
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Paul Krzyzanowski

Week 7: Memory Corruption &
 Code Injection

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 2

Hijacking & Injection

Part 1

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 3

Two New Windows Zero-Days Exploited in the Wild — One
Affects Every Version Ever Shipped
October 15, 2025 • Ravie Lakshmanan

https://thehackernews.com/2025/10/two-new-windows-zero-days-exploited-in.html

Microsoft on Tuesday released fixes for a whopping 183 security flaws spanning its products, including three
vulnerabilities that have come under active exploitation in the wild, as the tech giant officially ended support for
its Windows 10 operating system unless the PCs are enrolled in the Extended Security Updates (ESU) program.

Of the 183 vulnerabilities, eight of them are non-Microsoft issued CVEs. As many as 165 flaws have been rated
as Important in severity, followed by 17 as Critical and one as Moderate. The vast majority of them relate to
elevation of privilege vulnerabilities (84), with remote code execution (33), information disclosure (28), spoofing
(14), denial-of-service (11), and security feature bypass (11) issues accounting for the rest of them.

The updates are in addition to the 25 vulnerabilities Microsoft addressed in its Chromium-based Edge browser
since the release of September 2025's Patch Tuesday update.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 4

Two New Windows Zero-Days Exploited in the Wild — One
Affects Every Version Ever Shipped
October 15, 2025 • Ravie Lakshmanan

https://thehackernews.com/2025/10/two-new-windows-zero-days-exploited-in.html

Microsoft on Tuesday released fixes for a whopping 183 security flaws spanning its products, including three
vulnerabilities that have come under active exploitation in the wild, as the tech giant officially ended support for
its Windows 10 operating system unless the PCs are enrolled in the Extended Security Updates (ESU) program.

Of the 183 vulnerabilities, eight of them are non-Microsoft issued CVEs. As many as 165 flaws have been rated
as Important in severity, followed by 17 as Critical and one as Moderate. The vast majority of them relate to
elevation of privilege vulnerabilities (84), with remote code execution (33), information disclosure (28), spoofing
(14), denial-of-service (11), and security feature bypass (11) issues accounting for the rest of them.

The updates are in addition to the 25 vulnerabilities Microsoft addressed in its Chromium-based Edge browser
since the release of September 2025's Patch Tuesday update.

CVE-2025-24990 (CVSS score: 7.8)
 Windows Agere Modem Driver ("ltmdm64.sys") Elevation of Privilege Vulnerability

Weakness: Untrusted Pointer Dereference

What privileges could be gained by an attacker who successfully exploited this vulnerability?
An attacker who successfully exploited this vulnerability could gain administrator privileges.

Is the vulnerability only exploitable if the Agere Modem is actively being used?
No. All supported versions of Windows can be affected by a successful exploitation of this
vulnerability, even if the modem is not actively being used..

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 5

Two New Windows Zero-Days Exploited in the Wild — One
Affects Every Version Ever Shipped
October 15, 2025 • Ravie Lakshmanan

https://thehackernews.com/2025/10/two-new-windows-zero-days-exploited-in.html

Microsoft on Tuesday released fixes for a whopping 183 security flaws spanning its products, including three
vulnerabilities that have come under active exploitation in the wild, as the tech giant officially ended support for
its Windows 10 operating system unless the PCs are enrolled in the Extended Security Updates (ESU) program.

Of the 183 vulnerabilities, eight of them are non-Microsoft issued CVEs. As many as 165 flaws have been rated
as Important in severity, followed by 17 as Critical and one as Moderate. The vast majority of them relate to
elevation of privilege vulnerabilities (84), with remote code execution (33), information disclosure (28), spoofing
(14), denial-of-service (11), and security feature bypass (11) issues accounting for the rest of them.

The updates are in addition to the 25 vulnerabilities Microsoft addressed in its Chromium-based Edge browser
since the release of September 2025's Patch Tuesday update.

CVE-2025-49708 (CVSS score: 9.9)
 Microsoft Graphics Component Elevation of Privilege Vulnerability

Weakness: Use After Free

What privileges could be gained by an attacker who successfully exploited this vulnerability?
An attacker who successfully exploited this vulnerability could gain SYSTEM privileges.

How could an attacker exploit this vulnerability?
An attacker can exploit this vulnerability by getting access to the local guest VM so they can attack
the Host OS.
According to the CVSS metric, a successful exploitation could lead to a scope change (S:C).
What does this mean for this vulnerability?
Compromising the host enables an attacker to impact other virtual machines running on the same
host, even if those VMs are not directly vulnerable to this issue.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 6

Two New Windows Zero-Days Exploited in the Wild — One
Affects Every Version Ever Shipped
October 15, 2025 • Ravie Lakshmanan

https://thehackernews.com/2025/10/two-new-windows-zero-days-exploited-in.html

Microsoft on Tuesday released fixes for a whopping 183 security flaws spanning its products, including three
vulnerabilities that have come under active exploitation in the wild, as the tech giant officially ended support for
its Windows 10 operating system unless the PCs are enrolled in the Extended Security Updates (ESU) program.

Of the 183 vulnerabilities, eight of them are non-Microsoft issued CVEs. As many as 165 flaws have been rated
as Important in severity, followed by 17 as Critical and one as Moderate. The vast majority of them relate to
elevation of privilege vulnerabilities (84), with remote code execution (33), information disclosure (28), spoofing
(14), denial-of-service (11), and security feature bypass (11) issues accounting for the rest of them.

The updates are in addition to the 25 vulnerabilities Microsoft addressed in its Chromium-based Edge browser
since the release of September 2025's Patch Tuesday update.

CVE-2025-2884 (CVSS score: 4.6)
Trusted Computing Group (TCG) TPM2.0 reference implementation's CryptHmacSign helper function

Weakness: Out of Bounds Read

Not yet exploited

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 7

Two New Windows Zero-Days Exploited in the Wild — One
Affects Every Version Ever Shipped
October 15, 2025 • Ravie Lakshmanan

https://thehackernews.com/2025/10/two-new-windows-zero-days-exploited-in.html

Microsoft on Tuesday released fixes for a whopping 183 security flaws spanning its products, including three
vulnerabilities that have come under active exploitation in the wild, as the tech giant officially ended support for
its Windows 10 operating system unless the PCs are enrolled in the Extended Security Updates (ESU) program.

Of the 183 vulnerabilities, eight of them are non-Microsoft issued CVEs. As many as 165 flaws have been rated
as Important in severity, followed by 17 as Critical and one as Moderate. The vast majority of them relate to
elevation of privilege vulnerabilities (84), with remote code execution (33), information disclosure (28), spoofing
(14), denial-of-service (11), and security feature bypass (11) issues accounting for the rest of them.

