CS 417 - DISTRIBUTED SYSTEMS |

Week 13: Infrastructure |
Part 2: High Availability;(HA) Clusters

©,2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl 92, : whole or in part in any manner without the

permission of the copyright owner.

Computer System Design Options

* Highly Available Systems
— Incorporate elements of fault-tolerant design
— Component replication, high-quality components
— A fully fault tolerant system will offer non-stop availability ... but you can’t have this!
— Problem: 1 in availability = 1 $$

* High Performance Systems
— SMP architecture
— Shared memory, shared clock, multiple processors

— Problems: « Performance gain as f(# processors) is sublinear
» Contention for resources (bus, memory, devices)
* The solution is also expensive!

« Commodity off-the-shelf Systems (COTS)

— Inexpensive
— Problem: Not reliable and not high performance

CS 417 © 2023 Paul Krzyzanowski

Clustering

Achieve reliability and scalability by interconnecting multiple independent
systems

Cluster:
A group of standard, autonomous servers configured so they appear on
the network as a single machine

Single system image

CS 417 © 2023 Paul Krzyzanowski

Ideally...

* Bunch of off-the shelf machines

Interconnected on a high-speed LAN

Appear as one system to users

Processes are load-balanced across the cluster
— May migrate

— May run on different systems

— All IPC mechanisms and file access available

Fault tolerant

— Components may fail
— Machines may be taken down

CS 417 © 2023 Paul Krzyzanowski

But...

We don't get all this in off-the-shelf platforms
« Systems design has engineering trade-offs

» Do you need fault-tolerant hardware?

— Not if your software can work around it
» Checkpointing, restarting processes, replicated servers, ...

* Do you need high performance?

— How frequently do processes need to communicate with each other?
+ Scientific computation (e.g., huge matrices) is different from MapReduce or Spark Streaming

CS 417 © 2023 Paul Krzyzanowski

Clustering types

1 Datacenter job scheduling

O High availability (HA): failover cluster

d Supercomputing (HPC): includes batch processing
 Load balancing: simple workload distribution

 Storage clusters: shared storage

CS 417 © 2023 Paul Krzyzanowski

Datacenter Job Scheduling:
YARN & Mesos

What was the problem?

 Lots of frameworks, each with its own task management

Hadoop
MapReduce

Apache

Pregel Hama

Cassandra Spark

CS 417 © 2023 Paul Krzyzanowski

What was the problem?

 Lots of frameworks, each with its own task management

Hadoop Apache
Microservices Web sites Apps

« Goal: manage resource usage among multiple frameworks
— Long running vs. terminating jobs; interactive vs. batch jobs
— Production vs. test vs. development

CS 417 © 2023 Paul Krzyzanowski

What was the problem?

 Lots of frameworks, each with its own task management

Hadoop Apache
Microservices Web sites Apps

« Goal: manage resource usage among multiple frameworks
— Long running vs. terminating jobs; interactive vs. batch jobs
— Production vs. test vs. development

Facebook

Apache YARN Google Borg Tupperware

v

Mesos

CS 417 © 2023 Paul Krzyzanowski

Apache Hadoop YARN (Yet Another Resource Negotiator)

Take resource management out of Hadoop MapReduce and create a generic
resource manager/scheduler

Job Resource Manager Master Node

v

Client

Applications
Manager

Job / v \

4 N\ 4 N\ 4 N\

Node Manager Node Manager Node Manager
Container Container Container

Application Master Application Master Application Master

Scheduler

A J A J A J

Data Node Data Node Data Node

Apache YARN Components & Functions

One Master Node, multiple Data Nodes

Resource Manager: runs on Master Node

— Tracks resources for the cluster

— Clients submit jobs (e.g., MapReduce or any program) to the Resource Manager
— Contains an Applications Manager and Scheduler

— Applications Manager: Accepts or rejects jobs from clients
« Validates the request: enough resources available, it’s not a submission with a duplicate ID
* Maintains a queue of submitted jobs & completed jobs (so users can request results)

— Scheduler: decides if the job can be run
 If yes, the Applications Manager allocates a container (reserves CPU & memory) for the job

