collection of processes

« Each consumergroup provides a publish-subscribe model
— Consumers can join separate groups to receive the same set of messages
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Disk storage

Kafka provides durable message logs: all messages are written to disk
* Messages will not be lost if the system dies and restarts

But disks are slow ... even SSDs!
* Not necessarily — depends how you use them
* Huge performance difference between random block access and sequential access

/

« Kafka optimizes for large sequential writes & reads [ estem g

— Sequential disk operations can be thousands of times Ul
faster than random access :

CS 417 © 2023 Paul Krzyzanowski 16



Apache Kafka is

* Open-source
— Developed by LinkedIn and donated to the Apache Software Foundation, writteb in Scala and Java

* High-performance

— Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple
servers

— Partitioned log enables the log to be larger than the capacity of any one server
— Consumer groups enable the scaling of message processing
— Low-latency disk read/writes by using sequential /O and avoiding seeks
* Distributed
— Each message queue (log) is divided among multiple servers

* Durable
— Message logs are written to disk (via large streaming writes for best performance)

* Fault-tolerant
— Support for redundancy with a leader & followers per partition

* Publish-subscribemessaging system
— Publish & subscribe to topics
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Kafka Summary

 Solved the problem of dealing with continuous data streams
 Solves the scaling problem by using partitioned logs
 Supports both single queue & publish-subscribe models

« Message ordering is guaranteed per-partition only

» Well-used, proven performance

Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many
banks, ...

See https://kafka.apache.org/powered-by
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https://kafka.apache.org/powered-by

The End
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