The updates are in addition to the 25 vulnerabilities Microsoft addressed in its Chromium-based Edge browser
since the release of September 2025's Patch Tuesday update.

CVE-2025-59287 (CVSS score: 9.8)
Windows Server Update Service (WSUS) Remote Code Execution Vulnerability

Weakness: Deserialization of Untrusted Data

How could an attacker exploit the vulnerability?
A remote, unauthenticated attacker could send a crafted event that triggers unsafe object
deserialization in a legacy serialization mechanism, resulting in remote code execution.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hijacking & Injection

Hijacking: Taking control of a process by intercepting, manipulating, or redirecting its
intended behavior for unintended purposes without injecting new code

• Session hijacking: take over someone’s authenticated session
– Snoop on a communication session to get authentication info
– Access someone’s cookies for a web session
– Perform an Adversary-in-the-Middle (AitM) attack to let a user log in and use that session

• Control flow hijacking: alter program execution
– Use return-to-libc or return-oriented programming techniques to alter execution

• Other forms of hijacking
– Browser redirection hijacking: Redirect a victim’s web browser to a malicious site
– Domain hijacking: Change DNS (IP address lookup) results to direct users to malicious addresses
– Search Engine Poisoning: Change the browser’s default search engine

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 8

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hijacking & Injection

Injection
Inserting arbitrary code or commands into a process to execute unintended operations

• Command injection: get a process to run arbitrary system commands
– Send commands to a program that are then executed by the system shell
– Includes SQL injection – send database commands

• Code injection: get a process to run arbitrary code
– Overflow an input buffer and cause new code to run
– Provide JavaScript as input that will later get executed (Cross-site scripting)

• Library injection: have a process run with different linked libraries
– Alter the search path or force a program to load alternate DLL/shared libraries

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 9

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Security-Sensitive Programs & Remote Services

Hijacking or injection isn’t interesting for regular programs on your system
– You might as well just run the commands from the shell or write a program

• It is interesting if
– The program runs with elevated privileges (setuid), especially if it runs as root
– Runs on a system you don’t have access to (most servers)
• This is Remote Code Execution (RCE)

• It is super interesting if
– The program runs with elevated privileges on a remote system you can’t access directly

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 10

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Bugs and mistakes

• Most attacks are due to
– Social engineering: getting a legitimate user to do something
– Or exploiting vulnerabilities: using a program in a way it was not intended
• This includes buggy security policies

• An attacked system may be further weakened because of poor access control rules
– Allowing the attacker to do more than the compromised application – a violation of the Principle

of Least Privilege

• Cryptography won’t save us!
– And cryptographic software can also be buggy

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 11

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Unchecked Assumptions

• Unchecked assumptions can lead to vulnerabilities
– Vulnerability: weakness that can be exploited to perform unauthorized actions

• Attack
– Discover these assumptions
– Craft an exploit to render them invalid … and run the exploit

• Four common assumptions:
1. The buffer is large enough for the data
2. Integer overflow doesn’t exist
3. User input will never be processed as a command
4. A file is in a proper format

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 12

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory Corruption Vulnerabilities

• Stack attacks
– Buffer overflow: writing more data that a buffer can hold overwrites adjacent memory

• Heap attacks
– Exploit vulnerabilities in dynamic memory allocation
– Heap overflow: write beyond allocated space (a buffer overflow)
– Use-After-Free: access memory after it’s been freed (and possibly reallocated)

• Integer overflow/underflow
– Arithmetic operation exceeds the maximum or minimum value a data type can hold
– This can lead to unexpected behavior like buffer overflows or bad logic

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 13

Goal: How memory errors lead to code execution

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Stack Buffer Overflow

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 14

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

What is a buffer overflow?

Programming error that allows more data to be stored in an array than there
is allocated space for the object

• Buffer = chunk of memory on the stack, heap, or static data

• Overflow means adjacent memory will be overwritten
– Program data can be modified
– New code can be injected
– Unexpected transfers of control can be launched

15October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflows

Buffer overflows used to be responsible for ~50% of vulnerabilities

• We know how to defend ourselves but
– Average time to discover and patch a bug is more than 1 year
– People delay updating systems … or refuse to
– Embedded systems often never get patched
• Routers, cable modems, set-top boxes, access points, IP phones, and security cameras

– Embedded systems often don’t defend against this (in the name of efficiency)
– Insecure access rights often help with gaining access or more privileges
– We continue to write buggy code!

16October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

cve.mitre.org reports 4,353 CVE records for buffer overflows in 2025 so far
2,103 vulnerabilities in 2024

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The classic buffer
overflow bug

gets.c from macOS:
© 1990,1992 The Regents of the University of California.
gets(buf)

char *buf;

 register char *s;

 static int warned;

 static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

 if (!warned) {

 (void) write(STDERR_FILENO, w, sizeof(w) - 1);

 warned = 1;

 }

 for (s = buf; (c = getchar()) != '\n';)

 if (c == EOF)

 if (s == buf)

 return (NULL);

 else

 break;

 else

 *s++ = c;

 *s = 0;

 return (buf);

}

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 17

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University of
California.
gets(buf)

char *buf;

 register char *s;

 static int warned;

 static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

 if (!warned) {

 (void) write(STDERR_FILENO, w, sizeof(w) - 1);

 warned = 1;

 }

 for (s = buf; (c = getchar()) != '\n';)

 if (c == EOF)

 if (s == buf)

 return (NULL);

 else

 break;

 else

 *s++ = c;

 *s = 0;

 return (buf);

}

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 19

for (s = buf; (c = getchar()) != '\n';)

 if (c == EOF)

 if (s == buf)

 return (NULL);

 else

 break;

 else

 *s++ = c;

for (s = buf; (c = getchar()) != '\n';)

 if (c == EOF)

 if (s == buf)

 return (NULL);

 else

 break;

 else

 *s++ = c;

Note there’s no check for the
length of the buffer!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An issue with C++ too – and no warnings!

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 20

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An issue with C++ too – and no warnings!

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 21

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

$ g++ -o cin cin.cpp

Enter a word:abcdefg

Read 7 characters.

x: efg

y: abcdefg

z: dog

The data in y overflowed to x
x got corrupted

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An issue with C++ too – and no warnings!

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 22

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

$ g++ -o cin cin.cpp

Enter a word:abcdefghijklmnopqrstuvwxyz0123456789

Read 36 characters.

x: efghijklmnopqrstuvwxyz0123456789

y: abcdefghijklmnopqrstuvwxyz0123456789

z: dog

Bus error: 10

With even more data,
x got corrupted
AND the program crashed!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflow examples

23

void test(void) {

 char name[10];

 strcpy(name, "krzyzanowski");

}

That’s easy to spot!

