Lecture Notes

CS 417 - DISTRIBUTED SYSTEMS

Week 11: Content Delivery

Part 1: Event Streaming - Kafka

Paul Krzyzanowski

© 2023 Paul Krzyzanowski. No part of this content may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

Message Processing

How do we design a computing cluster to process huge, never-ending streams of messages from multiple sources?

Apache Kafka

Kafka is

- Open-source
- High-performance
- Distributed
- Durable
- Fault-tolerant
- Publish-subscribe messaging system

Messages may be anything:

IoT (Internet of Things) reports, logs, alerts, user activity, data pipelines, ...

Publish-Subscribe Messaging

Publishers send streams of messages = *producers*

Subscribers receive messages = **consumers**

Message broker = messaging system

A service that provides a loose coupling between producers & consumers

Publish-Subscribe Messaging: Message broker

Message broker stores messages in a queue (log)

- Subscribers retrieve messages from the queue
- First-in, First-out (FIFO) ordering
- Producers & consumers do not have to be synchronized: read & write at different rates
- Producers & consumers do not have to know about each other

Publish-Subscribe Messaging: Multiple topics

We will often have various message streams

- Different purposes e.g., IoT temperature reports, error logs, page views, ...
- Different consumers will be interested in different streams

Streams are identified by a topic

Publishers send messages to a topic and subscribers subscribe to a topic

Publish-Subscribe Messaging: Brokers

Kafka runs as a cluster on one or more servers

Each server is called a **broker**

- A Kafka deployment may have anywhere from 1 to 1000s of brokers
 Kafka can feed messages to
- Real-time systems: e.g., Spark Streaming
- Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark

Scaling: Partitions

Each topic is stored as a partitioned log

- One message log is broken up (partitioned) into multiple smaller logs
- Each chunk is a partition and can be stored on a different server

A **partitioned log** enables messages for a topic to scale beyond the capacity of a single server

Scaling: Partitions

Partition = ordered, immutable sequence of messages that is continually appended to

Each message record contains a sequential ID # to identify the message in its partition

Fault Tolerance & Replication

Messages in a partition are **durable**: written to disk

Persist for a configurable time period – then erased

Consensus-based state machine replication (similar to Raft)

- One server is elected to be the leader for a partition
- 0 or more other servers are followers
- Replication amount is configurable
- Leader handles all read/write requests
 - Data propagated to followers
 - Clients do not communicate with followers

Fault Tolerance & Replication

What if the leader dies after receiving a message but before replicating it to followers?

Producer can choose:

Receive an acknowledgment when the broker receives a message

or

 Receive an acknowledgment only when the message is replicated to followers

Achieving Scale

Producers

- Clients may choose which partition (server) to send messages
 - Default: round-robin distribution to balance the load evenly across multiple brokers
- Create more partitions for a topic ⇒ more load distribution

Consumers

- Consumer group = one or more consumers
- Group members share the same message queue for the topic
 - Messages to the topic get distributed among the members of the consumer group
- More consumers in a group ⇒ more processing capacity

Queuing vs. Publish-Subscribe

Queuing model

- Pool of consumers that take messages from a shared queue
- When any consumer gets a message, it is out of the queue
- Only one consumer gets each message
- Great for distributing processing among multiple subscribers

Queuing Model

Queuing vs. Publish-Subscribe

Publish-Subscribe model

- Each consumer that subscribes to a topic will get every message for that topic
- Allows multiple clients to share the same data ... but does not scale

Publish-Subscribe Model

Queuing vs. Publish-Subscribe

Queuing or Publish-Subscribe model? Kafka offers both!

- With consumer groups, consumers can distribute messages among a collection of processes
- Each consumer group provides a publish-subscribe model
 - Consumers can join separate groups to receive the same set of messages

Disk storage

Kafka provides durable message logs: all messages are written to disk

Messages will not be lost if the system dies and restarts

But disks are slow ... even SSDs!

- Not necessarily depends how you use them
- Huge performance difference between random block access and sequential access
- Kafka optimizes for large sequential writes & reads
 - Sequential disk operations can be thousands of times faster than random access

Apache Kafka is

Open-source

Developed by Linkedln and donated to the Apache Software Foundation, writteb in Scala and Java

High-performance

- Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple servers
- Partitioned log enables the log to be larger than the capacity of any one server
- Consumer groups enable the scaling of message processing
- Low-latency disk read/writes by using sequential I/O and avoiding seeks

Distributed

Each message queue (log) is divided among multiple servers

Durable

Message logs are written to disk (via large streaming writes for best performance)

Fault-tolerant

Support for redundancy with a leader & followers per partition

Publish-subscribe messaging system

Publish & subscribe to topics

Kafka Summary

- Solved the problem of dealing with continuous data streams
- Solves the scaling problem by using partitioned logs
- Supports both single queue & publish-subscribe models
- Message ordering is guaranteed per-partition only
- Well-used, proven performance
 Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many banks, ...

See https://kafka.apache.org/powered-by

The End