— Application Manager finds a node that can handle the job and contacts the Node
Manager at that node

Node Manager: runs on Data Nodes

— Allocates the resources to execute the job
* Creates a container: an environment where a YARN application runs — a pool of memory
« Optionally, can be an isolated environment with limits via Linux cgroups
* Can also be configured to use Docker containers for isolation

— Launches Application Master within the container
* Framework-specific (e.g., dedicated Application Master for MapReduce)
* Responsible for executing and monitoring all the tasks for the job
* Checks if additional resources are needed (e.g., multiple map and reduce workers)

— If so, contact the Resource Manager with a Resource Request with resource needs and location
constraints (e.g., proximity to data)

— If this results in tasks on multiple nodes, they will each send a heartbeat to the Application
Manager

— Each Application Master sends the status of the job execution to the Resource Manager

Apache Mesos

* Developed at UC Berkeley — 2007

§5

o <D

* Distributed resource management %’
<

and job scheduling system

* Used by Airbnb, Apple, Netflix, X, Uber, Yelp, ...

CS 417 © 2023 Paul Krzyzanowski

Mesos Goals

» High utilization of computing resources

* Run multiple frameworks - including future ones

* Run multiple instances of the same framework

* Provide isolation between frameworks

» Scale to tens of thousands of nodes in a data center

» Operate reliably

CS 417 © 2023 Paul Krzyzanowski

Microkernel-like approach

 Track available computing resources
 Allow frameworks to run tasks on specific nodes

* Resource sharing
— Frameworks divide work into tasks
— Mesos allocates tasks

» Resource offers

— Mesos tells frameworks about available computing resources
{machine, memory, CPUs, ...}

— A framework can accept or reject a resource offer

CS 417 © 2023 Paul Krzyzanowski

Mesos Design

* Mesos Master

— Tracks available resources
on each node

MapReduce Spark Container Apps

Framework Framework Framework
A

. resource offer
* Allocation module

— Schedules jobs among frameworks (priority, fair share, ...)
¥ Y Mesos Master [Allocation

— Controls which framework to offer resources Module

A
« Master creates resource offer / Jun task

— List of nodes & resources:
node: {#CPUs, #GPUs, memoty, ...} Mesos Agent Mesos Agent Mesos Agent

MapReduce Task Spark Task Spark Task

« Offer sent to framework

. . MapReduce Task Spark Task Docker A|
— Framework can do its own scheduling P P PP
(e.g., consider locality of data) Spark Task Docker App
— Framework accepts or rejects offer Docker App

* If accepted, framework tells Mesos to
launch tasks on a specific node

* Mesos agent launches and task in an isolated executor

CS 417 © 2023 Paul Krzyzanowski

High Availability (HA) Clustering

Cluster Components

 Cluster membership

* Heartbeat & heartbeat network

* Quorum

» Configuration & service management

 Storage

CS 417 © 2023 Paul Krzyzanowski

Cluster Membership

Software to manage cluster membership
— What are the nodes in the cluster?
— Which nodes in the cluster are currently alive (active)?

We saw this:
— Group Membership Service in virtual synchrony
— GFS master, HDFS NameNode
— Bigtable master
— Pregel master
— MapReduce Master & Spark Cluster Manager

CS 417 © 2023 Paul Krzyzanowski

Quorum

Some members may be dead or disconnected

Quorum: number of elements that must be online for the cluster to function

— Voting algorithm to determine whether the set of nodes has quorum
(a majority of nodes to keep running)

— We saw this with Raft consensus (& Paxos): forcing a majority avoids split-brain

Quorum disk
— Shared storage: whichever node can reserve the disk owns it

— Enables systems to resolve who runs a service in small clusters even if the network
becomes partitioned

CS 417 © 2023 Paul Krzyzanowski

Types of Quorum

Node Majority

— Each available node can vote

— Need majority (over 50%) of votes for the cluster to continue running
— Best for odd number of nodes, larger clusters

Node & Disk Majority (Microsoft Disk Witness)