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Another example

24

char configfile[256];

char *base = getenv("BASEDIR");

if (base != NULL)

 sprintf(configfile, "%s/config.txt", base);

else {

 fprintf(stderr, "BASEDIR not set\n");

}

How about this?

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Buffer overflow attacks

To exploit a buffer overflow, identify if there’s an overflow vulnerability in a
program
– Black box testing
• Trial and error
• Fuzzing tools (more on that …)

– Inspection
• Study the source
• Trace program execution

Understand where the buffer is in memory and whether there is potential for
corrupting surrounding data

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 25

You have access to the
source

You don’t have access
to the source

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

What’s the harm?

Execute arbitrary code, such as starting a shell
Code injection, stack smashing
– Code runs with the privileges of the program
• If the program is setuid root then you have root privileges
• If the program is on a server, you can run code on that server

• Even if you cannot inject code…
– You may crash the program (Denial of Service attack)
– Change how it behaves
– Modify data

• Sometimes the crashed code can leave a core dump
– You can access that and grab data the program had in memory

26October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Shellcode

Shellcode:
A compact sequence of machine instructions used as a payload in exploits.

• It is placed into writable memory, and executed by hijacking control flow.

• Commonly spawns a command shell or loads a second-stage payload

• Generally kept small to avoid null bytes and fit in the buffer

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 27

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Note: this test did not succeed

Taking advantage of unchecked bounds

28

#include <stdio.h>

#include <strings.h>

#include <stdlib.h>

int

main(int argc, char **argv)

{

 char pass[5];

 int correct = 0;

 printf("enter password: ");

 gets(pass);

 if (strcmp(pass, "test") == 0) {

 printf("password is correct\n");

 correct = 1;

 }

 if (correct) {

 printf("authorized: running with root privileges...\n");

 exit(0);

 }

 else

 printf("sorry - exiting\n");

 exit(1);

}

$./buf
enter password: abcdefghijklmnop
authorized: running with root privileges...

Run on my Raspberry Pi 5
 Debian 1:6.6.74-1+rpt1
 6.6.74+rpt-rpi-2712

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

It’s a bounds checking problem

• C and C++
– Allow direct access to memory
– Do not check array bounds
– Functions often do not even know array bounds
• They just get passed a pointer to the start of an array

• This is not a problem with strongly typed languages
– Java, C#, Python, etc. check sizes of structures

• But C is in the top 4-5 of popular programming languages
– #1 choice for system programming & embedded systems
– Most operating syatems, compilers, interpreters, databases, security appliances,

browsers, and libraries are written in C or C++

29October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 30

Anatomy of overflows

Part 2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Linux process memory map*

31

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS
High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execveCommand-line args & environment
variables

*Not to scale

Top of stack (it grows down)

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

Note:
The stack stores local variables,
saved registers, and return
addresses. It grows downward.

The heap stores dynamically-
allocated data. It grows upward.

System interrupt vectors

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The stack
func(param_1, param_2, param_3)

Calling function:

 pushl param_3

 pushl param_2

 pushl param_1

 call func

 . . .

Called function:

func: subl $12, %rsp

 . . .

 addl $12, %rsp

 ret

Previous return address

param_3

param_2

param_1

Return address

Local variable a

Local variables for calling
function

Local variable c rsp
(current stack pointer)

High memory

Low memory

Local variable b

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Causing overflow

Overflow can occur when programs do not validate the length of
data being written to a buffer

These "unsafe" functions could be in your code or hidden in libraries

– strcpy(char *dest, const char *src);
– strcat(char *dest, const char *src);
– gets(char *s);
– scanf(const char *format, …)

– Others…

33October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

Safe functions
Counterparts that take a count
as a parameter
strncpy(dest, src, count)

strncat(dest, src, count)

fgets(buf, file, count)

Sscanf(format, count, ...)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overflowing the buffer

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 34

void func(char *s) {

 char buf[128];

 strcpy(buf, s);

 /* ... */

}

What if strlen(s) is >127 bytes?
You overwrite the return address

Return address

parameter (s)

Return address

char buf[128] rsp (current stack pointer)

High memory

Low memory

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overwriting the return address

• If we overwrite the return address
– We change what the program executes when it returns from the function

• “Benign” overflow
– Overflow with garbage data
– Chances are that the return address will be invalid
– Program will die with a SEGFAULT
– Availability attack

35October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Programming at the machine level

• High level languages (even C) constrain you in
– Access to variables (local vs. global)
– Control flows in predictable ways
• Loops, function entry/exit, exceptions

• At the machine code level
– No restriction on where you can jump
• Jump to the middle of a function … or to the middle of a C statement
• Returns will go to whatever address is on the top of the stack
• Unused code can be executed (e.g., library functions not used by the program)

36October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Subverting control flow

Malicious overflow
– Fill the buffer with malicious code

– Then overwrite saved the stack pointer
(the return address) with the address of the
malicious code in the buffer

37October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

Previous return address

params

Return address

char buf[128]

MALICIOUS
CODE

High memory

Low memory

other local vars

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Subverting control flow: more code

If you want to inject a lot of code
Just go further down the stack (into higher memory)

– Initial parts of the buffer will be
garbage data … we just need to fill the buffer

– Then we have the new return address

– Then we have malicious code

– The return address points to the malicious code

38October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

Start of buf[128]

Previous return address

params

Return address

char buf[128]
Junk … we don’t care

what goes here – we just
need to overflow this

bufferLow memory

other local vars

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

MALICIOUS CODE
… still part of the

overflow of
buf[128]

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Address Uncertainty

What if we’re not sure what the exact
address of our injected code is?

NOP slide = NOP sled = landing zone
– Pre-pad the code with lots of NOP instructions
• NOP
• moving a register to itself
• Oring a register with itself
• etc.

– Set the return address on the stack to any
address within the landing zone

39

MALICIOUS CODE
(still part of the

overflow of buf)

Return address

Saved rbp (frame pointer)

char buf[128]

OVERFLOW JUNK

High memory

Low memory

OVERFLOW JUNK

Overwritten return
addressO

ve
rw

rit
te

n
ar

ea NOP – NOP – NOP – NOP

NOP – NOP – NOP – NOP

NOP – NOP – NOP – NOP

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Heap & text overflows

40October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Linux process memory map

41

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execve

Command-line args & environment
variables

• Statically allocated variables &
dynamically allocated memory
(malloc) are not on the stack

• Heap data & static data do not
contain return addresses
– No ability to overwrite a return

address

Are we safe?

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory overflow

42

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char a[15];
char b[15];

int
main(int argc, char **argv)
{
 strcpy(b, "abcdefghijklmnopqrstuvwxyz");
 printf("a=%s\n", a);
 printf("b=%s\n", b);
 exit(0);
}

a=qrstuvwxyz
b=abcdefghijklmnopqrstuvwxyz

The program

The output
(Linux 4.4.0-59, gcc 5.4.0)

We may be able to overflow a
buffer and overwrite other
variables in higher memory.

For example, overwrite the
value of another string.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory overflow – filename example

43

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char afile[20];
char mybuf[15];

int main(int argc, char **argv)
{
 strncpy(afile, "/etc/secret.txt", 20);
 printf(”Planning to write to %s\n", afile);
 strcpy(mybuf, "abcdefghijklmnop/home/paul/writehere.txt");
 printf("About to open afile=%s\n", afile);
 exit(0);
}

Planning to write to /etc/secret.txt
About to open afile=/home/paul/writehere.txt

The program

The output
(Linux 5.10.63, gcc 8.3.0)

mybuf can overflow into afileWe overwrote the file
name afile by writing
too much into mybuf!

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overwriting variables: changing control flow

Even if a buffer overflow does not touch the stack, it can modify global or
static variables – or dynamically-allocated content

• Example:
– Overwrite a function pointer
• Function pointers are often

used in callbacks
• C++ builds tables of function

pointers to implement
polymorphism

– Overwrite variables that affect
control flow

44

int callback(const char* msg)
{
 printf(“callback called: %s\n”, msg);
}

int main(int argc, char **argv)
{
 static int (*fp)(const char *msg);
 static char buffer[16];

 fp = (int(*)(const char *msg))callback;
 strcpy(buffer, argv[1]);
 (int)(*fp)(argv[2]); // call the callback
}

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The exploit

• The program takes the first two arguments from the command line

• It copies argv[1] into a buffer with no bounds checking

• It then calls the callback,
passing it the message
from the 2nd argument

The exploit
– Overflow the buffer
– The overflow bytes will contain the

address you really want to call
• They’re strings, so bytes with 0 in

them will not work … which is a common
challenge with many string-based attacks

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 45

int callback(const char* msg)
{
 printf(“callback called: %s\n”, msg);
}

int main(int argc, char **argv)
{
 static int (*fp)(const char *msg);
 static char buffer[16];

 fp = (int(*)(const char *msg))callback;
 strcpy(buffer, argv[1]);
 (int)(*fp)(argv[2]); // call the callback
}

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Use-after-free, Double-free attacks

• Use-after-free: keep using a reference after freeing it
– Memory that is freed will get allocated new memory allocations
– If the original reference is still used, an attacker may change the contents
– Hijack vtables (tables of pointers to virtual functions to support polymorphism) or pointer tables
– Read sensitive data

• Double-free: can corrupt a memory allocator's data structures

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 46

Memory can be reallocated to something that the attacker can control (user
input or buffer overflow or some other vulnerability)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Heap corruption

• Dynamically-allocated memory (via new or malloc) is managed by a memory
allocator – a library that asks the kernel for memory and then reuses free space

• Overflows can corrupt the metadata that keeps track of how memory is allocated
– The details depend on the design of the memory allocator

• Basic defense: sanity check
– Check that the pointer to the next chunk is in the heap
– Check that the previous chunk of the next chunk points to this chunk

• But the check can only take place when there's a call to the allocator
October 21, 2025 CS 419 © 2024 Paul Krzyzanowski 47

Prev
size Size Next

chunk
Previous

chunk Program data

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 48

Integer Overflow

Part 3

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Minimum & maximum values for integers

• Arbitrary precision libraries may be available
– But processors don’t do arbitrary precision math, so there’s a performance penalty

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 49

Size Unsigned Signed
8-bit (1 byte) 0 .. 255 -128 .. +127
16-bit (2 bytes) 0 .. 65,535 -32,768 .. +32767
32-bit (4 bytes) 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647
64-bit (8 bytes) 0 ..

18,446,744,073,709,551,615
-9,223,372,036,854,775,808 ..
+9,223,372,036,854,775,807

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Overflows and underflows

Going outside the range causes an overflow or underflow
– No room for the extra bit
– These do not generate exceptions

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 50

11111111
+ 00000001
 100000000

255 + 1 = 0

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Unsigned integer overflow

Bigger than the biggest?

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 51

int main(int argc, char **argv)

{

 unsigned short n = 65535;

 printf("n = %d\n", n);

 n = n + 1;

 printf("n+1 = %d\n", n);

}

What gets printed?

n = 65535

n+1 = 0

max unsigned short int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Signed integer overflow

Bigger than the biggest?

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 52

int main(int argc, char **argv)

{

 short n = 32767;

 printf(”n = %d\n", n);

 n = n + 1;

 printf(”n+1 = %d\n", n);

}

What gets printed?
n = 32767

n+1 = -32768

max short int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Also underflow

Smaller than the smallest?

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 53

int main(int argc, char **argv)

{

 short n = -32768;

 printf("n = %d\n", n);

 n = n - 1;

 printf("n-1 = %d\n", n);

}

What gets printed?
n = -32768

n-1 = 32767

max short int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Same thing for ints

Bigger than the biggest?

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 54

int main(int argc, char **argv)

{

 short n = 2147483647;

 printf("n = %d\n", n);

 n = n + 1;

 printf("n+1 = %d\n", n);

}

What gets printed?

n = 2147483647

n+1 = -2147483648

max int

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Signed/unsigned mismatches

Casting from unsigned to signed

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 55

int main(int argc, char **argv)

{

 unsigned short n = 65535;

 short i = n;

 printf("n = %d\n", n);

 printf("i = %d\n", i);

}

What gets printed?
n = 65535

i = -1

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

So what?

You might not detect a buffer overflow because of an integer overflow
– Processors don't generate exceptions for overflows/underflows

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 56

nresp = packet_get_int();

if (nresp > 0) {

 response = xmalloc(nresp*sizeof(char*));

 for (i = 0; i < nresp; i++)

 response[i] = packet_get_string(NULL);

}

Version 3.3 of OpenSSH

If packet_get_int returns 1073741824
and sizeof(char*) = 4,
we allocate 0 bytes for response!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

But we have 64-bit architectures!
• Even 64-bit values can overflow

If users can set a field to any value, they can set it to a huge value and overflows can occur

• Default int size in C on Windows, Linux, macOS = 32 bits

• A lot of data fields in network messages use smaller values

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 57

IP header Time-to-live
Fragment offset
Length

8 bits
16 bits
16 bits

TCP header Sequence #, ack #
Window size

32 bits
16 bits

GPS info Week # 10 bits

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Some values are constrained

A lot of data fields in network messages use smaller values

• IP header
– time-to-live field = 8 bits, fragment offset = 16 bits, length = 16 bits

• TCP header
– Sequence #, Ack # = 32 bits, Window size = 16 bits

• GPS week # = 10 bits

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 58

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Python 3 has no size limit

• Actual type is hidden from the user
– Internally, an integer (32 or 64 bit, depending on the CPU) is used and is converted to

an arbitrary-length integer object when needed

• But there’s a cost!
– 10B iterations of incrementing an int on an M2 Mac
• C: 4.44 seconds
• Java: 28.8 seconds – 6.4x slower
• Python 237 seconds – 53x slower

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 59

By the way, do you trust Python’s math?