— Designated shared disk = disk witness: counts as a vote
— Need majority of votes to continue running

— Best for an even # of nodes in one site

Node & File Share Majority (Microsoft File Share Witness)
— Shared file system = file share witness : counts as a vote
— Need majority of votes to continue running
— Windows Server 2019: File Share Witness on USB stick
+ Shared USB storage on router
— Best for an even # of nodes in a multi-site cluster

No majority
— Cluster has quorum if even one node is available and can communicate with a specific disk in the cluster

CS 417 © 2023 Paul Krzyzanowski

Cluster configuration & service management

» Cluster configuration system & manager
— Ul to manage the configuration of systems and software in a cluster
— Administrator has a single point of control

« Cluster management agent
— Runs in each cluster node: changes propagate to all nodes
— Tracks cluster membership — removes failed nodes
— Keeps track of quorum — stops cluster when < nodes not active

« Service management & Scheduler
— Identify which applications run on which systems
— Specify how failover occurs
* Active: system runs a service
« Standby: Which system(s) can run the service if the active dies
— E.g., MapReduce, Pregel, Spark all use coordinators for their service
— General purpose schedulers: Apache Mesos, Hadoop YARN, Google Borg, Linux Slurm

CS 417 © 2023 Paul Krzyzanowski

Disks

CS 417 © 2023 Paul Krzyzanowski

Shared storage access

* [f an application can run on any machine, how does it access file data?

* If an application fails over from one machine to another, how does it
access its file data?

» Can applications on different machines share files?

CS 417 © 2023 Paul Krzyzanowski

Network (Distributed) File Systems

One option:
— Network file systems: NFS, SMB, AFS, etc.
— Works great for many applications

Concerns
Availability

— Address with replication (most file systems offer little)
Performance

— Remote systems on a LAN vs. local bus access

— Overhead of remote operating system & network stack

— Point of congestion

— Look at GFS/HDFS to distribute file data across lots of servers
... or other parallel file systems, such as Lustre, GlusterFS, or Ceph

CS 417 © 2023 Paul Krzyzanowski

Shared disks & Cluster file systems

Shared disk
— Allows multiple systems to share access to disk drives

— Works well if there isn’t much contention
... but you can’t have multiple systems
reading/writing/caching the same disk blocks

Cluster File System
— Client runs a file system accessing a shared disk at the block level
* vs. a distributed file system, which access at a file-system level
— No client/server roles, no disconnected modes
— All nodes are peers and access a shared disk(s)
— Distributed Lock Manager (DLM)
* Process to ensure mutual exclusion for disk access
* Provides inode-based locking and caching control
* Not needed for local file systems on a shared disk

CS 417 © 2023 Paul Krzyzanowski

Cluster File Systems

Examples:

* IBM General Parallel File System (GPFS)
* Microsoft Cluster Shared Volumes (CSV)
* Oracle Cluster File System (OCFS)

* Red Hat Global File System (GFS2)

Linux GFS2 (no relation to Google GFS)

 Cluster file system accessing storage at a block level

* Cluster Logical Volume Manager (CLVM):
Volume management of cluster storage

» Global Network Block Device (GNBD):
Block level storage access over ethernet: cheap way to access block-level storage

CS 417 © 2023 Paul Krzyzanowski

The alternative: shared nothing

Shared nothing
— No shared devices
— Each system has its own storage resources
— No need to deal with DLMs

— If a machine A needs resources on B, A sends a message to B
- If B fails, storage requests have to be switched over to a live node

Requires exclusive access to shared storage

Rely on active replication of changes or ...
— Multiple nodes may have access to shared storage
— Only one node is granted exclusive access at a time — one owner
— Exclusive access changed on failover

CS 417 © 2023 Paul Krzyzanowski

SAN: Computer-Disk interconnect

SAN = Storage Area Network

« Separate network between nodes and storage arrays

— Fibre channel
— iSCSI

* Any node can be configured to access any storage through a fibre channel switch

Acronyms
— DAS: Direct Attached Storage
— SAN: block-level access to a disk via a network
— NAS: file-level access to a remote file system (NFS, SMB, ...)