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 60

Patch now! Microsoft releases fixes for the serious SMB
bug CVE-2020-0796
March 12, 2020

…
The SMBv3 vulnerability fixed this month is a doozy: A potentially network-based attack that can bring down Windows servers and clients, or
could allow an attacker to run code remotely simply by connecting to a Windows machine over the SMB network port of 445/tcp. The
connection can happen in a variety of ways we describe below, some of which can be exploited without any user interaction.
…
Microsoft fixes 116 vulnerabilities with this month’s patches, and considers 25 of them critical, and 89 important. All the critical vulnerabilities
could be used by an attacker to execute remote code and perform local privilege elevation.

https://news.sophos.com/en-us/2020/03/12/patch-tuesday-for-march-2020-fixes-the-serious-smb-bug-cve-2020-0796/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

2020 SMB Bug: CVE-2020-0796 (SMBGhost)

"The vulnerability involves an integer overflow and underflow in one of the kernel drivers. The
attacker could craft a malicious packet to trigger the underflow and have an arbitrary read inside
the kernel, or trigger the overflow and overwrite a pointer inside the kernel. The pointer is then
used as destination to write data. Therefore, it is possible to get a write-what-where primitive in
the kernel address space."

Bug in the compression mechanism of SMB in Windows 10

Attacker can control two fields
– OriginalCompressedSegmentSize and Offset
– Use a huge value for OriginalCompressedSegmentSize to cause overflow
• This will cause the system to allocate fewer bytes than necessary
• Decompress will cause an overflow

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 61

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

2020 SMB Bug: CVE-2020-0796 (SMBGhost)

Program does
memcpy(Alloc->UserBuffer,
 (PUCHAR)Header + sizeof(COMPRESSION_TRANSFORM_HEADER),
 Header->Offset);

Attack
– A decompression into a smaller buffer can overflow the User

buffer
– The target of memcpy (Alloc->UserBuffer) is read from the

allocation header, which can be overwritten
– The Header contents & offset can also be set by the attacker
– The attacker can write anything anywhere in kernel memory!

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 62

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

63

Microsoft Exchange year 2022 bug in FIP-FS
breaks email delivery
Lawrence Abrams • January 1, 2022

Microsoft Exchange on-premise servers cannot deliver email starting on January 1st, 2022, due to a "Year 2022" bug in the FIP-
FS anti-malware scanning engine.

Starting with Exchange Server 2013, Microsoft enabled the FIP-FS anti-spam and anti-malware scanning engine by default to
protect users from malicious email.

Microsoft Exchange Y2K22 bug

According to numerous reports from Microsoft Exchange admins
worldwide, a bug in the FIP-FS engine is blocking email delivery with
on-premise servers starting at midnight on January 1st, 2022.

https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Is .gif a GIF file? Assumptions about file formats

• iOS Messages app
– Any embedded file with a .gif extension will be decoded before the message is

shown
• Sent to the IMTranscoderAgent process that uses the ImageIO library
• The ImageIO library ignores the file name and tries to guess the format to parse it

– Allows attackers to send files in over 20 formats, increasing the attack surface

• This was used in NSO's Pegasus malware on the iPhone
– Zero-click install via iMessages
– Sent a PDF file with a .gif file name
– Contents were compressed with JBIG2 compression

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 64

See https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PDF – JBIG2 Compression – Integer Overflow

• JBIG2 compression
– Extreme compression format for black & white images
– Breaks images into segments
– Contains table with pointers to similar bitmaps

• This attack exploited an integer overflow bug
– With carefully crafted segments, the count of detected symbols could overflow
– This results in the allocated buffer being too small
– Bitmaps are then written into this buffer

(which is much too small, so the data ends up being written beyond the buffer)
– Enables attacker to control what gets written into arbitrary memory

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 65

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PDF – JBIG2 Compression – Integer Overflow

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 66

Guint numSyms; // (1)

numSyms = 0;

for (i = 0; i < nRefSegs; ++i) {

 if ((seg = findSegment(refSegs[i]))) {

 if (seg->getType() == jbig2SegSymbolDict) {

numSyms += ((JBIG2SymbolDict *)seg)->getSize(); // (2)

 } else if (seg->getType() == jbig2SegCodeTable) {

 codeTables->append(seg);

 }

 } else {

 ...

...

// get the symbol bitmaps

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *)); // (3)

 kk = 0;

 for (i = 0; i < nRefSegs; ++i) {

 if ((seg = findSegment(refSegs[i]))) {

 if (seg->getType() == jbig2SegSymbolDict) {

 symbolDict = (JBIG2SymbolDict *)seg;

 for (k = 0; k < symbolDict->getSize(); ++k) {

 syms[kk++] = symbolDict->getBitmap(k); // (4)

 }

...

Symbol count can overflow
with too many segments.
numSyms becomes a small #

32-bit symbol count

Allocated buffer becomes too small

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one overflows

67October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Miscounts happen

char buf[512];
int i;

for (i=0; i<=512; i++)
 buf[i] = stuff[i];

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Miscounts happen

Safe functions require a count – but can't protect against mistakes
– strcpy → strncpy
– strcat → strncat
– sprintf → snprintf

char buf[512];
int i;

for (i=0; i<=512; i++)
 buf[i] = stuff[i];

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Off-by-one overflow

Feb. 2, 2021: Linux sudo
– Heap-based buffer overflow vulnerability
– An attacker could exploit this vulnerability to

take control of an affected system.

– Off-by-one error
• Can result in a heap-based buffer overflow, which

allows privilege escalation to root via "sudoedit
-s" and a command-line argument that ends with
a single backslash character.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 70

https://www.cisa.gov/uscert/ncas/current-activity/2021/02/02/sudo-heap-based-buffer-overflow-vulnerability-cve-2021-3156

The parser would skip over the next character if it saw a `\`,
skipping over the 0 byte that terminates a string

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 71

Format string/printf vulnerabilities

Part 4

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

printf and its variants

Standard C library functions for formatted output
– printf: print to the standard output
– wprintf: wide character version of printf
– fprintf, wfprintf: print formatted data to a FILE stream
– sprintf, swprintf: print formatted data to a memory location
– vprintf, vwprintf, vfprintf, vwfprintf :

 print formatted data containing a pointer to argument list

Usage
printf(format_string, arguments ...)

printf("The number %d in decimal is %x in hexadecimal\n", n, n);

printf("my name is %s\n", name);

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 72

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dangerous usage of printf

Valid:
printf("hello, world!\n")

Valid, but more dangerous:
char *message = "hello, world\n";

printf(message);

Dangerous:
char *message = user_input();

printf(message);

It's safer to use puts or fputs if
you don't need to parse formatting
directives.

printf is dangerous if an attacker
can change the format string. It
allows:
• Leaking stack data
• Writing to memory

Reserve printf for places where
formatting is really needed.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Leaking data: dumping memory with printf

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 74

#include <stdio.h>
#include <string.h>

int show(char *buf)
{
 printf(buf); putchar('\n');
 return 0;
}

int main(int argc, char **argv)
{
 if (argc == 2)
 show(argv[1]);
}

$./tt hello

hello

$./tt "hey: %012lx"

hey: 7fffe14a287f

printf does not know how many arguments it has.
It deduces that from the format string.

If you don’t give it enough, it keeps reading from the stack

We can dump arbitrary memory by walking up the stack

$./tt 0x%08x.0x%08x.0x%08x.0x%08x.0x%08x

0x6ed0cf98.0x6ed0cfb0.0xd4ec1db8.0x17f4ff10.0x17f95040

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Writing to memory with printf

Have you ever used %n ?

Format specifier that will store into memory the number of bytes written so
far
 int printbytes;

 printf("paul%n says hi\n", &printbytes);

Will print
 paul says hi

and will store the number 4 (which is the value of strlen("paul")) into
the variable printbytes

If we combine this with the ability to change the format specifier, we can
write to other memory locations
October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 75

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 76

Writing to memory with %n #include <stdio.h>
#include <string.h>

int
show(char *buf)
{
 printf(buf);
 putchar('\n');
 return 0;
}

int
main(int argc, char **argv)
{
 char buf[256];

 if (argc == 2) {
 strncpy(buf, argv[1], 255);
 show(buf);
 }
}

m
ai
n

fu
nc

tio
n

pr
in
tf

fu
nc

tio
n

printf treats this as the 1st parameter after the format string.
• Traverse the stack to get to the format string:
• We can skip parameters with formatting strings such as %x
• That will make printf to read the next parameter from

the format string
• Setting the value to be written with format specifiers
• Specify minimum widths to increase the byte count

• Writing the value
• The # of bytes output will be written to the attacker's chosen address, which will be the first 8 bytes of the format string

Buffer

Parameter: pointer to buf

Return address (back to main)

Parameter to printf: pointer to buf

Return address (back to show)

sh
ow

fu
nc

tio
n

Param 2:

Param 3:
Param 4:

Param 5:

Param 0:

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

printf attacks: %n
What good is %n when it’s just # of bytes written?

You can specify an arbitrary number of bytes in the format string

 printf("\x02ABCDEFG%.08x%.622404x%.622400x%n" . . .

Traverse the stack to get to the format string:
– Each occurrance of %x (or %d, %b, ...) will go down the stack by one parameter
– Each In this example, we go 3 parameters deep (e.g., 3*8 = 24 bytes)
Set the value to write by using field widths for outputs
– %.622404x = write 622404 characters for this value
– The sum of all the bytes output = the value that %n will write
– Value = 8+622404+622400 = 1244812 = 0x12fe8c
Write to the desired address
– printf expects the next item on the stack to be the address for %n: but it's our format string
– Set the first 8 bytes of the format string to be the address we want to change
• We can use \NNN escapes to write non-printable characters
• address = "\012ABCDEFG" = 0x0a41424344454647

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 78

Printf attack mitigations

Never pass user-controlled strings as format strings

Compile with -Wformat-security
Compiler flag to warn if printf and scanf use a format string that's not a string literal and there are no arguments to the format

But this doesn't help

Sanitize inputs
Don't use inputs blindly – check that they conform to a format you expect

(e.g., a name should not have a % in it)

Use snprintf/vsnprintf if printing to memory buffersr and explicit input validation

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 79

Defending against hijacking attacks

Part 5

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Fix bugs

• Audit software

• Check for buffer lengths whenever adding to a buffer

• Search for unsafe functions
– Use nm and grep to look for function names

• Use automated tools
– Clockwork, CodeSonar, Coverity, Parasoft, PolySpace, Checkmarx, PREfix, PVS-

Studio, PCPCheck, Visual Studio

• Most compilers and/or linkers now warn against bad usage

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 80

tt.c:7:2: warning: format not a string literal and no format arguments [-Wformat-security]

zz.c:(.text+0x65): warning: the 'gets' function is dangerous and should not be used.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Sanitizers

Compilers can add runtime checks for memory and math errors

• AddressSanitizer (ASan)
Detects out-of-bounds and use-after-free errors

• Undefined Behavior Sanitizer (UBSan)
Detects invalid operations such as signed integer overflow or bad type casts

• LeakSanitizer
Reports unfreed memory and pointer leaks

Generate reproducible crashes when problems arise

But these add overhead, so are used in testing rather than production

October 21, 2025 CS 419 © 2022 Paul Krzyzanowski 81

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Fix bugs: Fuzzing

Do what the attackers do and try to locate unchecked assumptions!

• Generate semi-random data as input to detect bugs
– Useful in locating input validation & buffer overflow problems
– Enter unexpected input
– See if the program crashes

• Enter long strings with searchable patterns

• If the app crashes
– Search the core dump for the fuzz pattern to find where it died (or use a fuzzing tool)

• Automated fuzzer tools help with this
– E.g., libFuzzer and AFL in C/C++; cargo-fuzz in Rust, Go Fuzzing

• Or … try to construct exploits using gdb
October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 82

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++

• Most other languages feature
– Run-time bounds checking
– Parameter count checking
– Disallow reading from or writing to arbitrary memory locations

• Hard to avoid in many cases
– Lots of legacy code
– Performance concerns, CPU load
– Programmer skill, availability of libraries, long-term support
– Top contenders: Rust and Go
• Rust: created by Mozilla – Memory safety with the efficiency of C/C++
• Go: created by Google – fast, compiled code
• Go designed for faster compilation, Rust is designed for faster execution

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 84

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++

• Google’s switch to memory-safe languages
led to the % of memory-safe vulnerabilities in
Android dropping from 76% to 24% over six
years.