CS 417 © 2023 Paul Krzyzanowski

Fallover

CS 417 © 2023 Paul Krzyzanowski

* How do you detect failover?
* How long does it take to detect?
* How does a dead application move/restart?

* Where does it move t0?

CS 417 © 2023 Paul Krzyzanowski

Heartbeat network

* Machines need to detect faulty systems
— Heartbeat: Periodic “ping” mechanism
— An “are you alive” message

* Need to distinguish system faults from network faults
— Useful to maintain redundant networks

— Avoid split-brain issues in systems without quorum
(e.g., a 2-node cluster)

» Once you know who is dead or alive, then determine a course of action

CS 417 © 2023 Paul Krzyzanowski

Failover Configuration Models

* Active/Passive
— Requests go to active system

— Passive nodes do nothing until they’re needed

— Passive nodes maintain replicated state (e.g., SMR/Virtual Synchrony)

— Example: Chubby

 Active/Active
— Any node can handle a request

— Failed workload goes to remaining nodes
— Replication must be N-way for N active nodes

— Example: GFS chunks

* Active/Passive: N+M

— M dedicated failover node(s) for N active nodes

CS 417 © 2023 Paul Krzyzanowski

Design options for failover

» Cold failover
— Application restart
— Example: map and reduce workers in MapReduce

« Warm failover
— Restart last checkpointed image
— Relies on application checkpointing itself periodically
— Example: Pregel

* Hot failover

— Application state is synchronized across systems
» E.g., replicated state machines or lockstep synchronization at the CPU level
— Spare is ready to run immediately

— May be difficult at a fine granularity, prone to software faults (e.g., what if a specific set of inputs
caused the software to die?)

— Example: Chubby

CS 417 © 2023 Paul Krzyzanowski

Design options for failover

With either type of failover ...

Multi-directional failover
— Failed applications migrate to or restart on available systems

And possibly

Cascading failover
— If the backup system fails, application can be restarted on another surviving system

CS 417 © 2023 Paul Krzyzanowski

IP Address Takeover (IPAT)

Depending on the deployment:

* Ignore

— |IP addresses of services don’t matter. A load balancer, name server, or coordinator will identify the
correct machine

- Take over IP address
— A node in an active/passive configuration may need to take over the IP address of a failed node

 Take over MAC address

— MAC address takeover may be needed if we cannot guarantee that other nodes will flush their ARP
cache

 Listen on multiple addresses
— A node in an active/active configuration may need to listen on multiple IP addresses

CS 417 © 2023 Paul Krzyzanowski

Hardware support for High Availability

« Hot-pluggable components
— Minimize downtime for component swapping
— E.g., disks, power supplies, CPU/memory boards

* Redundant devices
— Redundant power supplies
— Parity on memory
— Mirroring on disks (or RAID for HA)
— Switchover of failed components

 Diagnostics
— On-line identification & service

CS 417 © 2023 Paul Krzyzanowski

* Fencing: method of isolating a node from a cluster
— Apply to failed node
— Disconnect I/O to ensure data integrity
— Avoid problems with Byzantine failures

— Avoids problems with fail-restart
* Restarted node has not kept up to date with state changes

* Types of fencing
— Power fencing: shut power off a node
— SAN fencing: disable a Fibre Channel port to a node
— System service fencing: disable access to a global network block device (GNBD) server

— Software fencing: remove server processes from the group
* E.g., virtual synchrony

CS 417 © 2023 Paul Krzyzanowski

Cluster software hierarchy

Example: Windows Server cluster abstractions

Top tier: Cluster abstractions

- Failover manager (what needs to be started/restarted?)
- Resource monitor (what’s going on?)
- Cluster registry (who belongs in the cluster?)

Middle tier: Distributed operations

- Global status update
- Membership
- Quorum (and leader election)

Bottom tier: OS and drivers

- Cluster disk driver, cluster network drivers
- |P address takeover

CS 417 © 2023 Paul Krzyzanowski

The End

CS 417 © 2023 Paul Krzyzanowski