• Google announced support for Rust in
Android in 2021

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 85

https://thehackernews.com/2024/09/googles-shift-to-rust-programming-cuts.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++

• White House Office of the National Cyber
Director called on developers to use
languages without memory safety
vulnerabilities

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 86

https://www.infoworld.com/article/2336216/white-house-urges-developers-to-dump-c-and-c.html
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Don’t use C or C++

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 87

https://www.theregister.com/2024/08/03/darpa_c_to_rust/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Ongoing attempts to fix C/C++

• Safe C++ Extensions proposal for inclusion in the C++ standard
– Separate the safe and unsafe parts clearly – keep the safe parts useful
– Don’t break existing code
– Addresses these categories of safety:
• Lifetime safety (preserve objects with references), type safety (initialized vs. uninitialized data),
• Thread safety (synchronization objects aren’t opt-in), runtime checks (array bounds, bad division, bad references)

– Safe Standard Library: Memory-safe implementations of essential algorithms

• TrapC – A proposed fork of C
– Removes goto and union
– Adopts a few C++ features that improve safety: Constructors & destructors, member functions
– Automatic memory management
– Limited lifetime for pointers

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 88

TrapC: https://www.infoworld.com/article/3836025/trapc-proposal-to-fix-c-c-memory-safety.html
Safe C++: https://safecpp.org/draft.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Specify & test code

• If it’s in the specs, it is more likely to be coded & tested

• Document acceptance criteria
– “File names longer than 1024 bytes must be rejected”
– “User names longer than 32 bytes must be rejected”

• Use safe functions that check & allow you to specify buffer limits

• Ensure consistent checks to the criteria across entire source
– Example, you might #define limits in a header file but some files might use a

mismatched number.

• Don't allow user-generated format strings and check results from printf

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 89

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Safer libraries

• Compilers warn against unsafe strcpy or printf

• Ideally, fix your code!

• Sometimes you can’t recompile (e.g., you lost the source)

• libsafe
– Dynamically loaded library
– Intercepts calls to unsafe functions
– Validates that there is sufficient space in the current stack frame

 (framepointer – destination) > strlen(src)

90October 21, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows: No Execute (NX)

Data Execution Prevention (DEP)
– Disallow code execution in data areas – on the stack or heap
– Set MMU per-page execute permissions to no-execute
– Intel and AMD added this support in 2004

Used in Windows, Linux, and macOS

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 91

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

No Execute – not a complete solution

No Execute Doesn’t solve all problems

– Some legacy applications need an executable stack

– Some applications need an executable heap
• code loading/patching
• JIT (just-in-time) compilers

– NX does not protect against heap & function pointer overflows

– NX does not protect against printf and related format string problems

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 92

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Return-to-libc

• Allows bypassing need for non-executable memory
– With DEP, we can still corrupt the stack … just not execute code from it

• No need for injected code

• Instead, reuse functionality within the exploited app

• Use a buffer overflow attack to create a fake frame on the stack
– Transfer program execution to a library function, running with the "restored" frame pointer
– libc = standard C library … every program uses it!
– Most common library function to exploit: system
• Runs the shell with a specified command
• New frame in the buffer contains a pointer to the command to run (which is also in the buffer)
– E.g., system(“/bin/sh”)

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 93

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Return Oriented Programming (ROP)

Generalize return-to-libc:

• Overwrite the return address to branch inside some library function
– Does not have to be the start of the library routine
• Use “borrowed chunks” of code from various libraries

– When the library gets to a RET instruction, that location is on the stack, under the attacker’s control

• Chain together sequences of code ending in RET
– Build together “gadgets” for arbitrary computation
– Buffer overflow contains a sequence of addresses that direct each successive RET instruction

• An attacker can use ROP to execute arbitrary algorithms without injecting new code into an
application
– Removing dangerous functions, such as system, is ineffective
– To make attacking easier: use a compiler that combines gadgets!
• Example: ROPC – a Turing complete compiler, https://github.com/pakt/ropc

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 94

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows & ROP: ASLR

Addresses of everything in the code were well known
– Dynamically-loaded libraries were loaded in the same place each time, as was the stack &

memory-mapped files
– Well-known locations make them branch targets in a buffer overflow attack

Address Space Layout Randomization (ASLR)
– Position stack and memory-mapped files to random locations
– Position libraries at random locations
• Libraries must be compiled to produce position-independent code

– Implemented in all modern operating systems
• OpenBSD, Windows ≥Vista, Windows Server ≥2008, Linux ≥2.6.15, macOS, Android ≥4.1, iOS ≥4.3

– But … not all libraries (modules) can use ASLR
• And it makes debugging difficult

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 95

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Address Space Layout Randomization

• Entropy
– How random is the placement of memory regions?
– If addresses are not random enough then attackers can guess

• Examples
– Linux Exec Shield
• 19 bits of stack entropy, 16-byte alignment – resulted in > 500K positions

– Windows 7
• Only 8 bits of randomness for DLLs
– Aligned to 64K page in a 16MB region: resulted in 256 choices – far too easy to try them all!

– Windows 8 onward
• 24 bits for randomness on 64-bit processors: >16M possible placements

ASLR is effective only if the entropy is high enough and no information leak exists to disclose addresses

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 96

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows: Canaries

Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer overflow attack cannot

overwrite the return address without changing the canary

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 97

int a, b=999;

char s[5], t[7];

gets(s);

Return addr
a
b

s[5]

t[7]

no canary

m
em

or
y a

t r
is

k

Stack

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dealing with buffer overflows: Canaries

Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer overflow attack cannot

overwrite the return address without changing the canary

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 98

int a, b=999;

char s[5], t[7];

gets(s);

a
b

s[5]
t[7]

no canary

m
em

or
y a

t r
is

k CANARY
a
b

s[5]

t[7]

at
 ri

sk

with canary

Stack Stack
parameters

return addr

parameters

return addr

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Refining Stack Canaries: Reordering Variables

IBM’s ProPolice gcc patches – later incorporated into gcc
– Allocate local arrays into higher memory (below) other local variables in the stack
– Ensures that a buffer overflow attack will not clobber non-array variables
– Increases the likelihood that the overflow won’t attack the logic of the current function

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 99

a
b

s[5]
t[7]

CANARY
s[5]
t[7]

a

b

at
 ri

sk

no canary with canary

Stack Stack
parameters

return addr

parameters

return addr

int a, b=999;

char s[5], t[7];

gets(s);

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Stack canaries

• Not foolproof

• Heap-based attacks are still possible

• Performance impact
– Need to generate a canary on entry to a function

and check canary prior to a return
– Minimal performance degradation ~8% for apache web server

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 100

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Heap Protections (including use-after-free protection)

• Better code:
– Don't use a reference after free
– Set pointers to null after free

• Use a hardened allocator
– isolates different types of memory allocation
– Implements internal checks to detect memory corruption
– Delays reallocation

• Heap canaries
– Similar to stack canaries, an allocator inserts a secret value between allocated blocks

and does a consistency check at various points to detect overwrites.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 101

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Heap Protections – Pointer Protection

• Encrypt pointers (especially function pointers)
– Example: XOR with a stored random value
– Any attempt to modify them will result in invalid addresses
– XOR with the same stored value to restore original value

• Degrades performance when function pointers are used

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 102

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Compiler-Based Control-Flow Integrity Checks

• Prevent attackers from hijacking a program's execution flow

• Control transfers (function calls, returns, indirect jumps)
– Must follow legitimate paths defined in a control-flow graph at compile time

• Compiler inserts runtime checks before control transfers
– If an attacker injects or overwrites a pointer to redirect execution to malicious code,

the check will fail

• Primarily designed to block ROP

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 103

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Intel CET: Control-Flow Enforcement Technology

Hardware support for Control-Flow Integrity

Developed by Intel & Microsoft to thwart ROP attacks
– Available starting with the Tiger Lake microarchitecture (mid-2020)

Two mechanisms
1. Shadow stack

– Secondary stack
• Only stores return addresses
• MMU attribute disallows use of regular store instructions to modify the stack

– Stack data overflows cannot touch the shadow stack – cannot change the control flow

2. Indirect branch tracking

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 104

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Intel CET: Control-Flow Enforcement Technology

Indirect Branch Tracking
– Restrict a program’s ability to use jump tables

– Jump table = table of memory locations the program can branch
• Used for switch statements & various forms of lookup tables

– Prevent Jump-Oriented Programming (JOP) and Call Oriented Programming (COP)
• Techniques where attackers abuse JMP or CALL instructions
• Like Return-Oriented Programming but use gadgets that end with indirect branches

– New ENDBRANCH (ENDBR64) instruction allows a programmer to specify valid targets for indirect
jumps
• If you take an indirect jump, it has to go to an ENDBRANCH instruction
• If the jump goes anywhere else, it will be treated as an invalid branch and generate a fault

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 105

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

ARM Heap Protection Mechanisms

Parallel mechanisms to Intel CET on ARM architectures:

ARM Pointer Authentication (PAC)
– Adds a pointer authentication code (like an HMAC) to verify pointers
– Requires compiler support
– Enabled by default in Linux

ARM Memory Tagging Extension (MTE)
– Each 16-byte block in memory gets a 4-bit tag.
– Pointers must have a matching tag in the unused upper bits of their address
– Guards against buffer overflows or use-after-free errors

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 106

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

ARM Heap Protection Mechanisms - Enhanced

Enhanced Memory Tagging Extension (EMTE)
– Developed jointly with Apple in 2022
– Accessing non-tagged memory (like global variables) from tagged regions requires attackers to

know the region's tag

• Apple Memory Integrity Enforcement (MIE) – 2025
– Memory allocators use type information to decide how to organize memory
– Leverages EMTE
• Memory tagging by allocator; adjacent allocations get different tags
• Hardware enforces matching tag on access; tag mismatch triggers fault
• Allocator retags memory regions when they get reused to detect use-after-free exploits
• Kernel tag metadata protected; allocator retags on reuse to catch use-after-free

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 107

See: https://security.apple.com/blog/memory-integrity-enforcement/

https://security.apple.com/blog/memory-integrity-enforcement/
https://security.apple.com/blog/memory-integrity-enforcement/
https://security.apple.com/blog/memory-integrity-enforcement/
https://security.apple.com/blog/memory-integrity-enforcement/
https://security.apple.com/blog/memory-integrity-enforcement/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hardware Attacks: Example - Rowhammer

DDR4 memory protections are broken wide open
by new Rowhammer technique
Researchers build "fuzzer" that supercharges potentially serious bitflipping exploits.
Dan Goodin • 11/15/2021

Rowhammer exploits that allow unprivileged attackers to change or corrupt data stored in vulnerable memory
chips are now possible on virtually all DDR4 modules due to a new approach that neuters defenses chip
manufacturers added to make their wares more resistant to such attacks.

Rowhammer attacks work by accessing—or hammering—physical rows inside vulnerable chips millions of
times per second in ways that cause bits in neighboring rows to flip, meaning 1s turn to 0s and vice versa.
Researchers have shown the attacks can be used to give untrusted applications nearly unfettered system
privileges, bypass security sandboxes designed to keep malicious code from accessing sensitive operating
system resources, and root or infect Android devices, among other things.

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 108

https://arstechnica.com/gadgets/2021/11/ddr4-memory-is-even-more-susceptible-to-rowhammer-attacks-than-anyone-thought/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Hardware Attacks: Example - Rowhammer

• RowHammer was disclosed in 2014
– Exploits memory architecture to alter data by repeatedly accessing a specific row
– This introduces random bit flips in neighboring memory rows

• 2021: new attack technique discovered
– Uses non-uniform patterns that access two or more rows with different frequencies
– Bypasses all defenses built into memory hardware
– 80% of existing devices can be hacked this way
– Cannot be patched!

• Sample attacks
– Gain unrestricted access to all physical memory by changing bits in the page table entry
– Give untrusted applications root privileges
– Extract encryption key from memory

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 109

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Fixed? Nope – introducing ZenHammer

• Manufacturers tried to mitigate this
problem

• But in March, 2024…
– Researchers created a new variant of the

attack
– ZenHammer acts like Rowhammer but can

also flip bits on DDR5 devices

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 110

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Summary of Mitigations

• Hardware
– NX (no execute), CET (Intel Control-Flow Enforcement Technology), PAC (ARM Pointer

Authentication Codes), MTE (ARM Memory Tagging Extensions)/EMTE (Enhanced
MTE)

• OS/runtime
– ASLR, hardened memory allocators, memory tagging

• Compiler/runtime
– Stack canaries, safe compiler flags, control-flow integrity checks

• Developer
– Bounds checking, safe APIs, sanitizers, fuzzing

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 111

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Summary of Memory Attack Mitigations

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 112

Developer Bounds checking
Safe APIs,
Sanitizers, fuzzing

Compiler/runtime Stack canaries
Safe compiler flags
Control-flow integrity checks

OS/runtime ASLR
Hardened memory allocators
Memory tagging (with hardware support)

Hardware NX (no execute)
CET (Intel Control-Flow Enforcement Technology),
PAC (ARM Pointer Authentication Codes),
MTE (ARM Memory Tagging Extensions)/EMTE (Enhanced MTE)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The end

October 21, 2025 CS 419 © 2025 Paul Krzyzanowski 113

